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INTRODUCTION
HISTORICAL SUMMARY

1. By an isogonal (winkeltrew) representation of two areas on one
another we mean a one-one, continuous, and continuously differentiable
representation of the areas, which is such that two curves of the first
area which intersect at an angle @ are transformed into two curves
intersecting at the same angle «. If the sense of rotation of a tangent
18 preserved, an isogonal transformation is called conformal.

Disregarding as trivial the Euclidean magnification (A knlickkeitstrans-
Jormation) of the plane, we may say that the oldest known transformation
of this kind 1s the stereographic prajection of the sphere, which was used
by Ptolemy (flourished in the second quarter of the second century ; died
after A.p. 161) for the representation of the celestial sphere; it trans-
forms the sphere conformally into a plane. A quite different conformal
representation of the sphere on a plane area is given by Mercator’s
Prajection ; in this the spherical earth, cut along a meridian circle, 1s
conformally represented on a plane strip. The first map constructed by
this transformation was published by Mercator (1512-1594) in 1568,
and the method has been universally adopted for the construction of
sea-maps.

2. A comparison of two maps of the same country, one constructed
by stereographic projection of the spherical earth and the other by
Mercator’s Projection, will show that conformal transformation does not
imply similarity of corresponding figures. Other non-trivial conformal
representations of a plane area on a second plane area are obtained by
comparing the various stereographic projections of the spherical earth
which correspond to different positions of the centre of projection on
the earth’s surface. It was considerations such as these which led
Lagrange (1736-1813) in 1779 to obtain all conformal representations
of a portion of the earth’s surface on a plane area wherein all circles of
latitude and of longitude are represented by circular ares(1).

3. In 1822 Gauss (1777-1855) stated and completely solved the
general problem of finding all conformal transformations which trans-
form a sufficiently small neighbourhood of a point on an arbitrary
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2 INTRODUCTION

analytic surface into a plane area(@). This work of Gauss appeared to
give the whole inquiry its final solution; actually it left unanswered
the much more difficult question whether and in what way a given finite
portion of the surface can be represented on a portion of the plane.
This was first pointed out by Riemann (1826-1866), whose Dissertation
(1851) marks a turning-point in the history of the problem which has
been decisive for its whole later development; Riemann not only intro-
duced all the ideas which have been at the basis of all subsequent
investigation of the problem of conformal representation, but also showed
that the problem itself is of fundamental importance for the theory of
functions(3).

4. Riemann enunciated, among other results, the theorem that every
simply-connected plane area which does not comprise the whole plane
can be represented conformally on the interior of a circle. In the proof
of this theorem, which forms the foundation of the whole theory, he
assumes as obvious that a certain problem in the calculus of variations
possesses a solution, and this assumption, as Weierstrass (1815-1897)
first pointed out, invalidates his proof. Quite simple, analytic, and in
every way regular problems in the calculus of variations are now known
which do not always possess solutions(4). Nevertheless, about fifty years
after Riemann, Hilbert was able to prove rigorously that the particular
problem which arose in Riemann’s work does possess a solution; this
theorem is known as Dirichlet's Principle(5).

Meanwhile, however, the truth of Riemann’s conclusions had been
establislied in a rigorous manner by C. Neumann and, in particular, by
H. A. Schwarz6). The theory which Schwarz created for this purpose
is particularly elegant, interesting and instructive; it is, however, some-
what intricate, and uses a number of theorems from the theory of the
logarithmic potential, proofs of which must be included in any complete
account of the method. During the present century the work of a
number of mathematicians has created new methods which make possible
a very simple treatment of our problem ; it is the purpose of the following
pages to give an account of these methods which, while as short as
possible, shall yet be essentially complete.
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CHAPTERI

MOBIUS TRANSFORMATION

5. Conformal representation in general.

It is known from the theory of functions that an analytic function
w=/f(z), which is regular and has a non-zero differential coeflicient at
the point z = z,, gives a continuous one-one representation of a certain
neighbourhood of the point 2, of the z-plane on a neighbourhood of a
point u, of the w-plane.

Expansion of the function f(z) gives the series

w—wo=A(z—zo)+B(z—:,,)2+...,} 1)
A40, T e
and iIf we write

z—m=re, A=aé, w-—w,=pe®, ... (52)

where ¢, A, and « are real, and r, a, and p are positive, then (5'1) may

be written
et |
lim ¢(r,t)=0. § 7 (5°3)
r—>»0

This relation is equivalent to the following two relations:

prarfl +a(r, Ol u=derfn0) ) (54)
lim a(r,0)=0,  lim B(rey=0f
T-»0 r—>0
When 7 = 0 the second of these relations becomes
U= A, + t, ...... (5.5)

and expresses the connection between the direction of a curve at the
point z, and the direction of the corresponding curve at the point u,.
Equation (5°5) shows in particular that the representation furnished by
the function w = f(z) at the point z, is isogonal. Since the derivative
/" (z) has no zeros in a certain neighbourhood of z,, it follows that the
representation effected by f (z) of a neighbourhood of z, on a portion of
the w-plane is not only continuous but also conformal.

The first of the relations (5°1) can be expressed by saying that
“infinitely small” circles of the z-plane are transformed into infinitely
small circles of the w-plane. Non-trivial conformal transformations
exist however for which this is also true of finite circles; these trans-
formations will be investigated first.
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4 MOBIUS TRANSFORMATION [cHAP. I

6. Mobius Transformation.

Let A, B, C denote three real or complex constants, A, B, C their
conjugates, and z, Z a complex variable and its conjugate; then the

equation _ _ _
(A+A)zz+ Br+ B2+ C+C=0 ... (6'1)
represents a real circle or straight line provided that
BB>(4+A4)(C+0). .. (62)

Conversely every real circle and every real straight line can, by suitable
choice of the constants, be represented by an equation of the form (6°1)
satisfying condition (62). If now in (6'1) we make any of the sub-

stitutions
y=x+x, .. (6-3)
:I/ =px, . (6'4)
1 -
or y=5 e (65)

the equation obtained can be brought again into the form (6°1), with
new constants 4, B, C which still satisfy condition (6°2). The substitu-
tion (6°5) transforms those circles and straight lines (6°1) for which
C+ (=0, i.e. those which pass through the point z =0, into straight
lines; we shall therefore regard straight lines as circles which pass
through the point z = .

7. If we perform successively any number of transformations (6°3),
(6°4), (6°5), taking each time arbitrary values for the constants A, g,
the resulting transformation is always of the form

oz + B .
=¥sr (71)

here @, 8, v, 8 are constants which necessarily satisfy the condition
ad-By+0, .. (7°2)

since otherwise the right-hand member of (7°1) would be either constant
or meaningless, and (7°1) would not give a transformation of the #-plane.
Conversely, any bilinear transformation (7-1) can easily be obtained by
means of transformations (6°3), (6'4), (6°5), and hence (7°1) also trans-
forms circles into circles.

The transformation (7'1) was first studied by Mabius (1) (1790-1868),
and will therefore be called Mobius Transformation.

8. The transformation inverse to (7°1), namely

lz%&:ﬁf’ (-8 (=a)-By#0, ... (8°1)
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§§ 6-10] GENERAL PROPERTIES 5

1s also a Mobius’ transformation. Further, if we perform first the trans-
formation (7°1) and then a second Mobius’ transformation

_ %.7/*'31 _
= 71y+31 ’ alsl BI‘Yl #O)

the result is a third Mobius’ transformation

”*A.z*+B
T Te+A?

with non-vanishing determinant

AA - BI' = (a3~ :37) (%8, -Biv)#0.
Thus we have the theorem: the aggregate of all Mobius transforma-
tions forms a group.

9. Equations (7'1) and (8'1) show that, if the z-plane is closed by the
addition of the point 2 = %, every Mobius' transformation is a one-one
transformation of the closed x-plane into itself. If y # 0, the point y=a/y
corresponds to the point z=a, and y = » to z=—28/y; but if y =0 the
points « = » and y = o correspond to each other.

From (7-1) we obtain

dy od— By
dz ~ (yo + 8y’
so that, by § 5, the representation is conformal except at the points 2 = «
and z = -38/y. In order that these two points may cease to be ex-
ceptional we now extend the definition of conformal representation as
follows : a function y =/ (z) will be said to transform the neighbourhood
of a point , conformally into a neighbourhood of = o if the function
7 =1/f(x) transforms the neighbourhood of #, conformally into a neigh-
bourhood of % =0; also y = f () will be said to transform the neighbour-
hood of 2 = o conformally into a neighbourhood of g, if

y=9&)=/(1/%)
transforns the neighbourhood of =0 conformally into a neighbourhood
of y,. In this definition y, may have the value .
In virtue of the above extensions we now have the theorem: every
Mobius’ transformation gives « one-one conformal representation of the
entire closed z-plane on the entire closed y-plane.

10. Invariance of the cross-ratio.

Let 2y, 2;, 2,, 2, denote any four points of the z-plane, and Wy Ys,
¥s, ¥s the points which correspond to them by the Mobius’ transforma-
tion (7°1). If we suppose in the first place that all the numbers #;, y;
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6 MOBIUS TRANSFORMATION {cmap. 1

are finite, we have, for any two of the points,

mk+B_a‘z‘i+B_ “8—:37
YT +d  yri+8  (yap+8)(ya; + 8

U—Yi= ) (@~ ),

and consequently, for all four,

B =) (8~ 1) _ (11— ) (2, 2,) (

: G—3)@:—gs) (B -z (2~ )
"The expression

(a1~ a0,) (@5 — )
(21— ) (@ — )
is called the cross-ratio of the four points #,, z,, 25, 75, sa that, by (10°1),
the cross-ratio is invariant under any Mibius’ transformation.
A similar calculation shows that equation (10°1), when suitably modi-
fied, is still true if one of the numbers x; or one of the numbers ¥ 18
infinite; if, for example, #,= oc and g, = o,

Hol D& (10°2)

Ys—Ys L3— 24 ’
11. Let oy, 43, 23 and 9,, 9., 7, be two sets each containing three
unequal complex numbers. We will suppose in the first place that all
six numbers are finite. The equation

=P Ys—12) _ (1 —2) (13— )

-9 (1s~y) (2 -22) (25— 2)
when solved for y yields a Mibius’ transformation which, as is easily
verified, transforms each point 2; into the corresponding point #*, and
§10 now shows that it is the only Mbius’ transformation which does so.
This result remains valid when one of the numbers z; or y; is infinite,
provided of course that equation (11°1) is suitably modified.

12. Since a circle is uniquely determined by three points on its cir-
cumference, § 11 may be applied to find Mobius’ transformations which
transform a given circle into a second given circle or straight line. Thus,
for example, by taking 2,=1, #,=4%, 25=—1and =0, 9,=1, y,= 0,
we obtain the transformation

d-x

‘1/:21——+$’ ...... (12.1)

1.e. one of the transformations which represent the circle | # | = 1 on the
real axis, and the interior | 2| <1 of the unit-circle on the upper half
of the y-plane. By a different choice of the six points ;, % we can
represent the exterior { z | > 1 of the unit-circle on this same half-plane.
* The determinant of this transformation has the value
@b = By =y~ ¥2) (41— ¥} (72— U3) (71~ 72) (21~ T5) (25— 7).
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§§ 11-13] GEOMETRY OF CIRCLES 7

In particular by taking the three points y; on the same circle as the
points z; we can transform the interior of this circle into itself or into
the exterior of the circle according as the points 2,, 2, z; and ¥y, ¥s, s
determine the same or opposite senses of description of the perimeter.
If, for example, in (11'1) we put 9, =0, ¥.=1, 4, = , and then success-
ively 2,=1, 2,=, 2;=0 and z,= o, x,=1, 2, =0, we obtain the two
transformations ‘

y=(xz-1)/z and y=1/z; ... (122)
the first transforms the upper half-plane into itself, whereas the second
transforms it into the lower half-plane.

13. Pencils of circles.

Since a Mibius’ transformation is conformal it transforms orthogonal
circles into orthogonal circles. We shall now show that, giver any two
circles A and B, we can find a Mobius transformation whick transforms
them either into two straight lines or into two concentric circles.

If 4 and B have at least one common point P, then any Mdbius’
transformation whereby P corresponds to the point « transforms A4
and B into straight lines; these lines intersect or are parallel according
as 4 and B have a common point other than P, or not.

Fig. 1

If 4 and B have no common point, first transform the circle A by a
Mibius’ transformation into a straight line 4,, and let B, be the circle
corresponding to B; 4, and B, do not intersect. Draw the straight line ¢
through the centre of B, perpendicular to A.; let the foot of this per-
B
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8 MOBIUS TRANSFORMATION [cHAP. 1

pendicular be 7. With centre M draw the circle C cutting B, orthogon-
ally. By a second Mobius’ transformation we can transform the circle C
and the straight line { into two (orthogonal) intersecting straight lines;
A,, B, are thereby transformed into two circles 4,, B,, which cut both
these straight lines orthogonally and are therefore concentric.

14. Given two intersecting straight lines there is a family of concentric
circles orthogonal to both; given two parallel straight lines there is a
family of parallel straight lines orthogonal to both ; and given two concen-
tric circles there is a family of intersecting straight lines orthogonal to
both. Bach of these families of circles or straight lines consists of all circles
(or straight lines) of the plane which cut both the given lines or circles
orthogonally. Since a Mbius’ transformation is isogonal it follows that:
gtven any two circles A, B, there exists exactly one one-parametric family
of circles which cut A and B orthogonally ; this family is called the pencil
of circles conjugate to the pair A, B.

If the circles 4 and B intersect in two points P, @ of the plane, no
two circles of the conjugate pencil can intersect, and the pencil is then
said to be elliptic. No circle of the pencil passes through either of the
points P, @, which are calied the limiting points of the pencil.

Secondly, if A4 and B touch at a point P, the conjugate pencil consists
of circles all of which touch at P, and is called parabolic; P is the
common point (Knotenpunkt) of the pencil.

Lastly, if 4 and B have no point in common, the conjugate pencil
consists of all circles which pass through two fixed points, the common
points of the pencil, and is called Ayperbolic.

15. Considering the three types of pencils of circles as defined in §14,
we see that if C, D are any two circles of the pencil conjugate to 4, B,
then A, B belong to the pencil conjugate to C, D. This pencil containing
A, B is independent of the choice of the two circles C, D, and we there-
fore have the following theorem : there is one and only one pencil of circles
whick contains two arbitrarily given circles; i.e. a pencil of circles is
uniquely determined by any two of its members.

We see further from the three standard forms of pencils that : through
every point of the plane which is neither a limiting point nor a common
point of a given pencil of circles there passes exactly one circle of the pencil.

16. Bundles of circles.
Let A, B, C be three circles which do not all pass through a common
point P. If 4, B have no common point we can transform them (§13)
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§§ 14-16] GEOMETRY OF CIRCLES 9

by a Mobius’ transformation into concentric circles 4,, B;, and that
common diameter of 4, and B, which cuts O, (the circle into which C
is transformed) orthogonally is a circle of the plane cutting all three
circles A,, B,, O, orthogonally. Hence a circle exists which cuts all
three circles 4, B, C orthogonally.

Secondly, if 4 and B touch, there is a Mébius’ transformation which
transforms them into two parallel straight lines, and € into a circle C;.
Since C; has one diameter perpendicular to the two parailel straight
lines, a circle exists in this case also cutting all three circles 4, B, C
orthogonally.

Finally, if 4 and B have two points in common, there is a Mobius’
transformation which transforms them into two straight lines intersecting
at a point O, and C into a circle €, which does not pass through 0. Two
cases must now ke distinguished : if O lies outside the circle C, there is

Fig. 2 Fig. 3

again a circle cutting 4,, By, and C, orthogonally; whereas if O lies
inside C, there is a circle T such that each of the circles 4,, B,, C,
intersects I' at the extremities of a diameter of T

We have thus proved the following theorem: any three co-planar circles
must satisfy at least one of the following conditions: the three circles have
a common orthogonal circle K, or they pass through a common point, or
they can be transformed by a Mobius’ transformation into three circles
which cut a fized circle T at the extremities of a diameter of T. It follows
readily from the proof given that if the three circles 4, B, C do not
belong to the same pencil the circle K is unique; further, it will be
proved below that three given circles cannot satisfy more than one of the
three conditions enumerated.
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10 MOBIUS TRANSFORMATION [cHAP. I

17. We now define three types of families of circles which we call bundles
of circles.

An elliptic bundls of circles consists of all circles of the plane which
cut a fixed circle T' at the extremities of a diameter of T. The circle
T itself belongs to the bundle and is called the equator of the bundle.

A parabolic bundle of circles consists of all circles of the plane which
pass throngh a fixed point, the common point of the bundle.

A hyperbolic bundle of cireles consists of all circles of the plane which
cut a fixed circle or straight line orthogonally.

These three figures are essentially distinct: every pair of circles of an
elliptic bundle intersect at two points; every pair of circles of a parabolic
bundle either intersect at two points or touch one another; but a hy-
perbolic bundle eontains pairs of circles which have no common point.

18. Bundles of circles nevertheless possess very remarkable common
properties. For example: if 4, B are two circles of a bundle, all the
circles of the pencil whick contains A, B belong to this bundle. For a
parabolic bundle the truth of this theorem is obvious; for a hyperbolic
bundle it follows from the fact that the orthogonal circle of the bundle
cuts the circles 4, B—and therefore cuts every circle of the pencil
containing 4, B—orthogonally; and for an elliptic bundle it follows
from an elementary theorem of Euclid.

The proof of the following theorem is equally simple: if a plane
contains a bundle of circles and an arbitrary point P, which, if the
bundle is parabolic, does not coincide with the common point of the bundle,
then P lies on an infinite number of circles of the bundle, and these circles
through P form a pencil.

19. Let A, B, C be three circles of a bundle which do not belong to
the same pencil, and let D be any fourth circle of the bundle; then,
starting with A, B, C we can, by successive construction of pencils,
arrive at a pencil of circles which contains /), and all of whose members
are circles of the bundle. For there is on /) at least one poiut P which
1s neither a common point nor a limiting point of either of the two pencils
determined by 4, B and by A, € and which does not lie on A ; we can
therefore draw through P two circles E, F), so that & belongs to the
pencil 4, B, and I tc the pencil 4, C. The circles F, F are distinct,
since 4, B, € do not belong to the same pencil, and the second theorem
of § 18 now shows that D belongs to the pencil determined by £, F.
It follows that a bundle of circles is uniquely determined by any three
of its members which do not belong tc the same pencil, and in particular
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