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ADDENDA ET CORRIGENDA
Additional Definitions.
The trace of a square matrix is the sum of the elements in the principal
diagonal. It is equal to the sum of the latent roots.
Characteristic vector or proper vector is equivalent to “modal column’ or

“modal row”’, though less explicit. The term * eigenvector” is sometimes used
but is to be strongly deprecated.

p. 33. Special types of square matriz. Add
“Matrix is unitary when uw-1=%’.

A real unitary matrix is orthogonal but an orthogonal matrix need not be
real.

All the latent roots of a unitary matrix have unit modulus.
Matrix is persymmetric when the value of u,;; depends only on (i +5).”

p- 110. Insert dagger  against footnote.
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Xiv ADDENDA ET CORRIGENDA

p. 120, 2nd table, 2nd row, for “rs—2r,” read “‘rs—3ry"".
p- 121, line 1, Delete ‘‘method of™.
p. 121, § 4 12, lines 2, 3. For ““the first or the third” read “any”.

p. 144, para. beginning at line 8 should read

“If there are p distinct dominant roots A;A,...A, and if k,&,...x, are the
corresponding modal rows, the procedure is as follows. Partition the (P, n)
matrix {ky, Ky, ..., K} in the form [a, #], where « is a (p, p) submatrix, assumed
to be non-singular (rearrangement of the rows of 4 and columns of [, £] may be
necessary to satisfy this condition). In this case the required matrix w is con-
structed in the partitioned form

w=[1I, alf
0, 0
and then v=u(l—-wy=u[0, —a'f7].
0, I

Evidently v has p zero columns and hence p zero latent roots. If rearrangement
has been required, « must be in the corresponding rearranged form.

The choice of a non-singular submatrix a is a generalization of the choice of
& non-zero element k,, in the elimination of a single dominant root.

This process is in effect that which is applied in the numerical example on
p. 330.”

p. 150, § 421, line 9. For “a machine could no doubt be’ read ‘“machines
have been” and in line 10 delete ‘‘“most of”’.

p. 152, line 5. For “changed’ read ‘“‘reversed’.

p- 176, equation (4), denominator of third fraction, for
“AM(A) (A=A,)” read “A AP (A,) (A=A,
p. 195, § 6-5, line 7. For “intial’ read ‘‘initial”’.

p- 252, equation at bottom, interchange first and third matrices on the right-
hand side.

P. 277. The symbol o stands for a set of parameters and for the components
of the total acceleration of P. One of these should be represented by £, say.

p- 291, § 9-9. The following is a simple alternative proof of the reality of the
roots of the determinantal equation A, (2)=0 when 4 and E are real and
symmetrical.

Let z, k respectively denote any root and its associated modal column, and
let Z, k be the corresponding conjugates (see § 1:17). Then

z2Ak=Ek. L. (1)
Premultiplication by %’ yields
kK’ Ak=FEk, ... (2)
and by transposition
2k’ Ak =k’ Ek.
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ADDENDA ET CORRIGENDA Xv

The conjugate relation is

t’Ak=FEL. .. (3)
Comparison of (2) and (3) gives 2=%, which shows that z is real. Thus by (1)
k is real, and by (2) 2 is positive when the potential energy function is positive
and definite.

p. 296, equation (7). An alternative is Q =k, Eq.
p. 309, equation in (b). We may replace k, A by k. E which may be simpler.

p- 310, § 10-2 (e), second sentence should read ““The principle shows that first
order errors in the mode yield only second order errors in the frequency as
calculated by the equation of energy .

Also line 10 should read “used, and when U happens to be symmetrical, a
convenient. ...

p. 315, line 9 from bottom, for *Rayleigh’s principle will next be applied”
read “Since U is symmetrical, the extension of Rayleigh’s principle given in
§ 10-2 (e) can be applied...".

p. 363, § 12-3, line 4, for “given’ read ‘‘are given”

p- 396, line above the diagram. For “0-84 degree’ read ‘84 degrees per
Ib.ft.”
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PREFACE

The number of published treatises on matrices is not large, and so far
as we are aware this is the first which develops the subject with special
reference to its applications to differential equations and classical
mechanics. The book is written primarily for students of applied
mathematics who have no previous knowledge of matrices, and we
hope that it will help to bring about a wider appreciation of the
conciseness and power of matrices and of their convenience in com-
putation. The general scope of the book is elementary, but occasional
discussions of advanced questions are not avoided. The sections con-
taining these discussions, which may with advantage be omitted at the
first reading, are distinguished by an asterisk.

The first four chapters give an account of those properties of
matrices which are required later for the applications. Chapters 1
to mr introduce the general theory of matrices, while Chapter 1v is
devoted to various numerical processes, such as the reciprocation
of matrices, the solution of algebraic equations, and the calculation
of latent roots of matrices by iterative methods.

The remainder of the book is concerned with applications. Chapters
v and vi deal in some detail with systems of linear ordinary differential
equations with constant coefficients, and Chapter viI contains ex-
amples of numerical solutions of systems of linear differential equations
with variable coefficients. The last six chapters take up the subject
of mechanics. They include an account of the kinematics and dynamics
of systems, a separate discussion of motions governed by linear dif-
ferential equations, illustrations of iterative methods of numerical
solution, and a treatment of simple dynamical systems involving solid
friction. The part played by friction in the motions of dynamical
systems is as yet very incompletely understood, and we have con-
sidered it useful to include a very brief description of some experi-
mental tests of the theory.

A considerable number of worked numerical examples has been
included. It is our experience that the practical mathematician,
whose requirements we have mainly considered, is often able to grasp
the significance of a general algebraic theorem more thoroughly
when it is illustrated in terms of actual numbers. For examples of
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xviii PREFACE

applications of dynamical theory we have usually chosen problems
relating to the oscillations of aeroplanes or aeroplane structures.
Such problems conveniently illustrate the properties of dissipative
dynamical systems, and they have a considerable practical importance.

A word of explanation is necessary in regard to the scheme of
numbering adopted for paragraphs, equations, tables, and diagrams.
The fourth paragraph of Chapter 1, for example, is denoted by § 1-4.
The two equations introduced in § 1-4 are numbered (1) and (2),
but when it is necessary in later paragraphs to refer back to these
equations they are described, respectively, as equations (1-4-1) and
(1-4-2). Tables and diagrams are numbered in each paragraph in
serial order: thus, the two consecutive tables which appear in § 7-13
are called Tables 7-13-1 and 7-13-2, while the single diagram intro-
duced is Fig. 7-13-1.

The list of references makes no pretence to be complete, and in the
case of theorems which are now so well established as to be almost
classical, historical notices are not attempted. We believe that much
of the subject-matter—particularly that relating to the applications
—presents new features and has not appeared before in text-books.
However, in a field so extensive and so widely explored as the theory
of matrices, it would be rash to claim complete novelty for any
particular theorem or method.

The parts of the book dealing with applications are based very
largely on various mathematical investigations carried out by us
during the last seven years for the Aeronautical Research Committee.
We wish to express our great indebtedness to that Committee and to
the Executive Committee of the National Physical Laboratory for
permission to refer to, and expand, a number of unpublished reports,
and for granting many other facilities in the preparation of the book.
We wish also to record our appreciation of the care which the Staff of
the Cambridge University Press has devoted to the printing.

Our thanks are also due to Miss Sylvia W. Skan of the Aerodynamics
Department of the National Physical Laboratory for considerable
assistance in computation and in the reading of proofs.

>
e
aotdHd

March 1938
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