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1. Preliminaries

1.1 A set-theoretical result

One of our primary tasks will be to embed a given R-module in
an injective module. This will be done in Chapter 2. For many
purposes, we actually want to be able to say that every module is
a submodule of an injective module. This can be deduced from
the result on embedding by means of a device which is essentially
of a set-theoretic rather than an algebraic nature. We shall deal
with this point in our first result.

ProrositionN 1.1 Let f: E— E’ be an embeddingt of the
R-module E in the R-module E'. Then there is an extension module
E" of E and an isomorphism g: B ~ E’ which extends the em-
bedding f, i.e. which is such that g(e) = f(e) for every ec E.

Proof. We first look at the set £\ f(E) of all elements of B’ which
do not belong to f(£). It may happen that this set has elements
in common with £, so we consider instead any set X which is an
identical copy of £\ f(E) but is disjoint from E. There will be
a bijection v: X — E’\ f(E). Put E” = Ey X. The mapping
g: E” — E’ is now defined by

, fle"y if e"ek
o) = {5 o
ve”) if e"eX.

Then g is a bijection and extends f.

We now use ¢ to give F” the structure of an R-module in such
a way that F is a submodule of £” and ¢ is an R-homomorphism.
Let e,,e,c E” and re R. Then g(e,), gle;) € E', so that g(e;) +g(e,)
and rg(e,) are defined in £’. We define ¢, + ¢, and re, in E” by

ertey =g lgle) +9(er)), ren =97 (rg(ey)). (1.1.1)
These definitions agree with the addition and multiplication by

t The word ‘embedding’ is just another name for a monomorphism, i.e.
a homomorphism which is an injective mapping.

b [1] sSVI
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2 Preliminaries

ring elements on K, and they give E” the structure of an B-module.
It will thus be an extension module of E. Further, from (1.1.1),

gles+es) = gler) +9(e), glrey) = rgles),
8o that g is an R-homomorphism.[]

1.2 Sums and intersections of submodules

Suppose that we have an R-module M and a family {M},.; of
submodules of M. The sum, Y, M, of this family is the set of all

iel
elements Y, m,, where m, € M; for each i€ I andm; = 0forall but
tel
a finite number of <. To include the case when I is the empty set,
we define Y, m, when I is empty to be 0. Then ¥ M, is a sub-

iel el
module of M; it is the smallest submodule of M to contain

every M;. When I is the empty set, Y, M;is the zero submodule
el

of M. The largest submodule of M which is contained in every M;

is the intersection (N M, of the family. The appropriate con-

iel
vention for this intersection when I is empty is that it is M. If I is
a finite non-empty set, say I = {1,2,...,n}, then the sum and

intersection are also written
M+ My+...+M, and MnMn..nM,
respectively.

ProrosiTioN 1.2 (The modular law) Let H, K, L be sub-
modules of an R-module M, and suppose that K < H. Then

Ho(K+L)=K+(HnL).

Proof. Clearly K + (H n L) < H n (K + L). Consider an element
h of Hn(K+L). Then h=k+! for some keK, leL, and
l=h—keH. Thus h belongs to K+ (H nL). This shows that
Hn(K+L)s K+HnL).O

In technical terms, Proposition 1.2 says that the submodules of
a given module form a modular lattice with respect to the opera-
tions of addition and intersection.

Now consider a subset G of the B-module M. The intersection of
all submodules of M containing G will be the smallest submodule
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1.2 Sums and intersections of submodules 3

of M to contain @; it is called the submodule of M generated by G
(or the submodule of M generated by the elements of G). If G is
the empty set, this is just the zero submodule of M ; otherwise it
consists of all elements of the form

r1g1+ 722+ oo TG0,

where the r; € R and the g, € G. We denote this submodule by RG.
A submodule of M which can be generated by a finite set of

elements is said to be finitely generated; a submodule which can
be generated by a single element is said to be singly generated or
cyclic. For example, thering R as an B-module is singly generated
by its identity element. If m,, m,, ..., m, belong to M, then the
submodule that these elements generate consists of all elements
of the form

TyMy + TyMg+ o +7, My,
where the 7, € R; it is denoted by

Bm,+ Bmy+ ...+ Bm,.

If {M;};.; is a family of submodules of M and if, for each 7, M; is
generated by the set of elements ¢, then Y M, is generated by
iel
the union {J G; of the G;. In particular, X} M, is generated by
iel iel
U
A module is said to be simple if (i) it is non-zero and (ii) the only
propert submodule that it possesses is the zero submodule. If
M is a simple R-module and if m is any non-zero element of M,
then the submodule generated by m must be M itself. Thus we
have the next result.

ProPoOSITION1.3 Hvery simple module is singly generated.[]

Let K be a submodule of M and let 4 be a left ideal of B. We
denote by 4K the submodule of M generated by all elements of
the form ak, where ac A and ke K. In fact, AK is the set of all
elements of the form

a ki +tak,+...+ak,,
where the a;€ 4 and the k;e K.

1 The proper submodules of an R-module M are the submodules other than M
itself.

I-2
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4 Preliminaries

1.3 Direct sums and direct products

Let {£;};.; be a family of R-modules. Suppose initially that I is
not empty, and consider the set £ of all families {e;}, where
e;€ ;. This set can be given the structure of an R-module: we

define {e} +{ei} = {e;+ei},
rlesy = {reg),

where r € R and e, e; € B,. We call E the direct product of the family
{E;};c; and denote it by 1 B,

iel
The direct product of an empty family of R-modules is defined to
be a zero module.

Let £’ be the subset of £ consisting of all families {e;} for which

e; = 0for all but a finite number of ¢. Then E’ is a submodule of E.
We call £’ the external direct sum of the family {£,},.,; and denote
it by ® &,

iel
Of course, if I is a finite set then the external direct sum and the

direct product coincide. If I = {1,2,...,n}, we may then denote
the external direct sum by

E®E®..0E,

Let M be an R-module and let @ be a generating set for M. For
example, ¢ could be the whole of M. We consider the family of
R-modules indexed by @, each of the modules of the family being
R itself. We denote the external direct sum of this family by

@® B. We can define a mapping

ge@
¢p: @ R->M
ge@
by ¢({/rg}) = Zargg (/rgER)‘
ge

Note that , = 0 for all but a finite number of g, so that ¢ is well-
defined. In fact, ¢ is an R-homomorphism and also a surjective
mapping, or what we shall call an epimorphism. We may state
this as follows:
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1.3  Direct sums and direct products 5

ProrositTioN 1.4 Every R-module is a homomorphic image
of an external direct sum of copies of R. If the R-module is finitely
generated, then it is a homomorphic image of an external direct sum
of a finite number of copies of E.[]

Let M be an R-module and let {M;};.; be a family of sub-
modules of M. We say that the sum 3 M, is direct, or that it is an

tel
internal direct sum, and we write it as
> M, (ds),

iel
if every element of 3 M, has a unique representation in the form
tel
S m,, where m, € M; and m,; = 0 for all but a finite number of <.
iel
The sum of an empty family of submodules is direct.

ProrosiTiON 1.5 Let {M.};.;beafamily of submodules of an
R-module M. Then the following statements are equivalent:
(@) M = 2.11 M, (ds.);

(b) M = X, M; and, for eachjel, M;n (X M;) = 0.

iel 145
Proof. Assume (a). Then certainly M = ¥ M;. Now consider an
iel
element j of I and an element m,; of M; n (X ;). Then we can
T4
write m; = '2 my,
1%7

where m, e M; and m; = 0 for all but a finite number of 7. Then
m;+ % (—m;) = 0.
1%7
It follows from the uniqueness of sums that m; = 0. This proves
(b).
Now assume (b), and suppose

E mi = E m,::,

iel iel
where m,;, m; € M, and m; = m; = 0 for all but a finite number of 7.
Consider an element j of I. Then

my—my = 2 (m’:_'mz)9
=]

) m;—mieM;n (X M;) = 0.

1]
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6 Preliminaries

Hence m; = m;, and this is true for every j in I. This establishes
(@).00

Staying with the family {3},.; of submodules of M, we can
form their external direct sum and can then define a mapping

f: @ M, 3,
el iel
by f({m@}) = iglmi,

where m, e M;. This mapping is an epimorphism, and is an iso-

morphism if and only if the sum ¥ 3 is direct. Thus any result
tel

about external direct sums can be transferred by means of the

mapping f to a corresponding result about internal direct sums.

We return again to the family of R-modules {£;};.; and denote
by E' its external direct sum. For each j e I, denote by E; the set
of all elements of £’ of the form {e;}, where e¢; = 0if ¢ + j. Then E;
is a submodule of E’ isomorphic to K; and

E' = Y E; (ds.).
tel
Thus any result about internal direct sums can be transferred to
a corresponding result about external direct sums.

We shall in future dispense with the adjectives ‘external’ and
‘internal’ and rely on the context to determine which type of
direct sum is meant. We shall also feel entirely free to take results
concerning one and apply their analogues for the other; and this
we shall do without comment.

For each j in I, we can define mappings

¢ B;—~ 11 E;, and l'gEi - K,
tel i€
Ife;e E;, we put ¢,(e;) = {e;}, where e; = ¢; and e; = 0if % #j; and
m;({e;}) = e¢;, where ¢;e E;. Then, for each j, ¢; and 7; are homo-
morphisms. Also, ¢, is an injection and 77; a surjection, so that ¢;
is a monomorphism and 77; an epimorphism. We call the ¢, the
injection mappings and the m; the projection mappings of the
direct product [] E;. Note that, for each j,kel, the combined
tel

| e
mapping BB E,

el
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1.3 Direct sums and direct products 7
is the zero mapping if j + k and is the identity mapping if j = k,
1.e. mp;=0if j+ & and ;¢ =idg, (1.3.1)

Just as for direct products, so also for external and internal
direct sums we can define injection and projection mappings.
In the case of an internal direct sum, the injection mappings are
just inclusions.

Suppose we have a finite family {£,}7, of R-modules, where
m > 1,and denote by ¢,, 7; the injection and projection mappings
of its direct sum E. It is easily seen that

i=1

Finally, a submodule M’ of an R-module M is called a direct
summand of M if there exists a submodule M” of M such that

M=M+M (ds.)

1.4 Some applications of Zorn’s Lemma to modules

DEeriNiTION Let M be an B-module. A submodule K of M s
said to be a ‘maximal submodule’ of M if (i) K is a proper sub-
module of M and (ii) there is no proper submodule of M strictly
containing K.

ProPOSITION 1.6 Let M be a finitely generated R-module.
Then every proper submodule of M is contained in a maximal
submodule of M.

Proof. Let M’ be a proper submodule of M, and denote by Q
the collection of all proper submodules of M which contain M.
Then Q is not empty, because M’ belongs to Q2. We may partially
order Q by inclusion. Let X be a non-empty totally ordered
subset of Q, and denote by M, the union of all the members of Z.
Then M, 2 M’, and it may be verified that 3, is a submodule
of M. Note that this verification uses the fact that X is totally
ordered. Moreover, M, is a proper submodule of M. For suppose
otherwise, and let {m,, m,,...,m,} be a set of generators of M.
Then each m; belongs to a member of X, so there must be a
member of X which contains every m;, i.e. which is the whole of M.
This is just not so. Thus My Q and is an upper bound of X. It
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8 Preliminaries

follows by Zorn’s Lemma that Q possesses a maximal member K
(say), i.e. M has a maximal submodule containing M’.[]

CorOLLARY1 Anon-zerofinitely generated R-module possesses
a maximal submodule.
Proof. Apply Proposition 1.6 to the zero submodule.[]

CoROLLARY 2 Every proper left ideal of R ts contained in a
mazximal left ideal.

Proof. This follows from Proposition 1.6 since B is a singly
generated module over itself, when its left ideals become
submodules.[]

Itis worth noting that the proof of Proposition 1.6 breaks down
if M is not finitely generated, because we cannot then be sure
that M, is proper. For a similar sort of reason, Zorn’s Lemma will
not give the existence of a ‘minimal’ submodule of an arbitrary
non-zero module.

There will be a number of occasions when we shall need to use
Zorn’s Lemma in situations involving direct sums, and although
the contexts will be different in each case the application of the
Lemma is the same. It is convenient to deal with the situation
here.

Suppose we concentrate our attention on some collection & of
submodules of M. For example, &/ could be the collection of all
simple submodules of . We denote by Q the collection of subsets
of o« which have the property that the sum of the submodules in
the subset is direct. For example, a collection containing a single
submodule from & would belong to Q; but certainly the empty
set belongs to Q. Then Q is not empty and may be partially
ordered by inclusion. Let 2 be a non-empty totally ordered
subset of Q. Consider the union 7’ of all members of 2. We wish
to show that &7’ €Q, i.e. the sum of the submodules in &7’ is
direct. Put &7’ = {M;},.;, and suppose that

X my= X mg

i€l iel
where m;, m; € M, and m; = m; = 0for all but a finite number of 7.
Suppose that the values of ¢ for which m,; and m; are not both
ZEro are ty,1y,...,%,. Then

’ ! 1
My + My, + ...+ My, = my +my, + ..My
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1.4 Some applications of Zorn’s Lemma to modules 9

Now each of M; , M, , ..., M; belongs to some member of X and %
is totally ordered, so there is a member of X which contains all of
M, M, ..., M,; . Thismust meanthat m;, =m; fora =1,2,...,n.
It follows that m,; = m; for every value of 7, so that the sum of the
submodules in &' is direct, i.e. .o/’ € Q. Thus X is bounded above,
80, by Zorn’s Lemma, Q has a maximal member.

For reference, we state this conclusion in a proposition.

Prorosition 1.7 Let o be a collection of submodules of an
R-module M. Then there is a maximal collection of members of o/
whose sum s direct.[]

1.5 The isomorphism theorems

Let f: M - N be a homomorphism of R-modules, let 4 be a
submodule of M and let B be a submodule of N. Then f(4) is a
submodule of N contained in Im f, the image of f, and f-1(B),
which consists of all elements m of M such that f(m) e B, is a sub-
module of 4 containing Ker f, the kernel of f. Also,

f7Hf(4)) = A+Kerf and f(f7(B)) =BnImf,

so that, if 4 =2 Kerf then f~1(f(4)) = 4, and if B < Imf then
f(f~Y(B)) = B. This gives the next result.

ProrosiTioN 1.8 With the above notation, there is a one—one
correspondence between the submodules of M containing Ker f and
the submodules of N contained in Imf. This is such that, if
A (2Kerf) and B (< Imf) correspond, then B =f(A4) and
A = f~YB). This correspondence preserves inclusion.[]

The last remark of Proposition 1.8 just expresses the fact that,
if 4,, 4, are submodules of M such that 4, < 4,, then

f(4y) = f(4,),
and if B,, B, are submodules of N such that B, < B,, then
7By < fHBy).
Note also that, if {4;};.; is a non-empty family of submodules
of M, each of which contains Ker f, then
SN 4y) =N fd,. (1.5.1)

iel tel

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521090926
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-09092-6 - Injective Modules
D. W. Sharpe and P. Vamos

Excerpt

More information

10 Preliminaries

We consider again an R-module M with a submodule A. We
assume that the reader is familiar with the construction of the
factor module M/A. A typical element of M4 is a subset of M of
the form m+A={m+a:acd},
where me M, and m,+ A4 = my+ A (my,mye M) if and only if
m, —my€A. The operations on M/4 are given by

(my+A4)+ (my+ A) = (my+my)+ 4
and rim+A4) = (rm)+ 4,
where r€ R and m,m,, myc M. We can define a mapping
¢o: M—->M[A

by ¢(m) = m+ A (me M). This mapping is an epimorphism and
has kernel 4; it is called the natural mapping of M on M|A. Note
that, if B is a submodule of M, then ¢(B) = (4 + B)/A. Thus, if
B2 A, ¢(B)=B|A.

We now recast Proposition 1.8 in terms of the natural mapping
of M on M|A.

ProrosiTIiON 1.9 Let A be a submodule of an R-module M.
Then there is a one—one correspondence between the submodules of
M containing A and the submodules of M|A. This is such that, if
B is a submodule of M containing A, then B corresponds to BJA.
This correspondence preserves inclusion.[]

We note also that, if {4,};.; is a non-empty family of sub-
modules of M containing 4, then

(iDIAi)/A =ig (4,/4). (1.5.2)

This is just (1.5.1) applied to the natural mapping.

Let f: M - N be a homomorphism of E-modules, let 4 be a
submodule of M and B a submodule of N. Suppose further that
f(4) € B. Then we can define a mapping

f*M/A > N|B
by f*(m+A4) = f(m)+B(meM). It may be verified that this

does define a mapping and that this mapping is an R-homo-
morphism. We refer to f* as the mapping induced by f.
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