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DISCRIMINANT ANALYSIS

L. PAUL FATTI, UNIVERSITY OF THE WITWATERSRAND

DOUGLAS M. HAWKINS and E. LIEFDE RAATH, CQUNCIL FOR SCIENTIFIC
AND INDUSTRTAL RESEARCH

1. PRELIMINARIES

1.1 General Introduction

Discriminant analysis is concerned with the problem of classify=
ing an object of unknown origin into one of two or more distinct
groups or populations on the basis of observations made on it. As evi=
denced by the examples given below, this problem occurs frequently
in various fields as diverse as medicine, anthropology and mining,
and the techniques ot discriminant analysis have been used successfully
in many situations. Computer packages for performing the necessary
calculations involved in applying some of the techniques have been
readily available for some time, although there are still some seri=

ous omissions in most of these packages.

Some examples

1. Haemophilia is a sex-linked genetic disease whicﬁ is trans=
mitted only by females, but whose symptoms are manifest only in males.
Under normal medical examination it is impossible to distinguish be=
tween females carrying the disease and those not. In order to try
and identify female carriers, the levels of a coagulant factor and its
related antigen (Factor VIII and Factor VIII RA) in the blood have
been suggested as possible discriminators between carriers and non-
carriers.

A pilot study was carried out by Gomperts et al (1976) to test
how well Factor VIII and its related antigen discriminate between
carriers and non-carriers. A sample of 26 white females, of which 11
were known, for genetic reasons, to be carriers and 15 were known to
be non-carriers was selected and the Factor VIII and Factor VIII RA
levels measured in each subject. Using the linear discriminant func=
tion based on the logarithms of the data and the jackknife reclassi=
fication procedure to be described in the next section, ten out of
the eleven carriers and thirteen out of the fifteen non-carriers were

classified correctly. In a parallel study on black females (whose
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Factor VIII and Factor VIII RA levels tend to be different from the
whites) all ten carriers and fourteen out of fifteen non-carriers
were correctly classified. Thus it would appear that carriers of
haemophilia can be identified, reasonably reliably, on the basis of
their levels of Factor VIII and Factor VIII RA.

2. A common problem occurring in anthropology is that of identi=
fying the tribe, race or even sex of a cranium excavated amongst the
remains of an ancient civilization (for example De Villiers, 1976).
By comparing various measurements (lengths and angles) made on this
skull with those made on large numbers of individuals, males and fe=
males, from the various tribes at present inhabiting the region, it
may be classified to the tribe from which it most probably came. In
this problem, we might also be interested in the possibility that it
did not originate from any of these tribes, but from another unknown
tribe (possibly now extinct). Another possibility is of its occupying
some position intermediate between the tribes which could result from
intermarriage between members of the different tribes.

A problem arising frequently in this type of application is that
of choosing, amongst the large number of possible measurements that
can be ‘made on the skull, that subset giving the best discrimination
between the various populations.

3. The final example comes from a stratigraphic problem in
mining. In the Witwatersrand gold fields the gold bearing reef is one
band (the "pay band”) in a sedimentary succession, and is usually
visually unrecognisable. In badly faulted areas this pay band may
fault away, and the miner wishes to know the position in the sedimen=
tary succession of the blank band facing him, from which he can de=
duce the new position of the pay band.

The trace element geochemistry of a chip of rock from this band
provides a means of classification. Given random samples of rock chips
from each of the bands, and measurements of the concentrations (in
log(parts per million)) of a number of trace elements taken on each
chip as well as on the chip of unknown origin, the unknown band has
been correctly identified in a high proportion of cases (Hawkins and
Rasmussen (1973)).

An interesting feature of this problem is that the rock bands
themselves may be considered to be a sample from a "super-population"
of rock bands. In different situations, different sets of bands are

involved, all drawn randomly from this super-population. The random
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effects model, discussed later, may well be appropriate here.

There is also another use of discriminant analysis. Multiple
regression is generally presented as a method of making a prediction
of an unknown variable from a set of predictors, but in many cases
one uses it, not to actually make the prediction, but to study the
regression coefficients to see how the dependent variable is affected
by the predictors. In a closely analogous way, a disc¢riminant func=
tion is computed, not to actually classify observations to their
source, but to gain a better understanding of what it is that dis=

tinguishes the populations Hi from one another.

1.2 The basic principles of discriminant analysis

Consider the problem of classifying an observation (vector) X
into one of k groups or populations Hl' Hz,...,Hk where Hi is characte=
rizing a probability density function fi (X). Suppose further tﬂat the ob=
servation has a prior probability Ty of coming from Hi, where ¥ @, =1,

and that the cost associated with classifying it into Hi when it has
actually come from I, is Cyse
Anderson (1958) shows that the rule that minimizes the expec=
ted cost of misclassification is to assign the observation X to Hi
if
k k
rm c,, £,(X) < Z 7
41 2 if "2 2=1
where cjj =0, 3 =1,...,k.

cop £, (X)L 3=,k dA (1.1)

[ ¥

In the situation where the costs of misclassification are all
equal, this rule simplifies to: assign X to Hi if

m, £.(X) = max m. £.(X) (1.2)
ot j=1,...,k I 3

Assignment rules (1.1) and (1.2) have been derived considering
the discriminant analysis problem from a decision-theoretic view=
point. Viewing it from a purely probabilistic viewpoint instead, the
optimal rule is to assign X to that population Hi for which the pos=
terior probability is the greatest. Now, using Bayes theorem, the
posterior probability of Hj given X is proportional to "j £f.(X), so
that the optimal probabilistic rule is also (1.2). So, when the costs
of misclassification are all equal, the optimal decision-theoretic
and probabilistic classification rules are equivalent.

For the two-group (k=2) case rules (1.1) and (1.2) become,
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respectively: Assign X to Hl if:
T, €4, fQ(X) <My Cy fl(X) (1.3)
and to HQ otherwise;
and, assign X to H1 if:
T, fQ(X) <my fi(X) (1.4)

and to 1'[2 otherwise.

In practice, the probability density functions fi(X) i=1,...,k
are seldom known. Usually one assumes that they have some particular
parametric form (e.g. a multivariate normal distribution) which de=
pends on some unknown parameters. Random samples, called training
samples, consisting of observations known to have come from each spe=
cific one of these k populations, are then used to construct sample-
based classification rules corresponding to (1.1) to (1.4) above.

There are two different methods of setting up such sample-based
variants of (1.1) to (1.4). In the estimative approach the training
samples are used to estimate the unknown parameters using such methods
as maximum likelihood. These estimates are then substituted ("plugged
in") for the unknown parameters in fi, and we behave as if the esti=
mates were the true unknown values. Provided consistent estimators
are used, the estimative approach leads asymptotically, as the train=
ing samples become infinitely large, to the correct optimal classi=
fication rule. With small training samples, however, the estimative
approach has but a tenuous claim to good theoretical properties,
though it is within the general class of empirical Bayes procedures.

The more recent predictfive approach is a fully Bayesian method.
This means that the data are regarded as given, and the unknown para=
meters as random variables which in due course are integrated out of

the model. The steps in this are:

(i) Set up an a priori distribution g(6) for the unknown para=
meters.
(ii) Construct f(X,T|6) - the joint distribution of the unknown
to be classified, X, and the training sample, T.
(iii) The joint distribution of X, T and 6 is g(8)f(X,T|6).
Integrate @ out of this expression, getting, in due course,
the conditional distribution of X given T.
As is generally the case with Bayesian methods, criticism of

this model usually centres about the realism or otherwise of the
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prior distribution g(8). This is commonly assumed uninformative, but
unless the training sample is extremely small, the exact specifica=
tion of g(6) has little effect on the classification.

The estimative approach consists of setting up the generally
very simple algebra for computing the ratio fi(X)/fj(X) and then
plugging in the estimates of any unknown parameters. In the predic=
tive approach, one must set up the full model corresponding to the
particular form of fi(X) and then integrate out 6. This latter may
be no easy feat, and to date predictive procedures have essentially
been worked out only for certain models based on underlying normal
data.

In the next two sections the classical approach to discriminant
analysis, being the estimative approach applied to the multivariate
normal distribution, is described. Thereafter, the predictive approach
is considered, followed by a section on other approaches to discrimi=
nant analysis. In the final section a number of miscellaneous topics
are considered.

2. CLASSICAL DISCRIMINANT ANALYSIS

The most common assumption in discriminant analysis is that X

is a p-dimensional vector of observations, and that if it comes from
Hi then it follows a multivariate normal distribution with mean vec=
tor Ei and covariance matrix Zi. We will also assume that the costs
of misclassification are all equal, so that the decision-theoretic
and probabilistic classification rules are the same.

Following the common notation, we will use N(£,I) to denote the
p-variate multivariate normal distribution with density

£(X) = T(Z—n)lp-ng exp{-3(x - £) 71(x - £)}

Later we will also use the notation

etr(A) = exp{trace (a)}.

2.1 Known parameters

In the situation where all the parameters Ei' L. and Ly i=1,...,k

i
are known, classification rule (1.2) becomes: assign X to Hi if:

2 : 2
§5(X) +n |2 | -2 &0y = j=le . {csj(x) + £n|2j| -2 4n Trj}(2.l)

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521090704
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-09070-4 - Topics in Applied Multivariate Analysis
Edited by Douglas M. Hawkins

Excerpt

More information

6
where a%(x) = (X - gj)T zj'l(x - £4) is the Mahalanobis distance
from X to Hi. Note that, for equal Zj and “j' j=1,...,k, (2.1) is a
minimum distance rule.

For two groups (2.1) simplifies to: assign X to H1 if

012(X) > Ln (ﬂz/ﬂl) (2.2)

and to H2 otherwise;
where

_ _ T -1 _ -1 T -1 _
012(X) =-% X (I, I, )X + X (z,” &, I, &y)
(2.3)

T —1 T =1
- B(] 2] B, - £y I

is called the quadratic discriminant function. The boundary between

) + 5 tn (5, 171z D)

the regions in which X would be classified to Hl and to H2 may, in
principle, have any quadratic shape. The more surprising ones include
an annulus on which X is allocated to H1 while both inside and out=
side the annulus it is allocated to Hz; and a degenerate case in
which any X whatever is allocated to Hl‘

2.1.1 The case of equal covariance matrices

As elsewhere in statistics, the assumption that the covariance
matrices in different groups are equal, i.e. Zj =1z, jJ=1,...,k sim=
plifies matters considerably. Under this assumption, classification
rule (2.1) simplifies to: assign X to I if

Ui(x) = Max U. (X} (2.4)
j=1,...,k 3
where Uj(x) is the linear function:

T -1 T =1
b Ej P Ej b Ej + £n T (2.5)

For two groups (2.4) simplifies further to: assign X to H1 if

Uj(X) = X

Ulz(X)=U1(X)-U2(X) = (X-%(€1+€2))TZ-1(E1-52) 2 ln(ﬂ2/ﬂ1)and to I,
otherwise. (2.6)
012(X) is called the linear discriminant function (LDF).

As a practical matter we might mention that it is seldom wise
to compute and report only the LDF. Generally one would wish to guard
against, and check for, the possibility that the unknown X does not
come from any of the populations sampled. This possibility is easily
checked given Bi(x) (which follows a central x; distribution if X
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comes from IIj} or U, (X) (which is normal (%u+&n m,,p) if X comes from
Hi; Bo= g; -t Ei). It cannot be checked using only the LDF which may

give acceptable values even when X is completely incompatible with
any of the source populations.

2.1.2 Probability of misclassdfication

The probability of misclassification under any classification
rule is a measure of the expected performance of that rule when clas=
sifying observations of unknown origin. In order to obtain this, we
note that if uij is the linear discriminant function corresponding

to groups Hi and Iy, then, if X is from Hi, is normally distri=

u, .
1]
buted with mean % 6§j and variance Sij, whereas if X is from Hj then

it has mean - % Gi and variance Gij, where

3
2 D L
Gij (Ei Ej) I (Ei Ej) (2.7)
is the Mahalanobis distance between Hi and Hj‘

For the two-group problem with equal covariance matrices this
yields the following probabilities of misclassification using rule

(2.4):
Bn(my/m ) - % 82,
P, = P[Misclassification|X from M1 = 3 =)
12 (2.8)
and
~Ln(m, /v )-%62,
P, = P[Misclassification|X from M,] = &(——=F——=%)(2.9)

12
where ®(+) is the standard normal distribution function.

The expected probability of misclassification for a randomly

chosen observation from Hl or H2 :

P = ﬂ1 P1 + n2 P2

is called the error rate of the classification rule. For Ty = Ty,
both misclassification probabilities P, and Py given in (2.8) and

(2.9), are equal, so that the error rate becomes:

P = 9(-% 612) (2.10)

For k > 2 groups, the probabilities of misclassification are
expressed in terms of multiple integrals over (k-1)-dimensional nor=
mal probability density functions, that can only be evaluated analy=
tically in certain special cases. However, using Bonferroni's first
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inequality, we obtain the following upper bound for the probability
of misclassification:

k Kn(ﬂ./ﬂi)—% di.

°; = Pmisclassification|X from N;]1 < &% @(——JT——l) (2.11)
i=1 ij
J#i
k

= I @(-%8..) if w.=7m_.,3=1,...,k

j=1 H )
1A (2.12)

In the case of unequal covariance matrices, no simple expres=
sions exist for the probabilities of misclassification, whether there
are two or more populations.

2.1.3 Canondical variables

In his 1936 paper, Fisher suggested a different approach to the

two-group classification problem, which turns out to give the same
procedure in terms of U12(x) defined in 2.6: this approach is to
seek some scalar linear combination o' X of the p measurements yield=
ing the largest possible Student's t statistic between 1'[1 and H2.
The approach can be generalized to k > 2 populations, but this gene=
ralization no longer corresponds to the linear discriminant functions
2.5, and confusion between the two approaches has misled a number of
users of discriminant analysis.

The generalization of Fisher's method leads to defining new
"canonical variables" Yi by

T
Yi—an

where 0y is the solution of the eigenvector/eigenvalue problem:
(ZB - Aiz)ai = 0 corresponding to the i-th largest eigenvalue Ai,

po=xl 3 (6. = EXNE, - €T
B j=1 J . J .
is the between groups covariance matrix, and
k
S
=1

These variables have the property that within populations they
are independent normal variates with standard deviation 1; between
populations they are also independent,and ¥; has variance Ai, which
is a maximum possible. Of the Yi so defined, only s = min(k-1,p) can

aave a nonzero Ai.
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The proportion of the total between groups variance, relative

s

to the within group variance, explained by Y, is Ai/ T Aj. The clas=
j=1

sification rule based on the first r canonical variables, and assu=

ming equal prior probabilities, is: assign X to Hi if:

Lo

r
t {a'(X-¢)12 = min I fag(x - g7 (2.13)
g=1 % i j=1,...,k 2=1 ]

This rule is sub-optimal unless r=s or Xr+1 F el = As = 0. For k=2,
classification based on the first canonical variable is equivalent

to using the linear discriminant function. For k > 2 groups, the most
common use of the canonical variables is for graphical display using,
say, the first two canonical variables.

Another use for the canonical variables when k < p is in testing
whether X has not come from any of the populations Hl""’nk’ or any
combination of them. It is not difficult to show that the last p-k+l
eigenvalues Ai, i=k,...,p will be identically zero, and that the cor=
responding canonical variables Yi, i=k,...,p, will be independently
normally distributed with corresponding means aI £. and unit variances,
no matter which of the k populations X comes from. If, however, X comes
from a totally different population Iy with mean vector £4 and co=
variance I then the canonical variables will have means aI Ex. A test
for this can therefore be constructed by computing the sum of squared
deviations of the Yi: T = ZE (Yi - al&)Q and comparing it with the
chi-squared distribution with p-k+1 degrees of freedom.

Looking at the problem from a geometrical point of view, we see
that these last canonical variables are orthogonal to the hyperplane
containing all gi. Thus T will have a central X2 distribution if the
unknown comes from a normal distribution whose mean is coplanar with all

£,

it and will have a noncentral XQ distribution otherwise.

2.2 Unknown parameters

When the parameters of the distributions in the k populations
are unknown, the usual procedure in classical discriminant analysis

is to estimate them from training samples {Xij,j=l,...,Ni} from each
of the populations Hi, i=1l,...,k.
Let
Ni
-1
Xi = Ni I X..
. j=1 13
and
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N,
S, =n, I (X,. - X, ) (X,. = X,
i i j=1 ij i. i3 i.

where n; = Ni -1
be the sample mean and covariance matrix corresponding to the train=
ing sample from Hi'
The usual, estimative, approach to discriminant analysis is
to replace the parameters in the classification rules given above
by their sample estimates (Anderson, 1958). Applying this approach

to (2.1) yields the sample-based classification rule: Assign X to

m, if
2 - _ : 2 o
Di (X) + zn[si[ 24n ®; = j=1M1n . {Dj(X) + £n|sj| 2 Ln ﬁj}
Py (2.14)
where
2 Te -1
DI (X) = (X - X,) 'S, (X - X, 2.1
J( ) { 3) j ( J) (2.15)

is the sample-based Mahalanobis distance between X and Hj, and ﬁj is
some estimator of nj.
The corresponding two-group rule is: Assign X to H1 if:

R12(X) P (ﬁ2/ﬁ1) and to H2 otherwise (2.16)
where
1 wT(a =1 _ o1 T -1 _ -1
R12(X) =-% X (s1 S, )X + X (5,7 X, s,” X)) (2.17)
_ T o1 _ w7 -1
BX S X - X 8,7 X0 4k dnds,l/[s, )

is the sample-based quadratic discriminant function.

Under the assumption that the population covariance matrices
in the different populations are equal, the sample-based rule becomes:
assign X to Hi if

v, (X) = Max V. (X) (2.18)
j=1,...,n J
where
Te=1 Tg—1
vj(x) X's xj. k xj_s Xj, in ﬂj (2.19)
-1 K k k
and S =n I n,S., wheren= I n.= LN, -k,
j=1 32 j=1 J i=1 J

is the pooled sample covariance matrix.
For two groups, the sample-based linear discriminant function
is
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