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INTRODUCTION

A HISTORICAL OUTLINE OF THE THEORIES
OF PACKING AND COVERING

1. Lattice packing of spheres

It is difficult to trace the first significant contribution to the
mathematical theory of packing, but perhaps the honour
should fall to the work of Gausst in 1831. Although Lagrange
in 1773 had developed the theory of reduction of binary quadratic
forms, and found the inequalities satisfied by their coefficients,
it was not until Gauss introduced the idea of a lattice in 1831
that Lagrange’s results became of significance in the theory of
packing.

Ifa,, a,, ..., a, are n linearly independent vectors in n-dimen-
sional Euclidean space, the set A = A(ay, a,, ..., a,) of all vectors
of the form

a=ua;+ U5+ ... +%,2,,
where u,, 4,, ..., 4, are arbitrary integers, is called a lattice. Let
a, 2y, ..., 4, 2,,1, -.. be an enumeration of the points of such a
lattice A. A system ¢ consisting of the translates

K+a, (i=12..)

of a given Lebesgue measurable set K, by the vectors of the lattice
A, is called a lattice packing of K, with lattice A, when there is
no point of space which is common to two or more of the sets of
the system. Such a system ¢ has a density denoted by p(X),
which will be defined and discussed in Chapter 1, but which
may justifiably be regarded as the proportion of the whole of
space covered by the sets of the packing.

When examined from this point of view, Lagrange’s results
imply that

p(A; = 0-9069 ...,

)<
S 12
t These informal references, as well as more formal ones, will be found in
the Bibliography. The dates quoted are, strictly, not those of the results, but
those carried by the works in which they were published.
1 RPC
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2 PACKING AND COVERING

for every lattice packing J7; of an open circle K, in the Euclidean
plane. It is easy to verify that

vii
%)=m,

in the case when K, is the circle
ri+ad <1,
and X, is the lattice packing of K, with lattice A generated by
Thus, if we define a lattice-packing density é.(K), by taking
0r(K) = sup p(X),
X

the supremum being over all lattice packings " of the set K,
we have

8(Ky) = ¢T = 0-9069 ..., (1)
when K, is the open unit circle.

Largely because of its connection with the arithmetic mini-
mum of a positive definite quadratic form, much effort has been
devoted to the study of 8,(K,), where K, is the unit sphere in
n-dimensional space. In 1831 Seeber, in his book on the reduc-
tion of ternary quadratic forms, established a system of inequali-
ties satisfied by reduced forms, and in addition made a conjecture
which implies that ¢,(K;) = 7/,/18. In his review of this book,
Gauss deduced Seeber’s conjecture from his inequalities, and
introduced the geometric interpretation providing the connec-
tion with the lattice packings of spheres. The value of 8.(K,)
was found by Korkine and Zolotareff in 1872 and 1877 when
n = 4 or 5, and by Blichfeldt in 1925, 1926 and 1934 when n = 6,
7 and 8. In 1944 Mordell showed how the result for n = 8 could
‘be very simply deduced from the case when n = 7. The exact
value of §,(K,,) is unknown for » > 9, but lower bounds for it,
which seem reasonably good and which may be exact, have been
found by Chaundy in 1946 when n = 9 or 10, by Coxeter and
Todd in 1951 when n = 12, and by Barnes in 1959 when n = 11.
Some further bounds for moderately large values of # are given
by Barnes and Wall (1959).
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INTRODUCTION 3

The results may be summarized in Table 1.

TABLE 1
Dimension Density of closest lattice packing Reference
of a sphere
2 2—33 0-9069... Lagrange, 1773;
Gauss, 1831
3 3—;_2 0-7404... Gauss, 1831
2
4 % 0-6168... Korkine and Zolo-
tareff, 1872
"2
5 —_— -4 ki -
152 0-4652 Korkine and Zolo
tareff, 1877
71.3
6 —_— -3729... lichfeldt, 192
W] 0-3729 Blichfe! 1925
s .
7 108 0-2952... Blichfeldt, 1926
E & .
8 384 0-2536... Blichfeldt, 1934
9 > 2 > 0-1457 Chaundy, 1946
Z 9452 = ¥
,n.B
10 = — = 0 , 1946
192073 0920 Chaundy, 19
6475
11 > — =z 0 4... , 19
19,71103 0-060 Barnes, 1959
7.‘.6
12 > = 0-0494... ,
19,440 0-0494 Clos;zselter and Todd

The inequalities for n = 9, 10, 11 and 12 are all obtained by
calculating the densities of certain carefully chosen lattice
packings of spheres, the arrangement being explicitly known in
each case. When 7 is large it seems to be necessary to fall back on
indirect arguments. In 1905 Minkowski proved that for all n

op(K,) = En)/2", (2)
where g(n) = %_O] k.
k=1
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4 PACKING AND COVERING

This is a particular case of the more general inequality

0r(K) = E(n)/27, 3)

valid for any convex symmetrical body K, which was stated
(by implication) by Minkowski in 1893 and proved by Hlawka in
1944. This more general inequality and some of its refinements
will be discussed in §2; here we merely draw attention to the
improvement nl(n)
Or(Ky) > ef(l—em) 2 (4)
obtained by Rogers in 1947, and to its subsequent refinement by
Davenport and Rogers, also in 1947.
The first significant upper bound for §,(X,) was the bound

)

obtained by Blichfeldt in 1914. It was subsequently refined by
Blichfeldt himself in 1929, by Rankin in 1947 and by Rogers
in 1958. Although we give an account of Rogers’s work in
Chapter 7 it will be seen (from equation (11) of that chapter)
that the improvement is slight when # is large.

In the following diagram we plot the values of the function

logeaL( n)
n
for n =2, 3, ..., 8, and its lower bounds for » = 9, 10, 11, 12,
from the table, in comparison with the bounds

2n(n)

e(l—e™)

n+2
T2

given by (4) and (5). Here we work with (4) and (5) rather than
with any of their refinements as they are simple and explicit,
while their refinements are complicated and much more difficult
to calculate.

For results on ‘multiple’ lattice packings of spheres and circles
see Few (1953), Heppes (1955, 1959) and Blundon (1963).

1
—log, 2+ o loge

and —4log, 2+~ log
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For results on ‘mixed’ packings of circles and on ‘mixed’ lattice
packings of 3-dimensional spheres see Fejes Téth (1953) and

Few (1960).
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2. Lattice packing of convex sets

The first person to make a systematic study of lattice packings
was Minkowski. His first interest was the theory of numbers,
and his ‘Fundamental Theorem’, to which he was led by the
study of papers of Dirichlet and Hermite on quadratic forms
(see Minkowski, 1893b), is a useful theorem in the theory of
numbers which he derived from the apparently trivial result
that the density of a lattice packing is necessarily less than or
equal to 1. Although he made applications of his results to the
theory of numbers whenever possible, he evidently became
interested in the theory of packing for its own sake. In 1904 he
discussed the closest lattice packings of convex sets in three
dimensions. He showed generally that in any number of dimen-
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6 PACKING AND COVERING

sions the problem of determining the closest lattice packing of
an asymmetrical convex set could be reduced, at least in theory,
to that of determining the closest lattice packing of a sym-
metrical convex set. If the methods he developed for studying
the case n = 3 are used in the case n = 2 it follows very simplyt
that the density of the closest lattice packing of a convex plane
set K, with the origin o as centre, is
4u(K)

where #(K ) denotes the area of K, and k(K ) denotes the area of
the largest hexagon, with vertices of the form

u, v, v—-u, —u, —v, —v+u

lying in this order on the boundary of K. A much more difficult
discussion of the case when n = 3 led to a theoretical determina-
tion of §.(K) for a symmetrical convex 3-dimensional body K,
in terms of u(K) and the volumes of certain types of convex
polyhedra inscribed in K.

In most cases the formula (6) is less convenient than the
formula

H(K)

Or(K) = HEK)’ (7)
where H(K) denotes the area of the smallest hexagon or quadri-
lateral (necessarily symmetrical) circumscribed about the sym-
metrical convex plane set K. This result was discovered by
Reinhardt in 1934 and rediscovered by Mahler (19475).

Although Reinhardt’s result gives a most satisfying answer
to the problem of determining §;(K), when K is a convex
symmetrical plane set; the problem of determining the set K
of this form, for which &, (K) is least, remains unsolved. Both
Reinhardt and Mahler (19470) gave an example of such a set
with
8—4,/2—-log2

SulK) =3 a1

= 0-9024....

1 But although the result must have been familiar to Minkowski, I have
not found it in his published work.
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INTRODUCTION 7
Mahler (1946b) proved that all such sets satisfy

8.(K) > |/(3) = 0-8660....
More recently Ennola (1961)has obtained the stronger inequality
8(K) > H{By2+4/3—4/6} = 0:8813... (8)

and announced the lower bound 0-8925....

Despite considerable theoretical advances in the Geometry
of Numbers since Minkowski’s time (see Cassels, 1959), the
problem of determining the value of §,(K) for a given convex
3-dimensional body K remains a formidable task. Minkowski
himself in 1904 showed that

SL(K) =18 = 0-9473...,
when K is the octahedron defined by
|| + [aa| + | < 1.

Whitworth (1948, 1951) used Minkowski’s methods to obtain
the value when K is a cube with two opposite corners truncated
by plane faces and when K is a ‘double cone’. Chalk in 1950 found
the density when K is a ‘slice’ cut from a sphere. Mahler
(1946a; see also Hlawka, 1948) obtained the density, when
K is a circular cylinder, by using the theory of (general) packings
of circles. This result was extended to cylinders on an arbitrary
convex plane base by Chalk and Rogers (1948) and Yeh (1948),
and to cylinders on a base consisting of a 3-dimensional sphere
by Woods in 1958.

Apart from the results for spheres discussed in § 1, certain
results for cylinders, and certain examples of space-filling sets,
the exact value of §,(K) remains unknown for all convex sets
K in 4 or more dimensions. So, when n > 4, the main interest
lies in the determination of lower bounds for d;(K ) for various
classes of sets K and estimates for §,(K) for certain special sets
K, the spheres and the simplices being perhaps the most inter-
esting.

Minkowski (1893a) announced a result in the Geometry of
Numbers concerning star bodies. Application of this result to a
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8 PACKING AND COVERING
convex symmetrical n-dimensional set K immediately yields
the inequality "

O CORSU Y ©)

Minkowski only published a proof of his result in 1905 in the
special case when K is a sphere or ellipsoid. Blichfeldtt in 1919
stated that he had obtained a stronger inequality in the case
when K is convex and symmetrical. In 1944 Hlawka published
the first complete proof of Minkowski’s theorem, and Mahler
published (a few months later) a proof of a result which was
only slightly weaker. In 1945 Siegel published a proof making
use of the rather deep considerations that Minkowski had used
in discussing the case of an ellipsoid; it seems likely that Siegel’s
proof is similar to Minkowski’s unpublished work; it has the
advantage that it works with a natural measure in the space of
lattices. Since 1945 many proofs and refinementsi of the
Minkowski-Hlawka theorem have been published. The first
refinement was obtained by Mahler ; most of the more recent ones .
are due to Rogers and Schmidt. Schmidt (1958) was the first
to obtain an inequality of the form

0p(K) = enf27, (10)

valid for all » and a suitable constant c; in his latest paper on the
subject he shows that this inequality holds for convex symmetri-
cal K when n is sufficiently large provided

¢ < log2. (11)

The proofs of the more refined inequalities are exceedingly
complicated. In Chapter 4 we give only the simplest approach
to the problem, proving that

8L(K) > 1/2n—1 (12)
for each convex symmetrical n-dimensional set K. Since

(n) = 1+0((3)")

1 See also Bernstein (1918).

1 Bateman (1962), Cassels (1953), Davenport and Rogers (1947), Lekkerker-
ker (1956), Macbeath and Rogers (1955, 1958 a,b), Mahler (1946), MalySev (1952),
Rogers (1947, 1951a, 1954, 19554, b, 1956a, b, 1957b, 1958b), Sanov (1952),
Santalé (1950), Schmidt (1956q, b, 1957, 19584, b, 1959, 1963), Weil (1946).
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INTRODUCTION 9

this inequality is only fractionally weaker than (9) when = is
large.

There remains a wide gap between the results of the Min-
kowski-Hlawka type, showing that for each convex symmetrical
set K the lattice-packing density is at least cn/2", and the results
of Blichfeldt type, showing that the lattice-packing density
(and indeed the packing density) is less than cn/(,/2)* for an
n-dimensional sphere.

So far we have been mainly concerned with the lattice packing
of symmetrical convex sets. When we turn to convex sets that
are not necessarily symmetrical, we find that despite Minkowski’s
reduction of the general case to the symmetrical case very little
is known. If KX is any set, its difference set DK is defined to be
the set of all points of the form

X-Yy

with X and y in K. Tt is easy to verify that DK is automatically
symmetrical in 0 and that DK is convex if K is convex. Provided
K is convex, Minkowski’s argument (see Chapter 6, Theorem 6.7)

shows that
0, (K) _0,(DK), .

wK)  w(DK)"™ "

(13)

In 1904 Minkowski claimed to have determined 6, (K ), when K
is a tetrahedron, in this way, but he was plainly wrong in
asserting that the difference body of a tetrahedron was an
octahedron.f

When » = 2 the relationship between K and DK is not diffi-
cult to investigate, and Fary in 1950 was able to show that, for
all open convex plane sets K,

or(K) > 5,

with equality only when K is a triangle. For n > 3 the key to
progress is to find the upper bound of the ratio

#DK)

MK) -

T For Pepper’s discussion of this point see Hancock (1939).
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10 PACKING AND COVERING

In 1925 Rademacher showed that the bound was 6 when # is 2.
In 1928 Estermann and Siiss independently obtained the result
20 when n = 3. The natural conjecture is that the exact upper
bound is the binomial coefficient

(%) = e

n (n!)??

in general, and this was proved by Rogers and Shephard in
1957 and in a more geometrical way in 1958 (see Chapter 2,
§2). Combining this with (12) and (13) we immediately have

2(n!)?
(2n)!

for any convex set K; we obtain this inequality in a slightly
different way in Theorem 4.4 of Chapter 4.

Since 2(n!)?  2(mn)
ey~ e

0p(K) = (14)

—00),

the inequality (14) is very weak when = is large. Rogers and
Shephard (1957) remark that the right-hand side of any equality
of the form (14) is necessarily very small, since in the case of a
simplex

k) < T E s ), (15)

An account of this is given in Chapter 6.

3. Packing of convex sets

As a natural extension of the ideas of §1 a system £ consisting
of the translates K+a, (i=12..)

of a given Lebesgue measurable set K, by the vectors of a
sequence a;, g, ..., which may be finite or infinite, is called
a packing of K when there is no point of space which is common
to two or more of the sets of the system. If the vectors a,, a, ...
are distributed in a sufficiently regular way throughout the whole
of space (in particular, for example, if the set of points {a;}
is periodic with some period in each coordinate) we can assign
a density p(X) to the system. For a detailed discussion see
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