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1.1 Some Basic Concepts

Colloidal particles are an intrinsic part of systems in which finely divided matter
(particles) is dispersed in a liquid or gas. Their size usually ranges from 1 nm to sev-
eral tens of micrometres, thus covering a broad size domain.1–3 They are not neces-
sarily solid and examples of “soft” colloidal particles (microgels and bacteria) will
be briefly considered later in this chapter. Colloidal particles, similar to surfactant
molecules, can spontaneously accumulate at the interface between two immiscible
fluids (liquid–gas or liquid–liquid); they are therefore surface active.4 This fact was
realised in the beginning of the last century by Ramsden5 and Pickering6 whose
merit for instigating the field of particles at liquid interfaces will be discussed later.
It is important to emphasise that the surface activity of these particles is not neces-
sarily due to their amphiphilic nature. Solid particles with homogeneous chemical
composition and properties everywhere on their surface (Figure 1.1(a)) can strongly
attach to liquid interfaces and the reason for their surface activity is made clear
below. There is, however, another class of particles with two distinct surface regions
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Figure 1.1 Schematic of (a) homogeneous, (b) heterogeneous or amphiphilic (Janus)
colloidal particles and (c) a surfactant molecule.
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with different chemical composition and wetting properties (Figure 1.1(b)). These
so-called “Janus” particles are both surface active and amphipilic7 which makes
them very similar to surfactant molecules (Figure 1.1(c)). This class of amphiphilic
particles will not be considered here. Information about Janus particle design, syn-
thesis and properties can be found in a recent review.8

A key parameter when dealing with solid particles at fluid interfaces is the three-
phase contact angle �. This is the angle between the tangents to the solid surface and
the liquid–liquid (or liquid–gas) interface measured through one of the liquids in
each point of the three-phase contact line where the solid and two fluids meet. An
example for a spherical particle at the oil–water interface is shown in Figure 1.2. We
use the convention to measure � through the more polar liquid (water). The contact
angle depends on the surface free energies (interfacial tensions) at the particle–water,
�pw, particle–oil, �po, and oil–water, �ow, interface according to Young’s equation9

(1.1)

Particles equally wet by both liquids (�po � �pw) have a contact angle of 90°.
Hydrophilic particles are preferentially wet by water (�po � �pw), therefore 0° � �

� 90°, while hydrophobic particles are preferentially wet by oil (�po � �pw), hence
90° � � � 180°.

When particles are very small the contact angle will be influenced by the excess
free energy associated with the three-phase contact line (so-called line tension
effect). Bearing in mind that the theoretical and experimental aspects of the line
tension are well discussed in the literature,10–16 including books12,13 and a recent
review,14 it will be excluded from our considerations for simplicity. The rest of the
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Figure 1.2 Heavy solid spherical particle with radius r and contact angle � in
equilibrium at the oil–water interface levelled at z � 0 far from the particle. The
three-phase contact line with radius rc is depressed at depth zc below the zero
level. Other symbols are defined in the text.
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chapter is organised as follows. In the next section, without being exhaustive, some
key issues about the equilibrium position of a single colloidal particle at a planar
fluid interface and the free energy of its detachment to the bulk liquids are pre-
sented. The effect of particle shape is considered in the case of rod- and disk-like
particles. This is followed by a summary of some very recent developments in the
experimental research of particle monolayers at horizontal and vertical fluid inter-
faces and in thin liquid films. The second section, concentrating on particles
adsorbed at curved liquid interfaces, details the important findings on the stabilisa-
tion of emulsions and foams by particles alone, and draws examples from a wide
range of industrially important products and processes.

1.2 Single Particle at a Fluid Interface

1.2.1 Equilibrium position of a solid particle at a horizontal fluid interface

It is very important in many technological processes (see Chapters 6, 8 and 9) to
know the conditions at which a solid particle can stay attached in equilibrium at the
liquid–liquid or liquid–gas interface. The problem for the equilibrium of a solid par-
ticle at a fluid interface has been extensively treated in the literature10,12,13,17–21 often
in relation to the lateral capillary inter-particle forces caused by the deformation of
the fluid interface around two or more floating particles (e.g. see Ref. [13] and ref-
erences therein). This problem can be very difficult in the case of a particle with
complex shape and inhomogeneous surface. Solutions have been obtained for par-
ticles with simple shape and smooth surface (e.g. spheres12,17–21 and cylinders par-
allel to the fluid interface12,17,18) or sharp edges (e.g. disks21 and long prismatic
particles17 parallel to the fluid interface). In the latter case the three-phase contact
line is pinned at the edges and the angle of contact between the fluid and solid inter-
face is not directly defined by equation (1.1). This problem needs a slightly differ-
ent treatment17,21 and will not be considered here. The equilibrium position of a
particle at a fluid interface can be found either by minimising the free energy of the
system12,18,19,22 or by means of a force analysis17–21 setting the net force (and the net
torque) acting on the particle to zero. The advantage of the first approach is that
complex cases (e.g. non-uniform particle wetting, line tension effect, etc.) can be
tackled.12,18,22 In the case of a smooth homogeneous spherical particle considered
below, the force balance approach is equally applicable.17,19–21

For clarity we will consider a solid spherical particle with radius r in equilib-
rium at the oil–water interface when the particle density �p is larger than that of
water, �w, and oil �o (�p � �w � �o, Figure 1.2). In this situation the oil–water
interfacial tension is decisive for keeping the particle attached at the fluid interface.
The general case for arbitrary fluids and densities was considered by Princen.17 Far
from the particle the liquid interface is flat and levelled at z � 0; the z-axis points
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upwards (against gravity) normal to the flat liquid interface. The three-phase con-
tact line (a circle with radius rc) is located at a distance zc below the zero level,
while its position with respect to the particle centre is measured by the angle �c,
hence rc � r sin �c. The deformed fluid interface (the meniscus) meets the particle
surface at angle � � �c � � � 180° measured to the horizontal level. At equilib-
rium the net force acting on the particle must be equal to zero. Due to the symmetry
the net torque is zero. For the same reason only the vertical force balance (in the 
z-direction) has to be considered. There are three forces which are involved: the
particle weight, mg (m is the particle mass, g is the acceleration due to gravity) act-
ing downwards, the vertical capillary force F� due to the vertical component of the
oil–water interfacial tension, �ow sin(�c � �) acting upwards at the contact line
with length 2�r sin �c and the vertical resultant of the hydrostatic pressure distri-
bution around the entire particle, Fp, acting also upwards. The other two interfacial
tension forces (�po and �pw) depicted in Figure 1.2 must not be included in the
force balance because they cannot be considered as external to the particle forces
(e.g. see Ref. [13, p. 92]). At equilibrium we have

F� � Fp � mg (1.2)

The vertical capillary force is

F� � �2�r�owsin �csin(�c � �) (1.3)

Fp can be obtained by integrating the hydrostatic pressure distribution around the
entire particle surface. The result can be written in the form20

Fp � �wVpwg � �oVpog � (�w � �o)gzc Ac (1.4)

where Vpw � �r 3(2 � 3cos �c � cos3�c)/3 and Vpo � 4�r3/3 � Vpw are the particle
volumes immersed in water and in oil, respectively and Ac � �(r sin �c)

2 is the area
of the contact line circle. The first two terms on the right hand side of equation (1.4)
are the buoyancy (Archimedes) forces, while the last term accounts for the add-
itional hydrostatic pressure due to depression of the liquid interface below the zero
level (zc � 0). The mass of a spherical particle is m � �p4�r3/3. Bearing this in
mind, substitution of equations (1.3) and (1.4) in the force balance equation (1.2)
after some rearrangement yields17,19–21

(1.5)

where B � (�w � �o)r
2g/�ow is a dimensionless parameter (the Bond number). In the

considered case of a heavy particle (�p � �w � �o), F� must always act upwards,
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therefore �c � � 
 180°, �c � 180°. Hence, the left hand side of equation (1.5) is
restricted in the range �1 � sin �csin(�c � �) � 0. The same should apply to the
right hand side of equation (1.5). Obviously, equation (1.5) cannot be solved if B is
too large, i.e. the particle is too big or too dense. In this case the particle cannot be
supported by the fluid interface and will sink in water. To find the critical particle size
and density below which the particle can stay attached to the fluid interface at given
�, �ow, �w and �o is very important for the flotation of minerals considered in Chapter
9. This can be done by solving equation (1.5) if the dependence of zc on B, �c and � is
known. The latter can be found by solving the Laplace equation of capillarity

(1.6)

where z� � dz/dl and z� � d2z/dl2 are the first and second derivatives with respect
to the radial distance l 
 rc measured from the particle centre in the plane z � 0.
The two terms in the square brackets are the reciprocals of the principle radii of
curvature of the fluid interface, while the right hand side of the equation is the pres-
sure difference across the interface. In the considered case of a circular contact line
equation (1.6) has no closed analytical solution and has to be solved numeri-
cally12,13,19 but approximate analytical solutions are available (see Chapter 2 in
Ref. [13]). It is worth noting that the deformation of the fluid interface extends to
a distance comparable to the capillary length 1/��(�w �����o)�g/��ow� which is usually
much larger than the particle size (the capillary length for the pure water–air sur-
face is �2.7 mm). Therefore when two or more particles are attached to the fluid
interface and their menisci overlap a long-range lateral capillary force between
particles appears13,23,24 and can be attractive (when both menisci are depressed or
elevated) or repulsive (when depressed and elevated menisci overlap). Directed
self assembly of particles at fluid interfaces due to these type of forces is con-
sidered in Chapter 7.

When B tends to zero the left hand side of equation (1.5) must also approach
zero and �c � � � 180°, thus � � 0°. Hence, for a sufficiently small particle, the
deformation of the fluid interface caused by the gravity is very small and can be
neglected. In this case the fluid interface can be considered as flat up to the three-
phase contact line as shown in Figure 1.3(a). In the case of the air–water surface
this is fulfilled for floating particles with radius smaller than �5 �m when the 
lateral capillary force is negligible.13 Deformation of the fluid interface around
small spherical particles could exist, however, for reasons different to gravity such
as non-uniform wetting of the particle surface.25,26 The asymmetric electric field
around a charged particle at the interface between fluids with very different relative
permittivities, �, e.g. water (� � 80) and air (� � 1) or oil (� � 2 for alkanes), could
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also generate a deformation of the fluid interface as suggested recently.27,28 The
role of these deformations in particle interactions at fluid interfaces is discussed in
Chapter 3. Deformation of the fluid interface may also arise around a non-spherical
small particle.29,30 An example for such a deformation around an ellipsoidal particle
at a fluid interface is shown in Figure 1.4.

1.2.2 Free energy of particle detachment from a planar fluid interface

When a small spherical particle at a planar undeformed oil–water interface is in its
equilibrium state “1” (Figure 1.3(a)) the surface free energy of the system, G(1) is
minimum and is given by the equation

G(1) � �owA(1)
ow � �pwA(1)

pw � �poA(1)
po (1.7)
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Figure 1.3 Small solid spherical particle with radius r and contact angle �
(a) attached to a planar oil–water interface in its equilibrium state “1” and (b) after
its detachment into oil in state “2”.

Figure 1.4 Possible interfacial profile around an ellipsoidal particle with contact
angle 45°, aspect ratio a/b � 4 and both short axes equal to 2.52 �m oriented with
its long axis parallel to the fluid interface. Taken from Ref. [30]; with permission
of the American Physical Society.
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where A(1)
ow is the area of the oil–water interface, A(1)

pw and A(1)
po are the respective

areas of the particle–water and particle–oil interfaces whose sum equals the total
surface area of the particle Ap

A(1)
pw � A(1)

po � Ap (1.8)

In this state the depth of immersion of the particle in water, hw (thereby the depth
of immersion in oil, ho � 2r � hw) is directly related to the contact angle by the
expression

hw � r(1 � cos �) (1.9)

Therefore this equation can be used for calculating the particle contact angle from
the measured value of hw if r is known.31–33 If we move the particle from its equi-
librium position towards either of the bulk phases by applying some small external
force, equation (1.9) will be violated since Young’s equation must be satisfied (� is
fixed). Hence, the fluid interface in the new position of the particle after its move-
ment will be deformed. To calculate the change of the surface free energy, G, in
this case is not an easy task, since the Laplace equation of capillarity (equation
(1.6)) has to be solved, and the approach used by Rapacchietta and Neumann19 has
to be followed. However, if the particle in its final state is detached from the fluid
interface and is fully immersed in one of the liquids (Figure 1.3(b)) the calculation
of G is straightforward. If the particle after its detachment is in the oil, the surface
free energy of the system G(2)

o corresponding to the final state “2” is

G(2)
o � �owA(2)

ow � �poA(2)
po (1.10)

where A(2)
ow is the area of the flat oil–water interface after the detachment and

A(2)
po � Ap. Subtracting equation (1.7) from equation (1.10) and taking into account

equations (1.1) and (1.8), the following expression for the free energy of particle
detachment into oil, Gdo is obtained

Gdo � �ow(Ac � A(1)
pwcos �) (1.11)

where Ac � A(2)
ow � A(1)

ow is the area of the oil–water interface occupied by the parti-
cle when it is attached at the fluid interface. A similar derivation leads to the fol-
lowing expression for the free energy of particle detachment into water Gdw

Gdw � �ow(Ac � A(1)
po cos �) (1.12)

By means of equations (1.8) and (1.12), equation (1.11) can be expressed in the form

Gdo � Gdw � �owAp cos � (1.13)
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that gives the relation between the two free energies of particle detachment. It is obvi-
ous that the detachment of a hydrophilic particle (cos � � 0) into oil needs more
energy than into water (Gdo � Gdw), while for the detachment of a hydrophobic
particle (cos � � 0) the opposite is true (Gdo � Gdw). This is important for under-
standing the stabilisation of emulsions by solid particles (see Chapter 6). It is also seen
that at � � 90° both energies are equal to each other. The minimum energy required
for particle detachment irrespective into which of the bulk phases, Gd (called simply
the free energy of particle detachment) can be written as

(1.14)

where Gdw and Gdo are given by equations (1.12) and (1.13) (or (1.11)), respect-
ively. The respective free energies of particle attachment to the fluid interface are
given by the same equations taken with the opposite sign. The above equations
((1.8), (1.10)–(1.14)) are written in a rather general form. They depend on the par-
ticle shape implicitly through the respective areas. Therefore they are valid for any
shape of the particle if the fluid interface can be considered flat up to the particle sur-
face. Some special cases which satisfy the latter requirement are considered below.

1.2.2.1 Spherical particle

In this case the three-phase contact line is a circle with radius rc � r sin � dividing the
particle surface (with area Ap � 4�r2) into two spherical caps, so that Ac � �(r sin �)2

and A(1)
pw � 2�r2(1 � cos �). With these expressions equations (1.12) and (1.13)

yield

Gdw � �r2�ow(1 � cos �)2 (1.15a)

Gdo � �r2�ow(1 � cos �)2 (1.15b)

These equations were derived by Koretsky and Kruglyakov34 and later by
others.35,36 In view of equation (1.14) they can be combined to give

Gd � �r2�ow(1 � |cos �|)2 (1.16)

Therefore, the minimum energy needed to detach a spherical particle from the
oil–water interface rapidly increases with particle size (as r2). The free energies of
particle detachment calculated by equations (1.15) and (1.16) with r � 10 nm and
�ow � 50 mN m�1 are plotted against the contact angle in Figure 1.5. It is seen that
the free energy of particle detachment into water (squares) is smaller than that into
oil (circles) for hydrophilic particles (� � 90°). The opposite is true for hydropho-
bic particles (� � 90°). The (minimum) energy of particle detachment, Gd

(the line) increases from zero with an increase of the contact angle, reaches its
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maximum at � � 90° and then decreases to zero at � � 180°. Except for very small
and very large contact angles, Gd is much greater than the thermal energy kT (the
Boltzmann constant, k times the temperature, T ). At contact angles around 90°
even nanoparticles can be trapped at the fluid interface with energy which is sev-
eral orders of magnitude greater than kT and sufficient to make their attachment
irreversible. This is in sharp contrast to surfactant molecules, which can adsorb and
desorb,4 and makes certain particles superior stabilisers of emulsions (Chapter 6)
and foams (see later in this chapter).

The energy of particle attachment to the fluid interface, Ga � �Gd, is nega-
tive for all contact angles (except for the extremes), hence the particle attachment
is thermodynamically favourable (this might not be true in the case of small parti-
cles and positive line tension acting to contract the contact line10,11). Therefore col-
loidal particles with chemically homogeneous surfaces can spontaneously attach to
fluid interfaces and are surface active. The reason is that part of the fluid interface
with area Ac is removed (see equations (1.11) and (1.12)). Ga and Gd for
nanoparticles with contact angles close to 0° or 180° can be comparable to the ther-
mal energy. Such particles can exhibit a reversible attachment–detachment behav-
iour (similar to surfactants) which has been demonstrated by elegant experiments
described later.

The above equations are also applicable for particles at spherically curved oil–water
interfaces (drops), if the particle radius is much smaller than the drop radius. This case,

Single Particle at a Fluid Interface 9
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Figure 1.5 Free energy of detachment of a spherical particle into water (squares)
and into oil (circles) calculated by equations (1.15) (a) and (b) with r � 10 nm and
�ow � 50 mN m�1 versus particle contact angle �. The line is drawn according to
equation (1.16).
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which is relevant to particle-stabilised emulsions, has been considered in Refs. [37]
and [38] where more precise equations are obtained.

1.2.2.2 Non-spherical particles

In the case of non-spherical particles, the respective areas involved in equations
(1.8), (1.10)–(1.14) will depend on at least two geometrical parameters character-
ising the particle dimensions (e.g. for rods these are the rod radius and length).
Therefore the detachment energy will depend on the particle orientation and at
least two characteristic sizes. This opens up the question of how to compare the
free energies of detachment of particles with different shapes. The comparison can
be done in different ways (e.g. by keeping constant one of the particle sizes or the
total particle area15). A suitable way of comparison seems to be at constant parti-
cle volume. This makes sense because it is related to the answer to the question:
how will the free energy of detachment of a particle with contact angle � change if
we re-shape it keeping its volume constant? This question is answered below in the
case of two smooth bodies: a rod-like particle with rounded hemispherical ends
and a rounded disk-like particle (Figure 1.6). They are both shapes of revolution
with long and short semi-axes a and b, respectively. We will assume that the particles
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Figure 1.6 Non-spherical particles with contact angle � � 45° attached to a pla-
nar oil–water interface in the case of (a) a rod-like particle with hemispherical
ends and (b) a rounded disk-like particle; (c) cross section along their long semi-
axis, a; (d) cross section of the rod-like particle along its short semi-axis, b.
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