
1 Warm-up: the 1-D continuous
wavelet transform

1.1 What is wavelet analysis?

Wavelet analysis is a particular time- or space-scale representation of signals that has
found a wide range of applications in physics, signal processing and applied math-
ematics in the last few years. In order to get a feeling for it and to understand its
success, we consider first the case of one-dimensional signals. Actually the discussion
in this introductory chapter is mostly qualitative. All the mathematically relevant prop-
erties will be described precisely and proved systematically in the next chapter for the
two-dimensional case, which is the proper subject of this book.

It is a fact that most real life signals are nonstationary (that is, their statistical proper-
ties change with time) and they usually cover a wide range of frequencies. Many signals
contain transient components, whose appearance and disappearance are physically very
significant. Also, characteristic frequencies may drift in time (e.g., in geophysical time
series – one calls them pseudo-frequencies). In addition, there is often a direct correla-
tion between the characteristic frequency of a given segment of the signal and the time
duration of that segment. Low frequency pieces tend to last for a long interval, whereas
high frequencies occur in general for a short moment only. Human speech signals are
typical in this respect: vowels have a relatively low mean frequency and last quite a
long time, whereas consonants contain a wide spectrum, up to very high frequencies,
especially in the attack, but they are very short.

Clearly standard Fourier analysis is inadequate for treating such signals. Strictly
speaking, it applies only to stationary signals, and it loses all information about the
time localization of a given frequency component. In addition, it is very uneconomical.
When the signal is almost flat, and thus uninteresting, one still has to sum an infinite
alternating series to reproduce it. Worse yet, Fourier analysis is highly unstable with
respect to perturbation, because of its global character. For instance, if one adds an extra
term, with a very small amplitude, to a linear superposition of sine waves, the signal will
barely be modified, but the Fourier spectrum will be completely perturbed. This does
not happen if the signal is represented in terms of localized components. Indeed, as we
shall see shortly, the basic idea of the wavelet transform is to decompose a signal locally
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2 Warm-up: the 1-D continuous wavelet transform

into contributions living at different scales. This is a marked contrast with the Fourier
components, which are sinusoidal waves repeating themselves indefinitely. As such,
it is difficult to give them any physical reality. If a piece of audio signal is identically
zero, it is because no sound is emitted, not because the Fourier components necessary to
represent the zero signal interfere destructively. These components are a mathematical
construction, rather than a genuine physical phenomenon. To quote J. Ville [364]:

Si nous considérons en effet un morceau de musique . . . et qu’une note, la par exemple, figure une
fois dans le morceau, l’analyse harmonique [de Fourier] nous présentera la fréquence correspondante
avec une certaine amplitude et une certaine phase, sans localiser le la dans le temps. Or, il est
évident qu’au cours du morceau il est des instants où l’on n’entend pas le la. La représentation est
néanmoins mathématiquement correcte, parce que les phases des notes voisines du la sont agencées de
manière à détruire cette note par interférence lorsqu’on ne l’entend pas et à la renforcer, également par
interférence, lorsqu’on l’entend; mais s’il y a dans cette conception une habileté qui honore l’analyse
mathématique, il ne faut pas se dissimuler qu’il y a également une défiguration de la réalité: en effet,
quand on n’entend pas le la, la raison véritable est que le la n’est pas émis.

That is,

If we consider a piece of music . . . and if a note, an A for instance, appears once in that piece, Fourier
analysis will yield the corresponding frequency with a certain amplitude and a certain phase, without
localizing the A in time. Clearly the A will not be heard at certain instants. Yet the representation is
mathematically correct, because the phases of the neighboring notes conspire to suppress the A by
interference when it is not heard and to enhance it, again by interference, when it is heard. However,
although this conception shows a skillfulness that honors mathematical analysis, one should not hide
the fact that it also distorts reality: indeed, when the A is not heard, the true reason is that the A is not
emitted.

Another eloquent comment along the same line by L. de Broglie may be found,
together with the one above, in [Fla93; p.9].

Facing these problems, signal analysts turn to time–frequency representations. The
idea is that one needs two parameters: one, called a, characterizes the frequency, the
other one, b, indicates the position in the signal. This concept of a time–frequency
representation is in fact quite old and familiar. The most obvious example is simply a
musical score (see Figure 1.1). Clearly, it is not sufficient to give the pitch of a given
note, that is, the frequency to which it corresponds, it is also important to know when
to play it (time information)!

Let s(x) be a finite energy signal, that is, a square integrable function s ∈ L2(R, dx).
In most cases, x will be a time variable and the (Fourier) conjugate quantity a frequency,

2
4

Fig. 1.1. A traditional time–frequency representation of a signal (from Mozart’s Don Giovanni,
Act 1).
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3 1.1 What is wavelet analysis?

but in general x simply represents position in the signal. Thus, following [Dau92], we
prefer to keep a neutral notation (x, ξ ) for the couple of conjugate variables, instead of
the more familiar (t, ω). Accordingly, the Fourier transform of the signal s is defined
by

ŝ(ξ ) = 1√
2π

∫ ∞

−∞
dx e−iξ x s(x). (1.1)

If one requires the transform to be linear, a general time–frequency transform of the
signal s will take the form:

s(x) �→ S(b, a) =
∫ ∞

−∞
dx ψb,a(x) s(x) , (1.2)

where ψb,a is the analyzing function. Within this class, two time–frequency transforms
stand out as particularly simple and efficient: the windowed (or short time) Fourier
transform (WFT) and the wavelet transform (WT). For both of them, the analyzing
function ψb,a is obtained by acting on a basic (or mother) function ψ , in particular, b
is simply a time translation. The essential difference between the two is in the way the
frequency parameter a is introduced:
(1) Windowed Fourier transform:

ψb,a(x) = ei(x−b)/a ψ(x − b). (1.3)

Here ψ is a window function and the a-dependence is a modulation (1/a ∼ fre-
quency); the window has constant width, but the smaller a, the larger the number
of oscillations in the window (see Figure 1.2 (left)).

(2) Wavelet transform:

ψb,a(x) = 1√
a

ψ

(
x − b

a

)
. (1.4)

The action of a on the function ψ (which must be oscillating, see below) is a dilation
(a > 1) or a contraction (a < 1): the shape of the function is unchanged, it is simply
spread out or squeezed (see Figure 1.2 (right)). In particular, the effective support
of ψb,a varies as a function of a.

The windowed Fourier transform was originally introduced by Gabor (actually in a
discretized version), with the window function ψ taken as a Gaussian; for this reason,
it is sometimes called the Gabor transform. With this choice, the function ψb,a is simply
a canonical (harmonic oscillator) coherent state [Kla85], as one sees immediately by
writing 1/a = p. Since the new variables are the time (position) b and the frequency
1/a, the Gabor transform yields a genuine time–frequency representation of the signal.
As for the wavelet transform, the variables are b and the scale a (or pitch in the case of
music), hence we shall speak rather of a time-scale representation.

We may remark here that the resemblance between the windowed Fourier transform
and the wavelet transform is not accidental. They are both particular instances of a large
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4 Warm-up: the 1-D continuous wavelet transform
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Fig. 1.2. The function ψb,a(x) for different values of the scale parameter a, in the case of the
windowed Fourier transform (left) and the wavelet transform (right). The quantity 1/a, which
corresponds to a frequency, increases from bottom to top.

class of integral transforms constructed by the formalism of coherent states [Ali00].
This general analysis, however, has a more mathematical flavor and is not needed in a
first approach, although it clarifies and unifies the picture considerably. Therefore, we
postpone it to Chapter 6, since we want to emphasize first the practical aspects of the
wavelet transform.

One should note that the assumption of linearity is nontrivial, for there exists a whole
class of quadratic or, more properly, sesquilinear time–frequency representations. The
prototype is the so-called Wigner–Ville transform, introduced originally by E.P. Wigner
[373] in quantum mechanics (in 1932!) and extended by J. Ville [364] to signal analysis:

Ws(b, ξ ) =
∫ +∞

−∞
dx e−iξ x s(b − x

2
) s(b + x

2
), ξ = 1/a. (1.5)

Note that the signal s(x) is usually a real function, but, in quantum mechanics, s(x)
represents a wave function, and is thus in general complex. This transform is entirely
intrinsic to the signal, since it does not contain any extra function (wavelet, window)
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5 1.2 The continuous wavelet transform

that inevitably influences the result. On the other hand, it is quadratic, which implies
the appearance of interference terms whenever the signal is a superposition of two
components. In order to minimize these as much as possible, one usually smoothes
the Wigner–Ville transform with some function �, thus obtaining a whole class of
quadratic transforms, called Cohen’s class [109,Fla93], of the general form:

Cs(b, ξ ) =
∫∫

R2
db′ dξ ′ �(b − b′, ξ − ξ ′) Ws(b′, ξ ′). (1.6)

An example is the so-called smoothened pseudo-Wigner–Ville distribution,

SPWs(b, ξ ) =
∫ +∞

−∞
db′ g(b − b′)

∫ +∞

−∞
dx h(x) e−iξ x s(b′ − x/2) s(b′ + x/2), (1.7)

corresponding to a factorizable kernel �(b, ξ ) = (2π )−1/2g(b) ĥ(ξ ), where ĥ denotes
the Fourier transform of h. Further information about quadratic transforms may be
found in [Fla93], and as a general survey for time–frequency methods, we refer to
[Gro01].

1.2 The continuous wavelet transform

Actually one should distinguish two different versions of the wavelet transform, the
continuous WT (CWT) and the discrete (or more properly, discrete time) WT (DWT)
[Dau92,Hol95]. The CWT plays the same rôle as the Fourier transform and is mostly
used for analysis and feature detection in signals, whereas the DWT is the analog of the
Discrete Fourier Transform (see for instance [Bur98] or [326]) and is more appropriate
for data compression and signal reconstruction. The situation may be caricatured by
saying that the CWT is more natural to the physicist, while the DWT is more congenial
to the signal analyst and the numericist. The continuous wavelet transform is the main
topic of this book. Nevertheless, for the sake of comparison, we will give short overviews
of the discrete WT, both in one and two dimensions.

The two versions of the WT are based on the same transformation formula, which
reads, from (1.2) and (1.4):

S(b, a) = |a|−1/2
∫ ∞

−∞
dx ψ

(
x − b

a

)
s(x), (1.8)

where a 	= 0 is a scale parameter and b ∈ R a translation parameter (one often imposes
only a > 0, which is more natural, but makes formulas slightly more complicated; see
Chapter 6). Equivalently, in terms of Fourier transforms:

S(b, a) = |a|1/2
∫ ∞

−∞
dξ ψ̂(aξ ) ŝ(ξ ) eiξb. (1.9)
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6 Warm-up: the 1-D continuous wavelet transform

In these relations, s is a square integrable function, representing a finite energy signal,
and the function ψ , the analyzing wavelet, is assumed to be well localized both in the
space (or time) domain and in the frequency domain. In addition ψ must satisfy the
following admissibility condition, which guarantees the invertibility of the WT:

cψ ≡ 2π

∫ ∞

−∞
dξ

|ψ̂(ξ )|2
|ξ | < ∞. (1.10)

In most cases, this condition may be reduced to the (only slightly weaker) requirement
that ψ has zero mean:

ψ̂(0) = 0 ⇐⇒
∫ ∞

−∞
dx ψ(x) = 0. (1.11)

Intuitively, it expresses the fact that a wavelet must be an oscillating function, real or
complex (“little wave”). This is often thought to be the origin of the term “wavelet”,
but it is not the case historically. Indeed the word was widely in use in the geophysics
community, with quite a different meaning, when it was introduced by Grossmann and
Morlet [205,206] in the present sense, under the name “wavelets of constant shape” –
but, of course, this lengthy nomenclature did not survive the very first founding paper!

The wavelet ψ is said to be progressive if its Fourier transform ψ̂(ξ ) is real and
vanishes identically for ξ � 0. (In the signal processing community, a signal with this
property is called analytic, following the terminology introduced by J. Ville [364].) In
addition, ψ is often required to have a certain number of vanishing moments:∫ ∞

−∞
dx xn ψ(x) = 0, n = 0, 1, . . . N . (1.12)

This property improves the efficiency of ψ at detecting singularities in the signal, since
it is then blind to polynomials up to order N , which constitute the smoothest part of
the signal.

Notice that, instead of (1.8), which defines the WT as the scalar product of the signal
s with the transformed wavelet ψb,a , S(b, a) may also be seen as the convolution of s
with the scaled, flipped and conjugated wavelet ψ#

a (x) = |a|−1/2 ψ(−x/a) :

S(b, a) = (ψ#
a ∗ s)(b) =

∫ ∞

−∞
dx ψ#

a (b − x) s(x). (1.13)

In other words, the CWT acts as a filter with a function of zero mean.
This property is crucial, for the main virtues of the CWT follow from it, combined

with the support properties of ψ . Indeed, we must assume that ψ and ψ̂ are as well
localized as possible, but respecting, of course, the Fourier uncertainty principle. This
means that, up to minute corrections, the product of the lengths of the supports of ψ

and ψ̂ is bounded from below by a fixed constant, usually taken as 1/2. Equivalently,
the product of the variances of the distributions |ψ |2 and |ψ̂ |2 is bounded from below.
More precisely, one defines the centers of gravity (which may in fact be normalized to
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7 1.2 The continuous wavelet transform

zero by a suitable redefinition of the coordinates):

x0 =
∫ ∞

−∞
dx x |ψ(x)|2, ξ0 =

∫ ∞

−∞
dξ ξ |ψ̂(ξ )|2, (1.14)

and the corresponding variances

(�x)2 = ‖ψ‖−2
∫ ∞

−∞
dx (x − x0)2 |ψ(x)|2; (1.15)

(�ξ )2 = ‖ψ‖−2
∫ ∞

−∞
dξ (ξ − ξ0)2 |ψ̂(ξ )|2. (1.16)

Then the Fourier uncertainty theorem [Fla93] says that

�x �ξ � 1

2
. (1.17)

Under these assumptions, the transformed wavelets ψb,a and ψ̂b,a are also well
localized. Therefore, the WT s �→ S performs a local filtering, both in time (b) and in
scale (a). The transform S(b, a) is nonnegligible only when the wavelet ψb,a matches
the signal, that is, the WT selects the part of the signal, if any, that lives around the time
b and the scale a.

In addition, if ψ̂ has a numerical support (bandwidth) of width �ξ , then ψ̂b,a has
a numerical support of width �ξ/|a|. Thus, remembering that 1/a behaves like a
frequency, we conclude that the WT works at constant relative bandwidth, that is,
�ξ/ξ = constant. This implies that it is very efficient at high frequency, i.e., small
scales, in particular for the detection of singularities in the signal. By comparison, in
the case of the Gabor transform, the support of ψ̂b,a keeps the same width �ξ for all
a, that is, the WFT works at constant bandwidth, �ξ = constant. This difference in
behavior is often the key factor in deciding whether one should choose the WFT or the
WT in a given physical problem.

Another crucial fact is that the transformation s(x) �→ S(b, a) may be inverted ex-
actly, which yields a reconstruction formula (this is only the simplest one, others are
possible, for instance using different wavelets for the decomposition and the recon-
struction):

s(x) = c−1
ψ

∫ ∞

−∞
db

∫ ∞

−∞

da

a2
ψb,a(x) S(b, a), (1.18)

where the normalization constant cψ is given in (1.10) (incidentally, this relation shows
why the admissibility condition cψ < ∞ is required for the transformation to be in-
vertible). This means that the WT provides a decomposition of the signal as a linear
superposition of the wavelets ψb,a with coefficients S(b, a). Notice that the natural
measure on the parameter space (a, b) is da db/a2, and it is invariant not only under
time translation, but also under dilation. This fact is important, for it suggests that these
geometric transformations play an essential rôle in the CWT.
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8 Warm-up: the 1-D continuous wavelet transform

One should emphasize here that the choice of the normalization factor |a|−1/2 in (1.4)
or (1.8) is not essential. This choice makes the transform unitary: ‖ψb,a‖2 = ‖ψ‖2 and
also ‖S‖2 = ‖s‖2 , where ‖ · ‖2 denotes the L2 norm in the appropriate variables (the
squared norm is interpreted as the total energy of the signal). In practice, one often
uses instead a factor a−1, which has the advantage of giving more weight to the small
scales, i.e., the high frequency part (which contains the singularities of the signal, if
any). Thus, defining

ψ(b,a) = 1

|a| ψ

(
x − b

a

)
, (1.19)

we obtain the so-called L1-normalized transform:

S̆(b, a) = 〈ψ(b,a)|s〉 ≡ |a|−1
∫ ∞

−∞
dx ψ

(
x − b

a

)
s(x), (1.20)

which preserves the L1-norm of the signal, as follows immediately from the corre-
sponding convolution formula

S̆(b, a) = (ψ#
a ∗ s)(b), (1.21)

where ψ#
a (x) = |a|−1 ψ(−x/a). Thus indeed ‖ψ#

a ‖1 = ‖ψ‖1 and ‖S̆‖1 = ‖s‖1 , where
‖ · ‖1 denotes the L1-norm in the corresponding variables.

1.2.1 Examples

In order to fix ideas, we exhibit here two simple examples of wavelets, both in the time
domain and in the frequency domain.
(1) The Mexican hat wavelet

This wavelet is simply the second derivative of a Gaussian:

ψH(x) = (1 − x2) exp(− 1
2 x2), ψ̂H(ξ ) = ξ 2 exp(− 1

2ξ 2). (1.22)

(2) The Morlet wavelet
This wavelet is essentially a plane wave within a Gaussian window:

ψM(x) = exp(ikox) exp(− 1
2 x2) + c(x), ψ̂M(ξ ) = exp(− 1

2 (ξ − ξo)2) + ĉ(ξ ).
(1.23)

Here the correction term c must be added in order to satisfy the admissibility
condition (1.11), but in practice one will arrange that this term be numerically
negligible (� 10−4) and thus can be omitted (it suffices to choose the basic frequency
|ξo| large enough, typically |ξo| > 5.5).

These two wavelets have very different properties and, naturally, they will be used
in quite different situations. Typically, the Mexican hat is sensitive to singularities in
the signal, and it yields a genuine time-scale analysis. On the other hand, since it is
complex, the Morlet wavelet will catch the phase of the signal, hence will be sensitive
to frequencies, and will lead to a time-frequency analysis, somewhat closer to a Gabor
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9 1.2 The continuous wavelet transform
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Fig. 1.3. Wavelet analysis with a Mexican hat wavelet of the discontinuous signal bumps (shown in
the bottom panel).

analysis. In both cases, additional flexibility is obtained by adding a width parameter
to the Gaussian (see (3.8) in the equivalent 2-D situation).

As an illustration of the performance of the CWT as a singularity scanner, we first
show in Figure 1.3 the analysis with a Mexican hat wavelet of a discontinuous signal,
called bumps and consisting of three pieces, a δ function, a boxcar function and a tent
function. Clearly the wavelet locates all discontinuities in the signal and in its successive
derivatives well. However, if one wants to discriminate between the various types of
singularities, one has to invoke the concept of vanishing moment, defined in (1.12). Let
us consider the successive derivatives of a Gaussian:

ψ (n)
H (x) = − dn

dxn
exp(− 1

2 x2). (1.24)

For increasing n, these wavelets have more and more vanishing moments, and are
thus sensitive to increasingly sharper details. As an example, we consider a continuous
signal obtained by glueing together an arc of parabola (the so-called function x2

+) and a
linear piece and we analyze it successively with the first three derivatives of a Gaussian,
ψ

(n)
H (x), n = 1, 2, 3. The result is shown in Figure 1.4. In (a), the first-order wavelet

ψ
(1)
H has only one vanishing moment, hence it sees the full content of the two pieces of

the signal. In (b), the second-order wavelet ψ
(2)
H (x) ≡ ψH does not see the linear part

anymore, only the singularities at the two ends, but still sees the quadratic piece on
the left (in technical terms, one would say that this wavelet is blind to a linear trend
in the signal). In (c), finally, the third-order wavelet correctly erases both pieces of the
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10 Warm-up: the 1-D continuous wavelet transform
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Fig. 1.4. Analysis of a composite signal (bottom panel) with successive derivatives of a Gaussian.
(a) First order; (b) second order; (c) third order.

signal, keeping only the three singularities. This example shows the advantage of the
local filtering effect of the CWT. Notice that a Gabor analysis would be utterly unable
to achieve such a discrimination between singularities, let alone to detect them!

As a direct application of this behavior, an interesting technique has been designed
by A.Arnéodo et al. [49], which consists in analyzing the same signal with several
wavelets ψ

(n)
H , for different n. The features common to all the transforms surely belong

to the signal, they are not artifacts of the analysis.

1.3 Discretization of the CWT, frames

All this concerns the continuous WT (CWT). But, in practice, for numerical purposes,
the transform must be discretized, by restricting the parameters a and b in (1.8) to the
points of a discrete lattice 	 = {a j , bk, j, k ∈ Z} in the (a, b)-(half)-plane. Then we
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