Cambridge University Press

978-0-521-06503-0 - Groups as Galois Groups: An Introduction
Helmut Volklein

Excerpt

More information

Part One
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1
Hilbert’s Irreducibility Theorem

The definition and basic properties of hilbertian fields are given in Section 1.1.
Section 1.2 contains the proof of Hilbert’s irreducibility theorem (which says
that the field Q is hilbertian). We give the elementary proof due to Dorge [Do]
(see also [La]).

Section 1.3 is not necessary for someone interested only in Galois realizations
over Q. It centers around Weissauer’s theorem, which shows that many infinite
algebraic extensions of a hilbertian field are hilbertian. As our main application
we deduce that the field QQ,;, generated by all roots of unity is hilbertian. Next
to Q itself, this field is the one that has attracted the most attention in the recent
work on the Inverse Galois Problem. This is due to Shafarevich’s conjecture
(see Chapter 8).

In this chapter, k denotes a field of characteristic 0. (Most results remain
true in positive characteristic, with suitable modifications; see [FJ], Chs. 11
and 12.) Welet x, y, x1, X2, . . . denote independent transcendentals over k. Thus
k[xy, ..., xp] is the polynomial ring, and k(xy, ..., x,) the field of rational
functions over k in xi, ..., X

1.1 Hilbertian Fields
1.1.1 Preliminaries

We will use elementary Galois theory, as developed in most introductory algebra
books, without further reference. (See, e.g., [Jac], I, Ch. 4). The most useful
single result will be Artin’s theorem (saying that if G is a finite group of auto-
morphisms of a field K then K is Galois over the fixed field F of G and
G(K/F)=G).

If K is a field with subfield &, we say K is regular over k if k is algebraically
closedin K.
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4 1 Hilbert's Irreducibility Theorem
Lemma 1.1 Suppose x, ..., X, are algebraically independent over k, and set
X ={(X1,...,Xp). Let k be an algebraic closure of k.

(i) If k') k is finite Galois, then k'(x)/ k(x) is finite Galois, and the restriction
map G(k'(x)/k(x)) — G(k'/k) is an isomorphism. In particular, every
field between k(x) and k' (X) is of the formk” (x), and [k" (X) : k()] = [k : k].

(ii) Let f(x,y) € k(x)[y] be irreducible over k(x), and let K = k(x)[y1/(f)
be the corresponding field extension of k(X). Then K is regular over k ifand
only if f is irreducible over k(x). If this holds, then f(x, y) is irreducible
over ki(x) for every extension field ki of k such that x1, ..., xy, y are
independent transcendentals over k.

Proof. (i) The group G = G (k'/ k) acts naturally on k'(x) (fixing x1, ..., Xp),
with fixed field k(x). By Artin’s theorem, &’(x)/k(x) is Galois with group G.
The last part of (i) follows now by using the Galois correspondence.

(i) Let & be the algebraic closure of £ in K, and let & be the image of y in
K (thus f(a) = 0). Then « satisfies a polynomial f () € lz(x)[y] of degree
[K : k(x)],and f divides f. It follows that if £ 5 k then f is not irreducible in
lE(x)[y], hence not in /E(x)[y].

Conversely, assume k = k,and let &' be any finite Galois extension of k. Let
K’ be the composite of K and k’(x) inside some algebraic closure of k(x). By (i)
we have K Nk'(x) = k”(x) for some k” between k and &’. Then k" C k, hence
k" = k. Thus K N k'(x) = k(x). Since k'(x)/k(x) is Galois (by (1)), it follows
that [K': k'(x)] = [K : k(x)]. But K’ = k'(x)[«], hence f is irreducible over
k'(x). Since k’ was an arbitrary finite Galois extension of k, it follows that f is
irreducible over lz(x).

For the last claim, suppose f decomposes as f = gk for g, & € k;(x)[y], of
degree >1 in y. Without loss, g is monic in y. We may assume that k; is gener-
ated over k by the coefficients of g (where g is viewed as a rational function in
X1, ..., Xm, y),and thatone such coefficient, call it z,is transcendental over k. By
Remark 1.2 below, ky is finite overafield k, = k(z(, ..., t;), wheret(, ..., t; are
independent transcendentals over &, and ¢ = ¢1. There is an infinite subset A C
Aut(k,/ k) suchthatall o € A take distinct valuesont (e.g., ¢ () = t+c,c € k,
and a(#;) = t; fori > 1). These o can be extended to embeddings of k; into ks,
and further to embeddings of &, (x)[y] into ko (x)[y] (fixing x1, ..., X, ¥). Ap-
plying these embeddings to g we obtain infinitely many (distinct) divisors of f
in ky (x)[ v1, all of them monic in y. This contradiction completes the proof. O

Remark 1.2 Suppose ky = k(ay, ..., a,) is a finitely generated extension of k.
Ifz, ..., t is acollection of elements among a1, . . ., ,, maximal with respect
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1.1 Hilbertian Fields 5

to being algebraically independent over &, then & is finite over the purely tran-
scendental extension k(zy, ..., ) of k. (Indeed, k; is finitely generated and
algebraic, hence finite over k(t1, ..., t).)

Lemma 1.3 Let o be algebraic over the field L. Let f(y) = Y 7, a;y' bea
polynomial over L of degree n > QO with f(«) = 0. Then

n—1
gW) =YY"+ aa 'Y’
(=0

is a monic polynomial of degree n with g(a,a) = 0. Clearly, L(a) = L(a,«).
Proof. Clear. O

Let f(y) € D[y] be a polynomial over the factorial domain D of degree > 1.
Recall that f(y) is irreducible in D[y] if and only if it is irreducible in F[y],
where F is the field of fractions of D. Further, f(y) is called primitive if it
is nonzero, and the g.c.d. of its nonzero coefficients is 1. If g(y) is a nonzero
polynomial over F, then there is d € F, unique up to multiplication by units
of D, such that d - g(y) is primitive. Further, a polynomial ring in any (finite)
number of variables over a field is factorial. (For all this, see, e.g., [Jac], I, Ch.2.)

Lemma 1.4 Let f(xy, ..., x;) be a polynomial in s > 2 variables over k, of
degree >1 in x;. Then f is irreducible as polynomial in s variables if and only
if f isirreducible and primitive when viewed as polynomial in x; over the ring
D = k[xy,...,xs_1]. Note that f is irreducible over D if and only if f is
irreducible over F = k(xy, ..., Xxs_1).

Proof. First assume f is irreducible and primitive when viewed as polynomial
in x; over D. If then f = gh for polynomials g, 4 in xi, ..., x, then one of
these polynomials, say g, must actually be a polynomial in x1, ..., xs_1. Since
f is primitive, it follows that g is a unit in D, hence g € k. This proves that f
is irreducible as a polynomial in s variables. The converse is clear. For the last
statement in the Lemma, see above. O

1.1.2 Specializing the Coefficients of a Polynomial

First a basic lemma about specializing a Galois extension. This lemma will be
used several times, in particular in Chapter 10 for a problem in positive charac-
teristic. Therefore we allow fields of any characteristic (just in this Lemma 1.5).
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6 1 Hilbert's Irreducibility Theorem

Recall that a polynomial (in one variable) is called separable if it has no multi-
ple roots. The discriminant of a monic polynomial p(y) is a polynomial function
(over Z) in the coefficients of p. It is nonzero if and only if p is separable.

Lemma 1.5 Let K /F be a finite Galois extension with Galois group G. Let R
be a subring of F, having F as a field of fractions. Let «a be a generator for K
over F, satisfying f{(a) = 0 for some monic polynomial f(y) € R[y] of degree
n = [K : F]. Finally, let A be a finite subset of K containing «, and invariant
under G. Let S = R[A] (the subring of K generated by R and A). Then there
is u # 0in R such that for each (ring-) homomorphism w from R to a field F’
satisfying w(u) # 0 the following holds:

1. wextendstoahomomorphismé:S — K',where K’ is afinite field extension
of F'. We may assume that K' is generated over F’ by é&(S).

2. For each such o, the field K' is Galois over F', and is generated over F'
by o' = @(a). We have f'(¢') = 0, where f'(y) € F'[y] is the poly-
nomial obtained by applying w to the coefficients of f. Thus [K' : F'] =
[K : Flifand only if f' is irreducible. In this case, K’ is F'-isomorphic to
F'lyl/(f).

3. Now suppose ' isirreducible. Thenfor each @ asin (1), there is a unique iso-
morphism G — G’ = G(K'/F"), o v &', such that &(c (s)) = o'(&(s))
forallo € G,s € S.

Proof. Since K /F is Galois, the polynomial f(y) is separable, hence its dis-
criminant D is a nonzero element of R. Further, w (D ) is the discriminant of
the polynomial f(y) obtained by applying  to the coefficients of f. We will
only consider such w with w(D ) # 0. Then f'(y) is separable.

The ideal I of R[y] generated by f is the kernel of the natural map R[y] —
Rle], h = h(a). Indeed, if & € R[y] with h(e) = O then by elementary field
theory we have & = gf for some g € F[y]. Write f = Y " (a;y', g =
> objy/ witha; € R, b; € F. Since f is monic in y, it follows that
b, € R (because it equals the highest y-coefficient of /). The second high-
est y-coefficient of 4 equals b,,_; + bya,—1, hence b,,_; € R. Continuing like
this, we see that all b; € R. Hence g € R[y], and thus 4 € I. This yields a
natural isomorphism

¢ : R[yl/I - R[a].

Step 1 We first consider the special case that R[A] = R[«]. We show that
(1)—(3) hold for each homomorphism @ : R — F’ with w(D ) #0.
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1.1 Hilbertian Fields 7

Extend w to a map R[y] — F’[y] (fixing y). This map sends f to f’,
hence induces a homomorphism

¥ : R[yl/I = RIyl/f Ryl = F'Iyl/f'F'ly}l = F'lyl/(f).
Let
X =%o¢ :Rla] > F'[yl/(f).

(1).Set K’ = F’[y]/(g'), where g’ is an irreducible factor of /. Then K’ is a
finite field extension of F’. Composing x with the natural map F'[yl/(f’) —
F’[y]/(g") = K’ we obtain a homomorphism S = R[a] — K’ that extends
w. This proves (1).

(2). We have K’ = F'[&(S)] = F'[@(a)] = F'[e'] (because § = R[] by
hypothesis in Step 1).

The conjugates &y, ..., &, of @ over F allliein A C S (by hypothesis). Let

oy, ..., q, be their @-images. Applying @ to f(y) = (y —a1)---(y — )
we get f/(y) = (y —a])---(y — o). Hence K’ contains all conjugates of
o’ over F’, and therefore is normal over F’. Also, K'/F’ is separable (since
f'is), hence K’/ F’ is Galois. The rest of (2) is clear.
(3). Assume f'is irreducible. Then |, . . ., «,, are all conjugate over F’ (and
are pairwise distinct since f'is separable). Thusforeachi =1, ..., nthereis
aunique g/ € G’ = G(K'/F’) mapping o' to ;. Also, there is a unique g; €
G = G(K/F) mapping « to «;. Thus o; = o/ is a bijection from G to G'.

Now fix some s in § = R[«]. We can write it in the form s = A(a) with
h(y) € R[yl.Let h'(y) € F'[y]be obtained by applying w to the coefficients
of k. Then o/(&(s)) = o/ (@(h(a))) = o/(h'(&)) = W(a)) = d(h(e;)) =
w(oi (h())) = @(o;(s)). This proves that o'(&(s)) = @(o(s)) for all s €
S and ¢ € G. In particular, (o1)(¢)) = (61)(@(a)) = d(oT(¥)) =
o'(@(r(a))) = o’'t’(@'). Thus the map o + ¢’ is homomorphic, hence iso-
morphic. This proves (3).

Step 2 The general case.
Each a € A can be written as

n—1
a= E b
i=0

with b; € F. Choose v # 0 in R such that vb; € R for all occurring b; (as
a ranges over A). This is possible because F is the field of fractions of R.
Setu = vDy and R = R[u~']. Then all b; € 1§, hence A C R[a] and so
R[A] = R[«].
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8 1 Hilbert's Irreducibility Theorem

Ifw: R — F'isahomomorphism with w(u) # 0, then w extends uniquely
to a homomorphism R — F’. Now apply Step 1 to R, and we are done. O

The next Lemma can be viewed as a very weak analogue of Hilbert’s irre-
ducibility theorem (noting that an irreducible polynomial in characteristic 0 is
separable). We use the phrase “for almost all” to mean “for all but finitely many.”

Lemma 1.6 Let L be a field, and f(x, y) € L[x, y] separable as polynomial
in y over L(x). Then the specialized polynomial f(b,y) € L[y] is separable
for almost all b € L.

Proof. By Lemma 1.3 we may assume f is monic as polynomial in y. Its dis-
criminant is an element D(x) € L[x], nonzero because f is separable (in y).
For each b € L, the polynomial f(b, y) € L[y] has discriminant D(b). Thus
f (b, y) is separable for all b € L different from the roots of D (x). O

Proposition 1.7 Let K be a Galois extension of k(x) of finite degree n > 1.
Then there is a polynomial f(x,y) € k[x, y], monic and of degree n in y, and
a generator « of K over k(x) with f(x,a) = 0. Further:

(i) For almost all b € k the following holds: If the specialized polynomial
fo(y) := f(b, y) is irreducible in k[y], then the field k[y]/( f3) is Galois
over k, with Galois group isomorphic to G = G (K /k(x)).

(ii) Suppose £ is a finite extension of k contained in K. Let h(x, y) € £[x, y]
be irreducible as polynomial in y over £(x), and assume the roots of this
polynomial are contained in K. Then for almost all b € k the following
holds: If f (b, y) is irreducible in k[y], then h(b, y) is irreducible in £]y].

(iii) There is a finite collection of polynomials p;(x,y) € klx1[y], irreducible
and of degree >1 when viewed as polynomial in y over k(x), such that for
almostall b € k the following holds: If none of the specialized polynomials
pi(b,y) € k[y] has a root in k, then f(b, y) is irreducible in k[y].

Proof. Each generator o of K over k(x) satisfies some polynomial f(y) of
degree n over k(x). Multiplying f by some element of k[x] we may view
f = f(x,y) as polynomial in two variables over k. By Lemma 1.3 we may as-
sume that f ismonicin y. Thus f(y) = (y—a1) -+ - (y —«,), where oy, ..., @,
are the conjugates of « over k(x).

For b € k let wp, : k[x} — k be the evaluation homomorphism A (x) — A(b).
We apply Lemma 1.5 with F = k(x), and with® = wp : R = k[x] > F' = k.
Then f’(y) (obtained by applying w to the coefficients of f(y)) equals the
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1.1 Hilbertian Fields 9

polynomial f3(y) = f(b, y). Letu = u{x) € R = k[x] be as in Lemma 1.5.
Then w, (1) = u(b), hence assertions (1) to (3) in Lemma 1.5 hold forall b € k
different from the finitely many roots of u. Assertions (2) and (3) imply claim (i).

Assume from now on that b € £ is not a root of u. Then w; extends to
@ : 8§ — K’ where S is a subring of K containing k[x][e, ..., a,], and K’ a
finite Galois extension of k generated by &(S). Letaf, ..., o/, be the @-images
ofay,..., o Then fL(y) = (y —a}) - - (y — ).

(iii). Let [ be a proper, nonempty subset of {1, ..., n}. Since f is irreducible
as polynomial in y over k(x), the partial product [ [,,(y — «;) cannot lie
in k(x)[y]. Thus it has some coefficient d; with d; & k(x). This d; liesin S
(since the o; are in S), and it satisfies some irreducible polynomial p; over
k(x) of degree >1. We may choose p; to have coefficients in k[x].

Now assume that f}, is not irreducible. Then there is some / as above such
that the polynomial ]—L o (y —a)) lies in k[y]. It follows that ¢ := &(d;) lies
in k (since it is a coefficient of this polynomial). Applying & to the equation
pi(x,dr) = 0 we obtain p; (b, ¢) = 0. This proves (iii).

(ii). Assume f;, is irreducible, and write 4 as

h(x, ) =ho) [ [ = B) (1.1)
i=1

with ho(x) € £[x] and B8; € K. We may assume that the ; lie in the finite
set A from Lemma 1.5, hence in S. Set 8] = &(8;).

We may further assume that A contains a generator of £ over k. Then
¢ C S. Thus @ maps the field £ isomorphically to a subfield of K’ that we
identify with £ (via @). Under this identification we get

h(b, y) = ho®) [ [ — B)
i=1

(applying & to (1.1)). Further, the map in assertion (3) of Lemma 1.5 maps
the subgroup H = G(K /£(x)) of G onto a subgroup H' of G(K'/¢).
Since 4 is irreducible as polynomial in y over £(x), it is separable (since
char(k) = 0) and the group H = G(K /£(x)) permutes its roots §; transi-
tively. Then H' permutes the g transitively. Exclude those finitely many b
with s (b) = 0, and those for which 4 (b, y) is not separable (see Lernma 1.6).
Then the polynomial (b, y) is separable, and the group H' C G(K'/£) per-
mutes its roots f; transitively. Hence A (b, y) is irreducible over £. a
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10 1 Hilbert's Irreducibility Theorem

Corollary 1.8 The following conditions on k are equivalent:

(1) For each irreducible polynomial f(x, y) in two variables over k, of degree
>1iny, there are infinitelymany b € k such that the specialized polynomial
f (b, y) (in one variable) is irreducible.

(2) Given a finite extension £/k, and hi(x,y), ..., hyn(x,y) € €[x][y] that
are irreducible as polynomials in y over the field £(x), there are infinitely
many b € k such that the specialized polynomials h1(b, y), ..., hu(b, y)
are irreducible in £[y].

(3) Forany pi(x,y), ..., p:(x,y) € kixl[y] that are irreducible and of degree
>1 when viewed as polynomial in y over k(x), there are infinitely many
b € k such that none of the specialized polynomials p1(b, y), ..., p:(b, ¥)
has a root in k.

Proof. Clearly, (2) implies (1) and (3) (cf. Lemma 1.4). It remains to prove that
each of (1) and (3) implies (2).

Let Ay(x, ¥), ..., hn(x, y) € £[x]]y] be as in (2). Let Sp be the set of all
roots of these polynomials in some algebraic closure of £(x). Choose a finite
extension K of £(x) that contains Sy, and is Galois over k(x).

Now apply the above Proposition: Part (ii) shows the implication (1) = (2).
(Note that the polynomial f(x, y) from the Proposition (defining the extension
K /k(x)) is irreducible as polynomial in two variables by Lemma 1.4.) For the
implication (3) = (2), use additionally part (iii). 0

Definition 1.9 A field k is called hilbertian if it satisfies (one of) the 3 equiv-
alent conditions (1), (2), (3).

Using (1) and (2) we see that every finite extension of a hilbertian field is
hilbertian. In the next section we prove that the field Q is hilbertian. Thus every
algebraic number field (of finite degree over Q) is hilbertian.

1.1.3 Basic Properties of Hilbertian Fields

Lemma 1.10 Suppose k is hilbertian, and f (xy, .. ., x;) is an irreducible poly-
nomial in s > 2 variables over k, of degree >1 in x;.

(i) Then there are infinitely many b € k such that the polynomial f (b, x3,
..., Xg) (ins — 1 variables) is irreducible over k.

(ii) For any nonzero p € k[x1,...,xs—1]1thereare by, ..., bs_; € k such that
p(by,....bs_y) #0and f(by, ..., bs_1, Xs) is irreducible (as polynomial
in one variable).
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1.1 Hilbertian Fields 11

Proof. First we derive (ii) from (i). We use induction on s. The case s = 2 is just
(i). Now assume s > 2, and the claim holds for s — 1. Write p as a polynomial
inxa, ..., xs_1, with certain coefficients c¢;(x;) € k[x1]. By (i) there is by € k
such that f'(x2,...,x5) = f(b1, x2,...,x,) is irreducible, and ci(by) #0
for some j. Then p’(x2, ..., x,_1) := p(b1, X2, ..., Xs_1) is nonzero. Now the
induction hypothesis yields b,, ..., bs_1 € k such that p'(by, ..., b_;) #0
and f'(b,, ..., bs_1, x;) is irreducible. Thus (by, ..., bs_;) is as desired.

It remains to prove (i). Let d be an integer bigger than the highest power
of any variable occurring in f. Kronecker’s specialization of f is defined as
Saf(x,y) = f(x,y, ¥4, ..., y9 ™) (a polynomial in two variables). Write

Saf(x,y) = g(x) lf[g,-<x, y)

a product of irreducible polynomials g;(x, y), of degree >1 in y, and g(x) €
k[x]. Since k is hilbertian, there are infinitely many b € k such that all g; (b, y)
are irreducible. (Use condition (2) and Lemma 1.4.) Consider only such b from
now on. We may additionally assume that g(b) # 0.

Now assume that f (b, x2, ..., x,) isreducible, say f(b, xa, ..., x;) = h(x,
<o X)W (x2, ..., x5), where h and A’ are both not constant. The Kronecker
specializations Szh(y) and Szh'(y) are defined similarly as above. We have
Saf(b,y) = Sah(y)Sah'(y), hence Syh(y) and Syh'(y) are each a product of
certain g; (b, y) (up to factors from k). Let H (x, y) and H'(x, y) be the product
of the corresponding g;(x, y). Then S, f(x, y) = g(x)H (x, y)H'(x, y).

Because of the uniqueness of the d-adic expansion of an integer, there are
unique polynomials h(xy, ..., %), h(xy, ..., x;) with Szh = gH, S;h' = H',
such that the highest power of x,, ..., x, occurring in &, /' is less than d. If
the latter would also hold for f := k4’ then we would have f = f because of
the uniqueness of the d-adic expansion. This contradicts the irreducibility of f
because f = hh’ with k, &’ not constant.

Thus f , when written as polynomial in x», ..., x,;, contains a monomial
K(xl)xé2 .. .x;? where some i, > d, and ¥ # 0. Note that E(b,xz, L., Xg) S
a scalar multiple of 2(xs, ..., x;). (Compare their Kronecker specializations.)
Similarly for 4. It follows that f (b, x2, ..., x;) is a (nonzero) scalar multiple
of f(b,xa, ..., x;). This implies that « (b) = 0.

There are only finitely many possibilities for « (up to multiplication with
elements of k), corresponding to all decompositions S, f = gH H'.If we choose
b distinct from the (finitely many) zeroes of all these «, then f (b, x2, ..., X)
is irreducible. This proves (i). [
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