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PART 1

THE FIRST TRACT ‘DE QUADRATURA CURVARUM’

(early winter 1691-2)
INTRODUCGCTION 3

John Craige’s visit to Cambridge in 1685 to talk of the quadrature of curves, 3. Newton shows
him his ‘prime’ theorem (of 1676) for series-quadrature, 4. Craige passes two instances of such
squaring on to David Gregory, 5. Pitcairne prints (1688) the equivalent quadrature series
‘discovered’ therefrom by Gregory, 6. Who in 1691 determines to publish an augmented
account of ‘ his’ series, and in November sends it to Newton for prior approval, 8. After initially
dashing off a resentful letter to Gregory, Newton’s more considered response is to work up his
theorem into a short treatise ‘De quadratura Curvarum’, 11, And thereafter during January/
February 1692 to elaborate his ‘curious Tract’ to be (Fatio reports to Huygens) ‘infinitely
more general than all before’, 12. The fundamental notion of the fluxion of a ‘ flowing’ quantity
as its instantaneous ‘speed’ of increase, 14. ‘Pricked’ letters are re-introduced to represent
fluxions in (now standard) ‘Newtonian’ form, 15. Newton’s later unhistorical back-dating of
his ‘De quadratura’ to 1676 (to make clear his calculus priority), 16. His contracted notation
for higher-order fluxions, 17. Ad hoc techniques for solving fluxional equations when these are
exactly quadrable, and the extraction of their fluent ‘roots’ in infinite series when they are not,
18. The Taylor expansion of a quantity explicitly enunciated, 19. Newton’s failure to com-
municate his new findings renders them still-born, 20.

AprPENDIX. Newton’s draft reply to Gregory in November 1691 on priorities in discovering
the method of series-quadrature. The Latin text, 21. Newton breaks off to reshape his response
into the opening paragraphs of his ‘De quadratura’, 23.

§1 (*Add. 3962.2: 31r/40%/56"—56"/38a™-38b* + private). The unfinished preliminary text.
The ‘prime’ theorem of series-quadrature as communicated to Leibniz in October 1676,
24. ‘Gregory came upon the same series four years ago, but in a less neat form’, 26. The
1676 theorem extended backwards, 28. ‘Rule 1°: for compounding quadratures of related
curvilinear areas, 30. ‘Rule 2°: for transmuting the areas of curves defined by Cartesian
equations of three terms, 30. Their reduction thereby to any of three simpler forms, 32.
Further possibilities of such simplifying transmutation, 34. Extension to trinomials of the

* NB. Unless otherwise specified, citations here and below are of manuscripts in the
University Library, Cambridge.
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‘prime’ theorem for the series-quadrature of binomials, 36. And to quadrinomials: notes

upon these, 38. Parallel reductions of the quadrature of yet more complicated multinomials

to simpler (and, if possible, straightforwardly quadrable) form, 40. Case 1: by lowering

the degree of the multiplying power 29, 42, Case 2: by lowering the degree of the ‘nomial’,

44. Cases 3/4 conjoin these part-reductions and make suggestion for their extension, 46,

Whence to find the simplest figures with which curves needing to be squared can be
compared, 46. Further analogous theorems are mapped out, 46.

§2 (Add.3962.3: 557, 56"—57V/ 3960.10:167-71/3960.7:121-35/3960.10:173-9/3960.11:
181-95/ 3965.6: 38~—39" [in sequence] +private). The revised, augmented treatise of
quadrature. The opening is much as before, 48. But Newton now quotes his ‘ prime’ pro-
position on series-quadrature verbatim from his 1676 epistola posierior, along with its worked
examples, 50. And attendant rectification of the cissoid, 52. The backwards extension of
the prime theorem is given refined expression, 54. The earlier ‘Reg. 1’ becomes ‘Prop. I1°;
and ‘Reg. 2°, on the transmuted quadrature of trinomials, is emended to be ‘Prop. III’,
56. Further transmutation of the primary reduced forms to be six secondary ones, 60.
The ‘simplest’ such reduced forms, 62. Proposition IV: the fundamental rule for deriving
the fluxion of a given equation ab initio, 62. Case 1: when the equation is surd-free, and
Case 2: when it is ‘irrational’, 64. Proposition V: ‘to find curves which can be squared’
(by setting the abscissa as base variable and ordinate as fluxion, and determining the area
as the fluent), 66. Proposition VI: ‘to find a curve equal [in area] to a given one’ (by
equating the products of their ordinate and the fluxion of their abscissa), 66. Propositions
VII and VIII: the ordinates of curves whose areas are defined by multinomial equations
(obtained by finding their fluxions), 68. Proposition IX: the series-quadrature of a curve
whose ordinate is defined by a compound multinomial equation, 70. Proposition X: the
yet more general case where the ordinate is doubly multinomial, 70. Proposition XI:
given a fluxional equation, to determine the corresponding fluent relationship, 70. ‘The
problem is the most useful of those commonly propounded in mathematics’, 72. Case 1:
where the fluxional equation lacks one or other of the fluents (and so is in directly
integrable form); and Case 2: where the fluents can readily be separated, 72. An example
invoking the area of a hyperbola (reduced to the equivalent logarithmic series), 74. Case 3:
where by distinguishing related groups of terms in it the equation is seen to be directly
integrable, 74. An example in a first-order fluxional equation, 76. Or can be made so by
multiplying or dividing through its terms by some mononomial quantity: ‘This rule or
one like it was communicated some while ago by Mr Fatio’, 78. Case 4: possibilities of
determining the form of the fluent relationship by inspection of the fluxional equation, 80.
‘This is worthy to be treated in more detail’, 82. Case 5: picking out possible single terms
in the fluent by inspection of the fluxional equation, 82. An example where the latter is of
second order, 84. Another where it is of third, 86, A further one, of second order and
involving surds, is abandoned by Newton (when he saw the complications in obtaining
more than a particular solution?), 88. Case 6: a technique of reduction where the base
variable is not present in the fluxional equation, 88. An example in which reduction is
made to a hyperbola-area, 90. A variant mode of operation ‘sometimes convenient’, 90.
Two more examples (constants of integration are ignored in both), 92. Case 7: the
possibility of obtaining the fluent ‘root’ in exact form by first extracting it as an infinite
series (by Proposition XII following), 92. Proposition XII: the equivalent fluent relation-
ship obtained from a given fluxional equation as an ‘unterminated converging series’.
Case 1: the mode of extraction where the base variable is ‘very small’, 92. Case 2: the
modified algorithm where the latter is very large, 94. Case 3: reductions to Cases 1/2 by
adding or subtracting a constant from the base variable; in corollary Newton enunciates
the particular ‘Maclaurin’ expansion of a quantity, 96. And also its general ‘Taylor’
series, 98, But is misled in thinking to be able to apply them here by his notation (which
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cannot distinguish between a general fluxional derivative and a particular value of it), 98.
Proposition XIII: ‘by means of the preceding to solve problems’. Testing for maxima
and minima of a quantity (where its fluxion is nil), 100. The instantaneous tangential
motion in curves produced by ‘machines’, 100. Rules for determining these in Cartesian
and polar instances, 102. In illustration Newton thereby constructs the tangent to a
bipolar curve, 104. To the classical conchoid, 104, And to a curve described by his
‘organic’ construction, 106. The Taylor expansion of the ordinate of a curve employed to
construct the osculating circle at its end-point, 108. Exemplified in the ellipse, 110. And
extended mutatis mutandis to the general conic, 112. Similar determination of the fluxional
‘exponents’ of higher-order ‘variations’ in curvature, 112. In simplification Newton makes
elegant use of a linear transformation of Cartesian coordinates derived ab initio, 114.
Again instanced in the ellipse, 116. The converse construction of properties of curves
from given fluxional (differential) conditions is outlined, 118. Examples (afterwards
deleted by Newton) cited in the rectification of curve-arcs and more complex posited
relationships between the abscissa and ordinate of a curve and its area, 120. Applications
to physical problems. Prob. 1: to find the ‘quantity’ (measure) of ‘gravity’ towards a
fixed point which induces motion in a given curve (done by constructing the osculating
circle), 122, The case of elliptical motion round an arbitrary force-centre, 124, The direct-
distance and inverse-square cases where the latter is respectively the centre or a focus of
the ellipse, 126. Prob. 2: conversely to determine the orbit given the quantity of gravity to
a point. Case 1: where the motion is rectilinear (through the force-centre), 128. Case 2,
where the motion is oblique, is almost at once abandoned, 128.

APPENDIX 1. Preliminary notes and drafts for the two states of the 1691 ‘De quadratura’.
[1] (Add. 3962.2: 38v/37"). Initial reductions by area-preserving transmutations of curves
whose equations are trinomial, 130. Newton for the first time introduces his standard
single-dot notation for first fluxions, 131. But momentarily relapses into his earlier one of
two superscript points, 133. [2] (Add. 3962.2: 337/34F + private). An intermediate draft
reworking his ‘prime’ 1676 theorem for series-quadrature, 134. And also reducing to
directly quadrable form by area-preserving transmutation curves defined by trinomial
equations, 136. [3] (Add. 3962.3: 397). Calculations towards a first broad extension of the
1676 theorem on series-quadrature, 137. [4] (Add. 3962.3: 55Y/54"). These are given a
verbal dress, 140. And further refined to be his ‘Th. IV?, 142. [5] (private). Yet further
extensions of the 1676 theorem to higher-order ‘progressions’ of series-quadratures, 143.
The most general theorem of the ‘Progressio secunda’, 145. [6] (Add. 3960.7: 105-9).
A first version of Cases 1-5 of Proposition XI, 146. The fluxion of a quotient R/S is correctly
stated, 148. But carelessly applied in a worked example, 150. [7] (Add. 3960.7: 111-12).
A preliminary ‘Cas. 4 of Proposition XI where Newton explains how to extract the fluent
‘root’ of a first-order fluxional equation as an infinite series, 150. An attempted application
to construct the Cartesian equation of a curve, the square of whose arc-length is propor-
tional to its abscissa, is abandoned scarcely begun, 151. [8] (Add. 3960.7: 123/101/128).
A first version of ‘Cas. 5’ of Proposition XI, 152. [9] (Add. 3960.9: 157). Two
complementary initial ‘Cas. 5° and ‘Cas. 6°, subsequently combined and restyled to be
Case 6 of Proposition XI, 154. [10] (Add. 3960.8: 153/[149 +]152, 155). Two rough
schemes of substitution for simplifying a fluxional equation when the base fluent is not
itself present (though its derivatives are), 155. A ‘Q’ (for ‘Q [uadratum]’) is used as a
variant on the usual Newtonian pictograph for ‘square’, 156. [11] (Add. 3960.8: 138-9/
3960.9: 153). Jotted notes elaborating the technique for extracting the ‘root’ of a fluxional
equation as an infinite series, 157. Newton works a third-order instance, 158. And also a
‘simpler’ (but subtly more difficult) second-order one, 159. [12] (Add. 3960.9: 161/163).
Calculations evaluating the ‘exponent’ of curvature at a general point on an ellipse, 160.
And its first/second/third ‘variations’, 161. The unique occurrence of a contracted nota-
¢ WMP
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tion for fluxions in which the superscript dots are replaced by the equivalent numerical
digit, 162.

ArrENDIX 2. Two reworked propositions on the fluxions and fluents of ‘complex’
quantities. [1] (Add. 3960.7: 117-19/ 3960.10: 165-7). To find the fluxion, given a com-
plex fluent, 164. Conversely, to find the fluent, given a complex fluxion: Case 1, where the
base quantity is ‘simple’, 164. Reduction of n-th order multiple integrals to the first fluents
of zly, i =0,1,2,3, ..., n, 165. An example where the integrand is a simple power of the
base, 166. A second where it is a surd, 167. Case 2, where the fluxion propounded involves
two or more simple quantities, 168. [2] (Add. 3960.8: 158). Calculations in which a more
concise form of the algorithm for reducing multiple integrals is adumbrated, 169,

APrPENDIX 3. The restyled excerpts from the ‘De quadratura’ communicated to Wallis in
August/September 1692 (as printed in his Opera Mathematica, 2, 1693 : 390-6). The ‘ prime’
theorem for series-quadrature, 171. David Gregory’s rediscovery of it ‘by another method
(as I hear)’, 172. Newton’s (recent) extension to square curves defined by ordinates
doubly multinomial in their equation (Proposition IX of the ‘De quadratura’), 173. The
first publication of Newton’s standard dot-notation for fluxions, 174. ‘ Prob. I”’; explanation
and demonstration of the basic rule for constructing the fluxion of a given fluent, 175. Its
application to the quadrature of curves, 176. ‘Prob. II’: the fluent ‘root’ of a first-order
fluxional equation extracted as an infinite series of ascending powers of the base variable,
177. The algorithm split into a sequence of ‘operations’ (each extracting one term of the
series), 178. Illustrated in a worked example, 178. The same method holds mutatis mutandis
for higher-order fluxional equations, 180. The reactions (sour when not politely negative)
of contemporary Continental mathematicians to this first publication of any portion of
Newton’s fluxional calculus, 181.

PART 2

RESEARCHES IN PURE GEOMETRY
AND QUADRATURE OF CURVES

(c. 1693)
INTRODUCTION 185

The extant corpus of Newton’s geometrical researches during the early 1690’s: his oft-repeated
(but superficial) insistence on deferring therein to the rigorous authority of the classical
‘ancients’ rather than to the cruder power of the Cartesian ‘moderns’ in whose algebraic
techniques he was himself better trained, 185. Greek higher geometry: Euclid, Archimedes,
Apollonius and Pappus, 186. The revelation afforded by Commandino’s (1588 — 1660) edition
of Pappus’ Collection to those who earlier in the seventeenth century sought to restore the lost
ancient works on the ‘resolving locus’, 187. Their failure to grasp the true methodological
purpose and essential techniques of this ‘analytical larder’, 188. Newton’s ‘Analysis Geo-
metrica’: his epitome of the analytical approach to a problem, 189. The Euclidean notion of
a ‘given’ and the Apollonian one of a ‘determinate section’, 190. The 1,1 relationships of
points which underlie the Apollonian sectio rationis and sectio spatii, 191. Newton’s extension
of these mutual determinations by ‘simple geometry’ to higher-order (2,1 and 2,2) point-
correspondences: Euclid’s ‘Desargues’ locus and the 3/4-line (conic) locus, 192, Newton’s
development of all plane geometry from a (minimal) set of ‘rectilinear’ principles by com-
pounding motions of lines upon lines: this Geometria broadened in scope to be (the first book of)

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521045894
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-04589-6 - The Mathematical Papers of Isaac Newton: Volume VII, 1691-1695
Edited by D. T. Whiteside

Table of Contents

More information

Analytical Table of Contents

XXXV

a comprehensive modern treatise on curves, 193. The distinction of curves into ‘grades’ and
‘coordinate’ classes by projection: enumerating the species of the cubic curve as optical
‘shadows’ of the five divergent parabolas, 194. Propositions I-X of the 1691 ‘De quadratura’
are lightly reworked to be the revised Geometria’s second book, 195. David Gregory’s garbled
précis (summer 1694) of the content of the Geometria, 196. Newton’s continuing show of respect
for the elegance and rigour of Greek geometry: his report on de Omerique’s 1698 Analysis,

198. Pemberton’s account of Newton’s geometrical preferences in old age, 199.

1. RESTORING THE GREEKS’ GEOMETRICAL METHOD

200

§1. The geometrical analysis of the ‘ancients’. [1] (Add. 3963.14: 154~155¥). The
Analysis Geometrica. * Arithmetic treats of abstract ratios: Geometry has to do with figures’,
200. Ancient modes of geometrical analysis: the Euclidean resolution of ‘plane’ problems
from ‘givens’, 202. Newton’s restoration of Proposition 87 of the Data, 202. The ‘drawing’
of lines into one another is the geometrical analogue of the arithmetical product, 204. The
4-line “solid’ locus: a conic since it cuts out an Apollonian sectio deferminata in a straight line,
206. Apollonius ‘must’ have written his treatise thereon to this end (though the ‘not overly
perspicacious’ Pappus did not see so), 208. The related Apollonian sectio rationis and sectio
spatit (Newton’s two would-be examples are erroneous) : Apollonius on the ‘plane’ problem
of (circle) Tangencies, 210. In general, loci are classifiable into ‘kinds’ according to the
number of points in which they can be met by a straight line, 210. Instances in curves
defined by multi-polar relationships, 212. Newton’s theorem on the constant ratio of the
products of the intercepts made by a curve on two lines each given in direction, 212. [2]
(Add. 3963.15: 180v/179%). Rules observed in the ancients’ analysis. Analytical resolution
proceeds from unknowns supposed given to givens: particular attention is to be paid to
pairs of quantities which simultaneously vanish or pass to infinity or whose ‘every circum-
stance and property’ are identical, 214. Determinate problems are to be solved by omitting
one of the determining conditions at a time and constructing the point-loci which then
ensue, 216. [3] (Add. 4004: 1087/108"). More rules for geometrical analysis: ‘the laws of
proportionals must be learnt, also the proportions of figures which are in the Elements’, 216.
‘Geometry in its entirety is nothing else than the finding of points by intersecting loci’: the
generalized determinate section of a line, 216. The principal cases of the Apollonian sectio
determinata, 218. ‘To these it is easy to reduce the rest’, 220.

AprPENDIX 1 (Add. 3963.4: 27—28). A preliminary account of ‘Analysis Geometrica’.
Choice of the ‘simplest’ defining conditions of a problem: to this end Euclid wrote his
Data, 220. Data 58—-60 construct the roots of all quadratic equations, 221. Data 84, 86 (and
87 ‘had it reached us uncorrupted’) construct quartics having only even powers, 222.
Gregory’s fumbling attempt to absorb this insight of Newton’s into his 1702 Euclid, 223.
Worked example: to find a triangle, given its area, periphery and vertex angle (Arithmetica,
Problem 4), 224. To draw a straight line intersecting four others such that the intercepts
are in given proportion (Arithmetica, Problem 52), 225. To draw a straight line through
a given point to cut off a given area within a given angle (Arithmetica, Problem 10: the
proof is now shorter and more elegant), 226.

ApPpPENDIX 2 (Add. 3963.3: 177). The determination of loci. General notions: the inter-
section(s) of two loci applied to resolve a problem, 226. Example: to determine a triangle
given its base, vertex angle and two (inclined) sides, 226. Solved by successively omitting
one of the determining conditions at a time, 227. Freeing the restriction that the triangle’s
base end-points be fixed, 227. ‘By collating the conditions of the question you will often
attain simpler determinations’, 228. Two further simple instances of problems resolved by
intersecting loci, 228,
-2
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§2 (Add. 3963.14: 1569°-1607). The nature of porisms and their invention. ‘A porism takes
on the form of either a theorem or a problem at pleasure’, treating of direct and inverse
proportions, species of figures and general point-point relationships, 230. Proportions are
hunted out by considering related quantities which simultaneously vanish or become
infinite or twice (or more) ‘return to the same ratio’: those ensuing from the simplest such
relationships, 232. Porism 1: the universal Apollonian sectio spatii cut off in two straight
lines by a third constrained to pass through a fixed point, 234. Porism 2: the universal
sectio spatii (Principia, 1, Lemma XXV) cut out in two fixed tangents to a central conic
by a third tangent to it, 236. The similar sectio rationis where the conic is a parabola, 236.
Porism 3: the 2,2 point-correspondence generated when the two fixed lines are no longer
tangent to the conic (Newton errs in considering the defining conditions and his derived
generalized sectio spatii is badly out), 238. Porism 4: the 2,1 correspondence where only
one of the fixed straight lines is tangent to the conic (Newton again fails to arrive at the
correct form), 240. Porism 5 enunciates the converses of the preceding, 240. Porism 6
(cited by Pappus from Euclid’s lost Porisms): the universal sectio rationis generated in two
fixed straight lines by two others constrained each to be through a fixed point and mutually
to intersect on a third given one, 242. The analogous sectio rationis where the two free lines
intersect on a given circle or conic, 244. Porism 7: the constant ratio of polar distances
defined by (and in turn defining) an Apollonius circle, 244. ‘In all resolutions of problems
I chiefly consider the cases where points pass to infinity’ and ‘also note the relationships
of twin quantities’, 246.

. FIRST ESSAYS AT A MULTIPARTITE ‘GEOMETRIA’ 248

§1 (Add. 3963.11:109°-1107/ 3963.2: 97/ 3963 .14: 1571587/ 3963 .4 : 29*-32r). The initial
preamble to a treatise in three books. Pappus on ‘resolution’ (analysis) and ‘ composition’
(synthetic solution), 248. Resolution is not an end in itself: ‘he who has recourse to
(algebraic) analysis when a question is solvable without it goes a devious route’, 250.
The ‘power of (geometrical) analysis’: but Newton greatly over-estimates the complexity
of a Cartesian resolution of Apollonius’ 3-circles tangency problem, 252. And errs yet more
grossly in two further ‘plane’ problems adduced to fortify his point, 254. The problem of
drawing the normal to a Tschirnhausian multi-polar locus, 254. Tschirnhaus’ own
failure so to do: subsequent correct solutions by Fatio de Duillier, Huygens, Leibniz, 255.
Newton here suppresses his general construction (on which see Appendix 1), 256. Pappus’
qualification of Euclid’s (lost) Porisms as ‘ extremely useful in the resolution of the obscurer
problems’: other Greek writings on the ‘resolved locus’, 256. Modern attempts to restore
these from Pappus’ summaries of their content: the use of intersecting loci in poristic
analysis, 258. In the ‘resolved locus’ (Pappus makes clear) porisms are demonstrated,
‘discovering’ propositions, 260. Euclid’s Data are instances, and his Porisms continue their
theme: Pappus’ review of the latter work, 262. Newton’s restoration of the ‘sense of these
propositions if I rightly interpret Pappus’ brief and excessively corrupt words’: Porisms 1-8
are variations upon the sectio rationis cut out in a given straight line by two others each
through a fixed pole and constrained mutually to intersect on a second given line parallel
to the first, 264. Porisms 9-11 are the similar section where the second given line is in
general position, but the first is now restricted to be parallel to that through the fixed
poles; Porism 12 the generalized sectio rationis analogously generated in two separate given
lines, 266. The Pappus—Desargues theorem that the points in three (concurrent) straight
lines lie two by two through three collinear fixed poles; Pappus’ degenerate case of the
Pascal hexagrammum mysticum when its alternate vertices lie on two straight lines, 268. ‘The
constructions of porisms are indicated in their demonstrations’, 268, Instanced in the
constancy of the cross-ratio of the intercepts made by a pencil of four given lines on an
arbitrary transversal (the proof is Pappus’ in Collection vir, 129), 270. In Menelaus’ theorem
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on the equality of the products of alternate intercepts cut in the (extended) sides of a given
triangle by an arbitrary transversal (taken from Collection vim, 3), 272. In Newton’s
theorem (Principia, 1, Lemma XXVII) on the constant proportion of the intercepts cut
out by given circles sharing a common chord on a transversal through the chord’s end-
point, 274. And in a circular locus without known antecedents, 276.

ArpPENDIX 1 (Add. 3963.11: 1117/112r). Construction of the normal at a given point on
a general multi-polar locus. Examples of simple defihing relationships, 276. The normal
constructed in the Tschirnhausian instance where the polar distances have a constant sum,
278. The problem resolved in the general case by finding the ‘ centre of gravity’ of weighted
points, 279. But once more Newton greatly overdoes his claim that equivalent algebraic
solutions have hitherto been given (and by implication are givable) only in the simplest
cases.

APPENDIX 2. Preliminary attempts to make precise the nature of porisms in line with
Pappus’ remarks thereon. [1] (Add. 3963.14: 1577/158"). Whereas theorems are demon-
strable and problems are adduced to be constructed, porisms are ‘speculative and
problematic’, 280. All ‘discovering’ propositions in the ‘resolved locus’ are porisms; the
species of these vary according to the subject-matter, 281. [2] (Add. 3963.8: 627). A first
version of the preceding Porism 12, 282. And of the Pappus—Desargues propositio generalis,
283.

ApPENDIX 3 (Add. 3963.4: 317/327). The superseded first version of Newton’s novel
‘plane’ porism. Enunciated, and its first case proved, 283. Cases 2 and 3 demonstrated, 284.

§2. The first book of the ‘ Geometria’: an incomplete opening and a ‘ Chapter 2°. [1] (Add.
3963.11: 1197-126r). ‘Geometry means earth-measure’: its (Egyptian?) origin in
empirical techniques of land-mensuration, 286. The subject-matter of (Euclidean)
geometry: its premisses pertain to mechanics, but it merely postulates the exact description
of the straight lines and circles which are its basis, 288. Such postulates ought to be ‘few,
simple, useful and expressed in divorce from their modes of operation’, 290. Euclid’s
‘plane’ postulates of the straight line and circle: the need for an additional ‘solid’ one to
allow consideration of higher-order problems, 292. The ancients tolerated only the ‘solid’
(conic) locus, classifying all further curves (cissoid, conchoid, quadratrix, ...) as ‘linear’,
294. Some (Cartesian) moderns allow into geometry all curves describable by ‘any com-
plicated motion whatever’, but this contravenes the demand of simplicity, 294. ‘Permit
such constructions and all ancient geometry will be put out of joint’, 296. In practice even
‘solid’ loci are virtually useless in constructing problems because of their difficult descrip-
tion; Archimedes always made equivalent use of ‘inclining’ straight lines between others,
298. The classical distinctions of loci according to Pappus: the ‘special subject-matter’ of
the ‘resolving locus’, 300. A problem’s kind is determined by the order of the loci needed
to construct it, 300. But it is not required in geometry that we should so construct it: let
Archimedes (and practical convenience) be our guide in restricting constructions to be by
moving straight lines and circles, 302. Newton errs in qualifying as ‘plane’ the problem of
drawing normals to an ellipse from a given point, 302. [2] (Add. 3963.14: 161~170r).
Chapter 2 ‘On the composition and resolution of the ancient geometers’. The use by
Euclid and Archimedes of ‘discovering’ methods, 302. Pappus on resolution and com-
position (yet again): ‘by the words you should understand that a general method for
solving problems was known to the ancients’, 306. Pappus’ statement that ‘there exist two
kinds of resolution, one contemplative and one problematic’: the 33 books cited by him
in his ‘Treasury’ of the latter, 308. His listing of the content of the first book of Euclid’s
lost Porisms: Newton’s restorations on the basis of this corrupt text, 310. Porisms 1-6 refine
the first simple sectio rationis, 312. Porisms 7-9 present new generalizations, 312. Porism 10
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is the universal Apollonian sectio spatii, 314. Porism 11 is the Fermatian extension, 316. The
Pappus—Desargues theorem, 316. The converses to Porisms 1-6 which determine that a
line passes through its fixed pole, 318. The invariance of cross-ratios on a line-pencil, and
Menelaus’ theorem, 318. The readily contrivable extensions of these will afford an
‘abundance’ for restoring Euclid’s second book, 320. His third book with its ‘great many
propositions on circles’: Porism 1 on the sectio rationis set up in two given lines by two
transversals, each through a fixed point and mutually intersecting on a circle through
these, where the pairs of intersections pass simultaneously to infinity, 320. Porism 2: the
sectio spatii similarly defined where these do not, 322. Porism 3 states (in line with Fermat)
that the pencils of pairs of transversals thus constructed have equal cross-ratios, 322. Other
possibilities of Euclidean circle porism: circle segments which have a ‘skew’ centre of
similarity, and hence have their corresponding parts in proportion, 324. The Apollonius
circle defined by the constancy of the ratios of the distances from two fixed poles (‘very
likely one of Euclid’s porisms on the semicircle’) and Newton’s Principia porism on circles
sharing a common chord, 326. Apollonius’ two books of Plane loci: the variety of types of
loci recognized by the ancients, 326. Restoration of Apollonius’ propositions on rectilinear
loci on the basis of Pappus’ précis of his first book: examples, 328. Those in his second book
similarly restored, 330. The general circle-locus of a point, the sum of the squares of
whose distances from fixed poles is given, 332. The pole-polar relationship in a circle
(converse of Collection VII, 159/161), 334. General rectilinear point-correspondences:
homothety and inversion, 334. The ‘solid’ locus: Apollonius’ Conics are here but elements,
336. The 3/4-line locus cited (all but) in Pappus’ words, 336. Along with its extension to
the (2n—1)/2n-line locus, 338.

ApPPENDIX 1. Preliminary observations on the place of arithmetic and mechanics in
geometry. [1] (Add. 3963.15: 177°-178"). A first preamble to the ‘ Geometria’: ‘arithmetic
needs to be learnt by the novice before he approaches geometry’, 338. ‘Mechanics also
needs first to be tasted’ since geometers postulate the descriptions of figures, 339. So that
their prior mechanical description needs to be known, 340. [2] (Add. 3963.3: 197/19v).
The ancients, Pappus says, divided mechanics into a rational part and a practical one,
340. It is ‘futile’ to look on mechanics as but inaccurate geometry, 341. Despite its lowly
intellectual status, mechanics is rather the ‘mother of all’: in geometry we need only
postulate its complex manual operations, 342. And follow Archimedes in rejecting the
introduction into it of ‘mechanical’ constructions, 343.

APPENDIX 2 (Add. 3963.11: 1237/124%). Superseded remarks on the ancients’ reluctance
to accept ‘solid’ (conic) constructions into geometry. [1] To postulate a cone as ‘given’
is not the same as to have it ‘described’ and ‘determined’, 343. [2] And yet, strictly
impermissible though it be to speculate on such ‘solid’ sections without postulating their
description, the ancients did admit conics because of their use in constructing particular
problems, 344. Especially the ‘mighty’ Archimedes, 345.

ApprENDIX 3. Variant listings of Euclidean porisms. [1] (Add. 4004 : 183™-185r). Twelve
rectilinear porisms restoring the content of Euclid’s first book, 346. The most general case
(Porism 11) where a sectio rationis determines a rectilinear locus is split into three cases, 348.
A yet more general Porism 12 effecting the same by an arbitrary 1,1 correspondence per
simplicem geometriam is left without synthetic proof, 350. [2] (Add. 3963.14: 1657). Drafts of
the four principal ‘plane loci’ set by Newton to duplicate the content of Euclid’s third
book (of circular porisms), 350.

§3 (Add. 3963.3: 33—39v/15™-16v/18¥). The elements of plane geometry elaborated in
two books. Ten ‘rectilinear principles’ (only 4, 5, 6, 9 and 10 are found in the surviving
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XXXIX

manuscript) : Newton employs Oughtredian notation for the ‘sum’ and ‘difference’ of
ratios, 352. Preliminary remarks on ‘givens’: given ratios, 354. Points given in a straight
line by ‘determinate section’, 354. Construction of its four principal cases, 356. Reduction
of all others to these: ‘ Apollonius in his lost work treated only the simpler cases possible’,
358. The sectio spatii cut out in two given straight lines by a transversal inclined through
afixed pole: again ‘ Apollonius exhibited the simpler cases’, 360. Triangles given in species:
illustrated by an example, 360. Other instances, 362. Varieties of ways (relating sides,
angles, perpendiculars, base segments) in which a triangle is given: an instance (Problem 4
of the Arithmetica again), 362. Ways in which a quadrilateral may be given both in species
and in absolute size as well, 364. Theorems of use in discovering these (taken from Euclid’s
Elements and Ptolemy on the cyclic quadrilateral), 364. Precepts illustrating the use of these
principles: Rules 1 and 2 on reducing a problem to a known ‘section’ by making appro-
priate auxiliary construction (of perpendiculars, parallels, ...), 366. Instanced in the
Wrennian problem of drawing a straight line so that its segments intercepted by four given
lines shall be in a given proportion; and the Apollonian ‘tangency’ of drawing a circle
through two fixed points to touch a given circle, 368. Rule 3, on best choice of unknowns
in resolving a problem; and Rule 4, on making no distinction between knowns and
unknowns when otherwise you °‘stick’, 370. Rule 5, on choosing ‘middles’ between
unknowns when these occur in ‘brother’ pairs, 372. Instanced once more in the Apollonian
problem of inclining a given straight line through a corner of a given square so as to lie
with its end-points on the opposing sides, 374. Rule 6, on approaching complicated
problems by first ‘unwrapping’ its easier cases: exemplified in the generalized Apollonian
inclination problem where a rhombus replaces the square, 376. Rule 7, on determining
points which resolve a problem by constructing these as the intersections of lines, straight
or curved, 378. Instanced by reducing a problem to finding the meet(s) of two circles,
380. Pappus’ distinction between ‘equivalent’ and ‘surpassing’ loci, and his account of
the ‘resolved locus’, 380. ‘I have tried here to restore this genre of discovery after long years

of neglect’, 382.

Book 2 of the ‘Geometria’. The ancients received only straight lines, circles and conics
into geometry, postulating their prior description; but did not shrink from also admitting
‘mechanical’ curves as these proved useful, 382. But such ‘spurious’ postulates as allowing
curves defined merely to pass through constructed points or be described by ‘stretched
strings’ are not legitimate, 384. Descartes’ rope construction of one of his ovals as an
instance of the latter, 384. Equally ageometrical are descriptions by lines sliding upon
other lines,}386. And by inclining straight lines to pass through given points and lie with
their end-points on given lines, 388. Three ‘very easy’ postulates (two Euclid’s) in which
‘all legitimate geometry’ may be embraced, 388. Postulate 3 permits the employment
(contrary to Euclidean dictum) of sliding ‘right-angles’ in describing curves: instanced in
Newton’s favourite such construction of the cissoid, 390. His ‘organic’ construction of
curves from given described ones by means of fixed angles rotating round fixed poles; and
the generalization where one of the poles is allowed to slide along a given straight line,
392. Other like ‘organic’ descriptions, such as that of the ellipse by a sliding trammel, are
not countenanced by the postulate: further sorts of postulate which can be made, 394.
Classification of curved lines according to their ‘loopings’: those lines are of the same
‘kind’ (= degree) which can be cut by a straight line in the same number of points, 396.
In (cancelled) illustration Newton derives ab initio the Apollonian ‘symptom’ of a conic
(of second ‘kind’, though he does not go on to make the connection), 396. Problems are
correspondingly distinguishable into ‘orders’ according to the ‘kinds’ of the lines needed
to construct them, 398. The ancients’ (2n—1)/2n-line locus (cited as one of n-th ‘kind”),
398. They discovered such loci by analysis, and then composed the constructions of

problems by their intersection, 400.
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3. THE FINAL ‘GEOMETRIZ LIBRI DUO’ 402

§1 (Add. 3963.2: 357/ 4004: 128"1307/153—1597/130"-1387/145°-150"). The first book:
on the generation of geometrical curves, their projective classification, asymptotic pro-
perties and tangents. The ‘grades’ of problems (distinguished according to the number of
their solutions), 402. Positive and ‘subtractive’ quantities: ‘impossible’ ones, 404. The
basic operations of arithmetic have their geometrical counterparts (on substituting line-
lengths for numbers, and by ‘drawing into’ and ‘applying to’ instead of multiplying and
dividing, and so on), 406. By finding (independent) equations equal in number to the
unknowns we determine the problem at hand, 408. ‘Geometry solves all problems by the
intersection of lines’: the order of such a locus is distinguished by the number of points in
which a straight line can cut it, 410. Mutually ‘ projective’ (perspective) kinds of lines of
the same order, 410. Conics form but a single such kind of second order, but there are five
projective kinds of cubic curves, 412. The five ‘winged’ (divergent) cubic parabolas which
by projection yield all lines of the third order, 414. Species of lines of the same kind:
projection of the ‘horizontal’ in the base curve to infinity yields the infinite branches
(hyperbolic, parabolic), and the tangents at the points where the ‘horizontal’ cuts it pass
to be the asymptotes in the projected curve, 416. Convexities, inflexions, cusps and conju-
gate points (the latter may pass to infinity) are preserved in projection, 418. Detailed
enumeration of the component species of the general cubic curve by considering all possible
positions of the ‘horizontal’ in the planes of the five base species of divergent parabola:
Newton accurately lists all 9 species of the first kind (projected from the cusped Neilian
parabola), 422. He lists 14 species of the second kind (derived from the nodal parabola),
422. But does not distinguish between the three possibilities of intersection of the vertical
‘horizontal’ around the points where the latter is parallel to its axis; and omits the (central)
cubic projected when the ‘horizontal’ coincides with that axis, 424. He lists 12 species in
the third kind (projected from the parabola having a conjugate double point), 426. But again
omits to notice the central cubic projected when the horizontal’ coincides with the base
parabola’s axis; and makes a misleading remark about Projection 9’s (asymptote) ‘centre’,
428. His listing of 9 species of the fourth kind (where the base parabola is pure) once more
omits the central cubic projected when the ‘horizontal’ coincides with the parabola’s
axis; and again fails to distinguish the three possibilities of projection when it cuts vertically
in the vicinity of the points where the parabola goes parallel to its axis, 430. He lists
15 species of the fifth kind (where the projecting parabola possesses a conjugate oval), 430.
But yet again omits the central cubic projected when the ‘horizontal’ coincides with the
parabola’s axis, 432. More general properties of curves: ‘what obtains in common for two
species or kinds of curve usually holds for their kind or order, and so likewise of combina-
tions of straight lines’, 434. An instance of a cubic locus defined by joint ‘local motions of
lines interconnected by a mechanism’, 436. Newton’s ‘organic’ description of a curve by
fixed rotating angles once more, 438. The ancients’ notion of the ‘ (curvi)linear locus of a
roving point’ ,438. General properties of (algebraic) curves, instanced in a cubic: the
general Newtonian diameter corresponding to a given ordinate direction, 440. His theorem
on the constant ratio of the products of the intercepts made by a curve on two lines each
drawn in fixed direction, 440. Used to construct the tangent at its any given point, 442.
Infinite branches of curves (hyperbolic/parabolic) and their asymptotes (tangents at
infinity) and conjugate ovals/points, 442. Distinguishing curves into species by the ‘number
and diversity of their infinite branches’, 444. Drawing tangents to curves not yet described :
preliminary explanation of notation (for products, quotients and powers), 446. The
resulting sense after ‘drawing’ positive and ‘subtractive’ magnitudes one into another,
448. The ‘fluxions’ of quantities, defined as their (instantaneous) ‘speeds’ of increment/
decrement, 448. Fluxions of products, quotients and roots, 450. And of geometrical lines
and angles: fluxional relationships between the sides, angles, altitudes and related base
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segments of a triangle, 452. Further such theorems; ‘but it is enough to have disclosed the
method of investigation’, 454. Similar fluxional relationships in more general figures
allowed to ‘flow’ in specified ways: instanced where a given line-length slides in a given
angle to intercept a given straight line, 456. Finding the (instantaneous) direction of
motion in a curve by compounding the fluxions of related defining motions: when the
latter are in given lines, 456. And when they are through fixed poles, 458. Representing
such related fluxions: the ‘goal-point’ towards which the resultant tangential motion
tends, 458. A first example of its construction in a curve defined Cartesian-wise by-a given
relationship between the ‘angled’ distances of its general point from two base lines, 460.
The instance where these coordinates are the straight lines drawn from a point on a given
circle through two fixed poles to their meet with a second given circle, 462. And where
they are correlate arcs of the two circles; and yet more generally where the circles are
replaced by other curves, 464. A second example in curves defined by bipolar coordinates:
instanced in the (four) Cartesian ovals, 464. A third example in Descartes’ ‘instrument’ for
generating higher-order curves from the intersection(s) of a translating given curve and of
a transversal constrained to rotate round a stationary pole and also to pass through a point
fixed in the translating plane, 466. Instanced in Descartes’ cases where the translating
curve is an Apollonian parabola (yielding the Cartesian trident) and where it is a circle
(vielding the conchoid), 468.

APPENDIX. Miscellaneous preliminary drafts for the final ‘Liber 1°. [1] (Add. 4004:
1297/129"). Geometrical equivalents of the arithmetical operations of multiplying, dividing
and extracting roots (on taking some unit line as ‘universal measure’), 470. But we should
not take this congruence to mirror an essential identity: geometry should be free of
arithmetical computation as far as possible, 471. [2] (Add. 3963.2: 117). A further
exhortation to keep geometry uncontaminated by ‘exotic terms’: but ‘if anyone feels
otherwise, the matter is not important enough further to dispute about’, 472. [3] (Add.
3963.2: 47/5%). A further warning not to ‘confuse’ arithmetic and geometry, despite their
many analogies, 473. [4] (Add. 3963.3: 137/13"). What particular ‘conditions’ of curves
are preserved under planar optical projection, and what altered: rules (suppressed by
Newton from his main text as too digressive) listing what is maintained in the perspective
figure, 475. Replacements allowable where intersections pass under projection to be
‘absurd’ (at infinity), 476. [5] (Add. 8963.3: 13—147). The preceding recast as six
‘porisms’, 476. General properties of curves ‘induced’ from simple cases, 477. Instanced in
the general Newtonian diameter and his ‘parallelepiped’ rule of the constant ratio of
products of intercepts, and so on, 478. Infinite points, asymptotes, parabolic and hyper-
bolic branches (‘to be instanced in conics’), 478. [6] (Add. 3963.3: 14¥/ 963.10: 107").
An enlarged scheme treating general properties of curves, 478. First kind: the general
Newtonian diameter, 479. Second kind: Newton’s ‘ parallelepiped’ rule, 480. The ensuing
construction of the tangent at a point on a given curve: instanced in the conic hyperbola
(where it yields the pole-polar property), 481. [7] (Add. 3963.3: 21-26%). An augmented
revise of the ‘first kind of properties’, 482. The rectilinear locus whose ordinate is the
aggregate of the intercepts made by a given line n-ple in a transversal of fixed direction;
its higher-order (quadratic, cubic, ...) parabolic generalizations where the squares,
cubes, . . .of the intercepts are summed, 482. And where the products of the intercepts two,
three, ...at a time are summed, 483. Problem 1: to construct the general Newtonian
diameter of a curve with respect to a given ordinate direction, 483. Newton’s terminology
for these diameters and their related ‘centres of ordination’, 484. Extension to asymptotal
intercepts, 485. Problem 2: to construct the analogous quadratic, cubic, ...diameters,
485. A Problem 3 ‘to find a parabola passing through given points and tending in an
ordained direction’ is merely enunciated, 486. Parabolic points (double/at infinity) ; other
possibilities of multiple points in a curve, and their use in distinguishing curves into
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‘subordinate’ kinds, 487. Hyperbolic and parabolic branches, and the ‘deficient’ curves
where (the full number of) these are wanting: possible multiplicities of these, 488. Conju-~
gate (double, triple, ...) points; conjugate branches (those sharing asymptotes) and the
possibility of their being ‘imaginary’ (lying at infinity), 489. Other divisions of figures
into subordinate species by the lie of their infinite branches and asymptotes, 490. Six
general properties of a curve are listed in summary: first, its Newtonian diameter, 490. This
will also be the diameter of the n-ple of tangents at the curve’s intersections with any
parallel ordinate; and when one of these intersections is at infinity, so it will be with all
parallel ordinates, 491. Newton’s theorem that where two straight lines cut a curve in the
‘full number of (possible, real) points’ the products of the intercepts are in constant ratio:
constructing the squares (cubes, fourth powers, ...) of the ordinates corresponding to
any given abscissa, 492. [8] (Add. 3963.15: 181%). The general Newtonian diameter of
a curve yet once again; and his theorem on the constant ratio of the products of the inter-
cepts it makes in two straight lines each in fixed direction, 493. His ‘organic description’
by fixed rotating angles is ‘the best method of determining lines’, 494. [9] (Add. 4004:
1357). A first proof of the algorithm for finding the fluxion of a product (in the geometrical
model where the last is set to be the area of a rectangle), 494. [10] (Add. 4004: 136°
[+185]/137"). The method of fluxions ‘in figures’, 495. Fluxional relationships between
the sides, altitudes and related base segments of a triangle, 496. And also its angles, 497.
[11] (Add. 4004: 138~144r). Two further fluxional relationships between the elements of
a triangle, 497. ‘These determine all other cases where altitudes, base segments and angles
are in question’, 498. Theorems on the fluxions of proportional quantities, 499. And of
products, 500. Fluxional relationships in the scalene triangle, 500. These extend to all
cases by making appropriate changes in sign: examples, 501. ‘On the direction and
(fluxional) speed of (tangential) motions’: illustrated in oblique Cartesian coordinates
where the ordination angle also is permitted to vary, 502. And yet more complicatedly
where two such systems (each incompletely) define the ‘motion’ of a point in a curve,
503. An instance where the sum of ordinate and abscissa is given as an additional determi-
nation: further elaborations, 504. ‘There are yet more difficult cases’, 505. A worked
example of the simplest form of the first case where the curve is a (semi)ellipse defined in
standard rectangular Cartesian coordinates, 505. [12] (Add. 4004 : 146). Constructing the
tangential direction of motion of a curve defined in oblique Cartesian coordinates, 506.

§2 (Add. 3962.1: 5-197). Book 2 ‘On the quadrature of (algebraic) curves’: the first ten
propositions of the 1691 ‘De quadratura Curvarum’ refurbished, with the addition of an
eleventh (subsuming 1, §2, Appendix 2), 507. The denotation of general powers by letters
‘in line with Sluse’, 508. The employment of superscript points/obliques to designate
fluxions/fluents in (henceforward) standard Newtonian form, 510. Proposition I: the
construction of the fluxion of a given fluent equation explained and demonstrated, 512.
Newton proves by ‘infinitely’ diminishing increments of the fluent variables, 514. Isolating
‘brother’ terms in a given fluxional equation, 516. Proposition II ‘to find curves which
can be squared’ goes exactly as before, 516. Propositions III/IV: the ordinates of curves
whose areas are defined by singly/doubly multinomial expressions, 518. Proposition V
(converse of III): the series-expansion of the area of a curve whose ordinate is defined
by the singly multinomial expression z0R?, 520. The expansion demonstrated: a given
ordinate can be reduced in two ways to the stated form, and when the series terminates
the curve is exactly quadrable, 522. Loose criteria (unjustified) for the convergence of
the series-expansion; possibilities of prior simplification of the ordinate, 524. Examples are
worked, 526. Proposition VI (converse of IV): the series-expansion of the area when the
ordinate is of the doubly multinomial form zfRAS#, 528. Proposition VII: step-by-step
reductions of the area of a curve whose ordinate is of form z8R2, R trinomial, positing the
quadrature of two such of lower order, 530. Case 1, lowering the index of z by multiples
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of 17, 530. Case 2, lowering the index of R a unit at a time, 532. ‘There are similar reduc-
tions where R is quadrinomial, quinquinomial, . ..’, 534. Proposition VIII: sketch of the
parallel reductions where the ordinate is of form zfRAS#, 534. Proposition IX: ‘ curves equal
in area have their ordinates reciprocally as the fluxions of their abscissas’, 536. Ten
corollaries apply this insight to reduce the quadratures of successively more complicated
ordinates to simpler form: Corollary 1 states their basis, and Corollary 2 indicates how to
lower powers of the base variable in a simple multinomial case, 536. Corollaries 3/4 treat
analogous cases where the ordinate is defined by doubly/triply multinomial expressions,
538. Corollaries 5/6: transformation to a reciprocal base when the ordinate is singly/doubly
multinomial, 538. Corollaries 7-10 treat yet more elaborate (and increasingly artificial)
cases reduced by more complicated integral transformations, 540. Proposition X recapitu-
lates how ‘to find the simplest figures with which any curve is geometrically comparable’:
cases where (by employing Props. ITI, VII and IX) exact quadrature is possible, 544. Those
where (by Propositions V and VI) a series-quadrature is possible (terminating when the
quadrature is exact), 546. Corollaries discuss the prior recastings necessary where radicals
enter the expression for the ordinate, or where more generally it is defined by an “affected’
equation, 546. In a scholium Newton (borrowing from Proposition 9 of his 1671 tract) lists
a table of ‘the simpler curves which can be (exactly) squared’, 548. And another of those
squarable ‘by means of the quadrature of conics’, 550. Proposition XI: the reduction of
simple multiple integrals to single quadratures, 550. The algorithm enunciated in terms
of Newton’s geometrical model, 552.

APPENDIX. Variant preliminary drafts for the final ‘Liber secundus’. [1] (Add. 3962.3:
62r/63r). A first reshaping of Proposition IV of the 1691 ‘De quadratura’ to be the new
Proposition 1, 554. [2] (Add. 3962.3: 47¥). A (fuller) preliminary outline of the new
Proposition IV, 555. [3] (Add. 3962.3: 51V). Two corollaries to Proposition IX (afterwards
subsumed in its Corollary 9), 557. [4] (Add. 3962.3: 52). A preliminary computation for
Corollary 7 of Proposition IX, 558. Extracts from the ensuing prior calculations for its
Corollaries 9 and 10 (here a deal edited), 558. [5] These corollaries (initially numbered 10
and 11) shaped into final form, 560. [6] (Add. 3962.3: 43¥). The crude roughing-out of
an ad hoc technique for extracting the fluent ‘root’ of a simple first-order fluxional equation
as a series (intended to be inserted in the ‘Liber secundus’?), 561.

PART 3

CARTESIAN ANALYSIS OF HIGHER PLANE CURVES
AND FINITE-DIFFERENCE APPROXIMATIONS

(¢. summer 1695)
INTRODUCTION 565

The finished ‘Enumeratio Linearum tertii Ordinis’: its subdividion of the cubic curve into
nine principal cases, sixteen component generg and 72 individual species (six others previously
listed in Newton’s projective enumeration are here omitted), 565. The tabulation, much as in
his earlier equivalent listings, by specifying the possible varieties (non-degenerate) of the four
reduced forms of canonical Cartesian defining equation (here now derived by purely geo-
metrical considerations), 566. The cubic’s species generated as ‘shadows’ of the five divergent
parabolas, the ‘organic’ description of cubics having a double point from describing conics by
fixed rotating angles, and the application of the simple Wallis parabola and hyperbolic
parabola geometrically to construct the roots of equations complement the enumeration itself,
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566. David Gregory’s thoughts in 1698 of editing the tract (soon abandoned); Newton’s own
publication of it in 1704 in appendix to his Opticks, 567. Initial Continental reactions to its
appearance (notably by Leibniz and Johann Bernoulli) are myopic and largely uncompre-
hending, 568. The accuracy of Newton’s enumeration is needlessly suspected, and the basis
of his construction of the general diameter of a higher curve fails to be grasped, 569. John
Harris’ English rendering in 1710 (in the second volume of his Lexicon), 570. Eighteenth-
century ‘editors’ of its Latin text (all lacking the capacity to produce an elucidation of its
points of technical detail), 571. Roger Cotes’ proposal in 1712 to ‘perfect’ Newton’s break-
down in the (erroneous) belief that there are ‘five cases of (canonical) Equations’, 572. James
Stirling’s (first able) ‘illustration’ of Newton’s tract (1717), 574. Setting the style for later
accounts by Euler, Cramer and Waring, 575. And Talbot’s standard English edition of its
text (1860), 576. The remaining pieces here printed: Newton’s instrumental constructions of
conchoidal cubics by sliding angles, and his determination of the most general Cartesian
equations of bifoliate and trifoliate quartics, 576. Ad hoc rules for subtabulation, Briggsian in
form (but Briggs is not their source), 577. The general formula for interpolation by divided
differences applied to interpose a quartic parabola between five sighted positions (sent by
Flamsteed) of the 1680/1 comet, 577. Thence determining the slope of its apparent path to the
meridian: the accuracy of this ingeniously checked by fitting a hyperbola to the slope (but
with several slips in computation), 578. ¢ Of Quadrature by (equidistant) Ordinates’: Newton’s
clever (but not wholly exact) approach to achieving the Cotesian formulas for this, 578.

1. IMPROVED ENUMERATION OF THE CUBIC’S SPECIES 579

§1 (Add. 3961.4: 157). A preliminary tabular breakdown into 69 species. The species of
the general ‘redundant’ hyperbola, 580. The case where the three asymptotes are con-
current: the species of the ‘defective’ hyperbola, 582. The parabolic hyperbola; and conic
‘hyperbolisms’, 584. The three other canonical forms: Cartesian ‘trident’ (here first so
named), divergent parabolas, and the Wallisian cubic parabola, 586.

§2 (Add. 3961.2: 1*-14r), The finished enumeration into 72 species. Division of (straight/
curved) ‘lines’ into ‘orders’ (by the algebraic degree of their Cartesian equation), and
equivalently of ‘curves’ into ‘kinds’ (correspondingly one less in number since the straight
line is not here included), 588. Conic properties which extend mutatis mutandis to cubics:
ordinates, diameters, asymptotes, 590. The constant ratio of the products of the intercepts
cut out by a cubic in any two transversals given in direction, 592. Parabolic and hyperbolic
infinite branches, 592. Reduction of the cubic’s general Cartesian equation to its four
canonical forms: the principal case (now justified, without any intervening appeal to
linear transformation of coordinates, by choosing an asymptote as the prime ordinate
ab initio), 594. The three alternative reduced forms, 596. Names for the various shapes of
figure: inscribed/circumscribed/ambigenous hyperbolic branches; conchoidal/snaky/
cross-shaped/nodate/cusped/punctate/pure hyperbolas and parabolas, 596. First case: the
general redundant hyperbola; the triangle of its asymptotes, 598. Conditions for it to be
diametral; the lie of its infinite branches, 600. The nine redundant hyperbolas lacking a
diameter and with non-concurrent asymptotes; their ‘limits’ of extension determined by
their meets with the (three) related diametral conic hyperbolas, 600. The several species
(1-9) distinguishable on this basis; illustrative figures accompany, here as below, 602.
The twelve species (10-21) of monodiametral redundant hyperbolas (Newton omits to
mention two others earlier listed by him in his equivalent projective classification and
afterwards hereto added by Stirling), 608. The two species (22/23) of tridiametral re-
dundant hyperbolas (Newton again omits a further two earlier tabulated in his projective
enumeration and subsequently here adjoined by Stirling), 612. The nine redundant
hyperbolas with concurrent asymptotes: the four adiametral ones (species 24-7), 614.
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The four monodiametral ones (species 28-31); and the unique tridiametral instance
(species 32), 616. The six defective hyperbolas lacking a diameter (species 33—-8) analogously
determined in their ‘limits’ by their meets with their related diametral hyperbolas, 616.
The seven monodiametral ones (species 39-45), 620. The seven parabolic hyperbolas
lacking a diameter (species 46-52), 622. And the four diametral ones here distinguished
(species 53-6; a further pair which earlier appear in Newton’s projective listing are again
passed by), 624. The notion of the ‘hyperbolism’ of an algebraic curve (where y — ay in
the Cartesian defining equation): the conic hyperbolisms, 626. The three hyperbolic
hyperbolisms wanting any diameter (species 57-9); and the single diametral instance
{species 60), 628. The two elliptical hyperbolisms lacking a diameter (species 61/62); and
the sole diametral one (species 63), 630. The two parabolic hyperbolisms, adiametral
(species 64) and diametral (species 65), 630. The Cartesian trident which is the sole species
of the second canonical case, 630. The third case of the divergent parabolas; its five com-
ponent species (67-71), 632. The Wallisian parabola which is the unique instance (species
72) of the fourth canonical case, 634. Newton issues his bald assertion that ‘the five
divergent parabolas by their shadows generate and exhibit all other curves of second kind’;
but does not here elaborate, 634. Double points: in cubics these are conjugate points,
nodes or cusps (which may lie at infinity), 636. ‘Theorems on the organic description of
curves’ (from a given describing curve of lower kind by the intersecting legs of two fixed
angles, each rotating round a fixed pole): the general conic constructed in this way from
a straight line, 636. And the cubic possessed of a double point (at the pole through which
the describing conic passes), 638. Describing a conic through five given points; and a cubic
through seven, one its double point, 638. Tangents to curves so described: ‘by the same
method we are free to describe curves of higher kinds’ (not all, but those having appro-
priate multiple points), 640. ‘ Construction of (the real roots of) equations by the descrip-
tion of curves’: the general (reduced) equation of ninth degree solved by the meets of the
simple Wallisian parabola y = &® with a specified cubic, 640. Equivalent construction by
employing (Viviani’s) simple parabolic hyperbolism y = x~2, 642. Analogous constructions
of equations of higher degree: it is a ‘plane’ problem to construct the auxiliary quartic
curve which, by its meets with the Wallis cubic, solves the general (reduced) equation of

twelfth degree, 644.

ArrENDIX 1. Variant partial drafts of the ‘Enumeratio’. [1] (Add. 3961.2: 16v). A first
version of the geometrical argument whereby the cubic’s general defining equation is
reduced to its four canonical cases, 646. The primary case distinguished into six com-
ponent forms, 647. Making nine reduced cases altogether, 648. [2] (Add. 3961.2: 15),
A preliminary listing of appellations for the variety of possible configurations of cubic, 648.
[3] (Add. 3961.1: 45v—47v/ 3961.2: 167). A widely differing initial conclusion to the
‘Enumeratio’, 649. The instrumental description of ‘ conchoidal’ cubics possessing a double
point by an angled line sliding upon a straight-edge: Newton’s favourite instance of the
classical cissoid, 649. The construction wrongly specified (as earlier in the Arithmetica):
‘in this way innumerable other cissoids can be described’, 650. Theorems on the ‘organic’
description of curves by the ‘legs’ of fixed rotating angles: the conic so described to pass
through five given points, 651. The like construction of a cubic through seven (one its
double point): extension to curves of higher kinds (having suitable multiple points), 652.
The simple Wallisian parabola and parabolic hyperbolism each applied to construct the

(real) roots of the general (reduced) equation of ninth degree, 653.

APPENDIX 2 (Add. 3961.2: 167). Newton’s checking calculation (on the draft of the
‘Enumeratio’ reproduced in Appendix 1.3) of the conic rectification communicated by
him to Leibniz in his 1676 epistola posterior, 654. The Huygenian approximation verified,

6565.
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2. MISCELLANEOUS ANALYTICAL INVESTIGATIONS OF CUBIC

AND QUARTIC CURVES 656

§1. Conchoidal cubics constructible by an angle, one ‘leg’ pivoting through a fixed pole,
the other’s end-point sliding upon a ruler. [1] (private). Accurate construction thereby of
the cissoid when the angle is right and the describing point bisects the sliding leg, 656.
‘Other points on the ruler describe other cubics’, 657. [2] (Add. 4004: 787). The (no more
general) cubics described where the angle is oblique, 658. ‘When the angle is right and the
sliding leg is bisected, the curve will be a cissoid of the ancients’, 660.

§2 (Add. 3963.6: 447/42742"), Determining the simplest forms of general Cartesian
equation of bifoliate and trifoliate quartics. [1] That of the bifolium (with respect to centre
as origin and axis as abscissa of perpendicular coordinates) posited, 662. And tested: its
radii of curvature at its vertices (determined as the limit-lengths of the subnormals there),
663. Setting these curvatures to be as the distances of the vertices from the bifolium’s centre,
or as the squares of them, 664. [2] The Cartesian equation of the trefoil (with respect to a
double point as origin and the related axis as abscissa of perpendicular coordinates) posited,
665. The equations of linear transformation to analogous coordinates departing from a
second 'double point as origin, 666. The defining equation (of 106 terms) when sub-
stitution of these is made in that initially posited, 667. The resulting parametrizations of
coefficients arising from identifying the two equations (by the postulated rotational sym-
metry of the trefoil), 668. Refinements of these, 669. The radii of curvature at the curve’s
double points (computed as the limit-length of the subnormals there): abortive tries to
relate these ‘interestingly’, 670.

. INTERPOLATION AND APPROXIMATE QUADRATURE
BY CURVE-FITTING 672

§1. Simple schemes of subtabulation by finite differences. [1] (Add. 3965.18: 6717/671Y).
Ad hoc rules for bisection of an interval by supposing a quadratic interpolating parabola,
673. And a cubic one, 674. [2] (Add. 3965.18: 697%). Briggsian rules for quinquisection
derived from first principles by supposing a cubic approximating parabola, 675. [3] (Add.
3965.18: 695Y). The first five orders of differences of the ordinates, given at unit-intervals
of the abscissa, of a quintic approximating parabola, 677. Applied to derive (not quite
correctly) a more accurate rule for quinquisecting terms given at unit-intervals of the
argument, 678. The deduction is left off unfinished, 679.

§2. Determining the slope of the apparent path of the comet of 1680/1 at its sighting (by
Flamsteed) on 30 December. [1] (Add. 3965.14: 586"). First, by fitting a quartic parabola
to the path: Newton’s observational data as derived from Flamsteed, 682. The first four
orders of divided differences of the latitudes with respect to longitude as base: the ensuing
parabola (not quite accurately computed) is tested to fit the sighting on 13 January well
enough, 684. Its slope at an arbitrary point (derived as the ratio of the fluxion of latitude
to that of longitude), 684. Applied to compute the required slope on 30 December, 686.
[2] (Add. 3965.11: 164%). The angles made with the meridian on 30 December by the
four great circles through the comet’s sighted position in the celestial sphere on that day
and also (one each) through its four other observed places, 686. The hyperbolic curve fitted
to go through the Cartesian points which have the longitudes for base and the angles of
slope to the meridian for ordinates, 688. Whence Newton computes the angle of inter-
section of the meridian with the great circle ‘grazing’ the comet’s apparent path on
30 December; which is the slope to the meridian of the latter on that day, 688.
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§3 (Add. 3964.4: 217). ‘Of Quadrature by (equidistant) Ordinates’. Case1: the trapezoidal
rule where there are just two ordinates, 690. Case 2: three equidistant ordinates, 690. The
accurate ‘Simpson’ rule of approximation derived by adjusting ‘errors’ in twice applying
the simple trapezoidal rule, 692. Case 3: the ‘three-eighths’ rule analogously derived
where there are four ordinates, 692. Case 4: the Cotesian approximation where there are
five ordinates accurately derived by considering similar ‘errors’ in making partial applica-
tions of Simpson’s rule, 694. Newton’s formula stated in Case 5 (where there are seven
equidistant ordinates) is readily shown to be derived by analogously comparing the
‘errors’ ensuing from partial applications of the three-eighths rule, but errs in his choice
of the wrong ratio of comparison; that in Case 6 (of nine ordinates) is accurately computed
from Case 4, but here there is no longer a simple comparison factor as Newton assumes,
694. ‘These are quadratures of the parabola passing through the end-points of the ordinates’,
696. Supposing the general form of the approximation known and thence computing the
coefficients from the simplest particular instances: where (Case 3) there are four equi-
distant ordinates, 696. The parallel calculation where (Case 4) there are five ordinates is

incomplete in the surviving manuscript (and left so by Newton?), 698.

APPENDIX. Preliminary castings. [1] (Add. 3965.14: 6117). Case 5 (where there are seven
equidistant ordinates) is inadequately approached by comparing ‘errors’ in partially
applying the three-eighths rule, 700. A sequence of increasingly closer approximations to
a curvilinear area on this basis, 701. [2] (ibid.: 612V). Case 4 (of five ordinates) is derived
in an inferior form which, in effect, presupposes only a cubic (and not, as in accurate

revise, a quartic) fitted parabola, 702.
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