ANALYTICAL TABLE OF CONTENTS

PREFACE

EDITORIAL NOTE

GENERAL INTRODUCTION

LIST OF PLATES

GEOMETRY AND DYNAMICS

OF MOTION

(1684–1686/1691)

INTRODUCTION

Early development of Newton's ideas on kinematics and dynamics: the influence upon him of Descartes (rather than Galileo and Kepler), 3. His 'Waste Book' notes on motion (January 1665), 4. Kepler's third law used to derive the planetary inverse-square law of centrifugal 'endeavour' (c. 1670), 5. Early thoughts on projectile motion (1674): his study of James Gregory's Tentamina, 7. Newton's preferred alternative rule 'pretty nearly approaching the truth', 8. Correspondence with Robert Hooke (early winter 1679/80) on compounding celestial orbits 'of a direct motion by the tangent & an attractive motion towards the centrall body': Newton is at first reluctant to take up Hooke's notion, 9. Newton initially suggests a spiral path of fall to the earth's centre, 10. Then, on being 'corrected' by Hooke, a more accurate one of 'alternate ascent & descent' (the 'gravity' now supposed uniform), 11–12. And soon after concludes that only an elliptical path (round a focus as force-centre) is possible as a (closed) periodic inverse-square orbit, 14. Wren's wager (January 1684) to demonstrate the 'Laws of celestial motions', 16. Halley learns (August 1684) that Newton has already 'brought this demonstration to perfection', 17. In then 'renewing' his (misaid) proof of elliptical motion Newton elaborates it (autumn 1684) into his first tract 'De motu Corporum', 18. And sends it to London (November 1684), 19. Meanwhile he is at work (winter/early spring 1684/5) on an expanded treatise, 21. Its content, 21–2. The further augmented 'De motu Corporum Liber primus' (summer/autumn/winter 1685/6): its first ten 'Articles' [= Principia, Book I, Sections I–X], 22–3. Its classical façade conceals an internal structure founded on infinitesimal limit-increments, 24. The reader is expected to be familiar only with the simplest geometrical properties of the straight line, circle and conic, 25. Proof of the defining property of the solid of revolution of least resistance is assumed to be too difficult for him, 26. Computing parabolic cometary paths from terrestrial sightings: in the 'De motu Corporum Liber secundus', and in Book 3 of the published Principia, 26–7. Newton's courageous attempts to establish a viable theory of the moon's disturbed motion: his 'accurate' calculation of the mean advance of lunar apogee, using an Horrocksonian model, 27. Revisions and addenda to the Principia in the early 1690's: Newton's novel fluxional measure of force (which he twice fails correctly to apply to conic orbits), 28.

1. FUNDAMENTAL INVESTIGATIONS 'ON THE MOTION OF BODIES' 30

§1 (ULC. Add. 3965.7: 55°–62 bis'). The first tract 'De motu Corporum' (autumn 1684). Three preliminary definitions of force and resistance, 30. Four hypotheses on resisted and
Analytical Table of Contents

unresisted motion: rectilinear gravity-free ‘inertial’ motion is premised, 32. Theorem 1: Kepler's area law is deduced in generalised form to hold for an arbitrary central trajectory (and so be a universal measure of orbital time), 34. Theorem 2: the 'Huygenian' measure of the central force inducing uniform motion in a circle, 36–8. The circular case of Kepler's third law as its corollary when the force-field is inverse-square, 40. Theorem 3: the measure of the central force inducing motion in any given orbit, 40–2. Problem 1: applied to compute the law of force tending to a point in a circular orbit, 42. Problem 2: the (direct-distance) force induced by elliptical orbit round its centre, 44. Problem 3: the (inverse-square) force similarly induced towards a focus, 46–8. Theorem 4: the full third Keplerian law given ad hoc proof, 48–50. Construction of an ‘upper’ planetary orbit given the solar focus of the ellipse, a number of its focal radii vectores and the length of its major axis, 50. That of an inferior planet, given its maximum solar elongation, 52. Problem 4: to construct an elliptical orbit, given the speed and direction of motion at a point, 54. Similar construction of parabolic and hyperbolic orbits, 56. Its application to construct (elliptical) cometary paths from given terrestrial sightings, 58. Approximate (Cavalierian) construction of Kepler's problem, 60. Problem 5: to define the distance of rectilinear fall in given time under an inverse-square force, 62. Determination (independently of Huygens) of motion under simple gravity which is resisted instantaneously as the orbital speed. Problem 6: rectilinear motion when the gravity is zero, 64. Problem 7: when the gravity acts in line with the motion, 66–8. The two compounded to yield a logarithmic trajectory, 70. Minor complements: comparison is made with Huygens’ prior investigation (1668), 72–4.

Appendix 1 (ULC Add. 3965.7: 40°−54° [extracts]). The augmented tract 'De motu Corporum' (December 1684?) The opening definitions are repeated without essential change, 74–5. Expanded 'laws' of motion, 76. Four lemmatical riders, 76–7. Augmented scholium to Theorem 4, 78. New, long scholium to Problem 5, 79–80.

Appendix 2 (ULC. Add. 3965.11: 163°). Approximate computation of the (curved) path of the comet of 1680/1 by a modified rectilinear technique. The given terrestrial sightings (in the corrected form had from Flamsteed in September 1685), 81. Four ensuing calculations of orbital points, 82–5.

§2. The revised treatise 'De motu Corporum' (winter/early spring 1684–5). [1] (ULC. Add. 3965.5: 21°). Five preliminary definitions: of 'quality' of matter/motion and of the force 'innate in matter', 92. Of impressed and centripetal force, 94–6. [2] (ULC. Dd. 9.46: 13°−59°/2°−31°/64°−71°/56°−63°). The main surviving portion of the text. 'Laws of Motion': Axioms I and II, on uniform rectilinear motion and its change under the action of an impressed 'motive' force, 96. Law III, that 'to any action there is always a contrary, equal reaction, 98. Corollary 1: the parallelogram of forces is introduced, 98–100. Corollary 2: its employment in compounding motions exemplified, 102–4. Corollaries 3–6: the mutual interaction of bodies does not change their centre of gravity, and is independent of the uniform or uniformly accelerated motion of the surrounding space, 104–6. Scholium: Galileo (and Harriot) on the descent of 'heavy' bodies; Wren, Wallis and Huygens on collision and recoil, 106. Eleven lemmas 'on the method of first and last ratios': Lemma I, on the limit-equality of quantities, 106. Lemmas II/III: the area of a curve is the (common) limit of its inscribing/circumscribing mixtlinea, 108. Lemma IV: the areas of curves are as the limit-ratio of their (inscribing) mixtlinea, 110. Lemma V: similar figures are to one another as the squares of corresponding line-elements, 112. Lemmas VI/VII:
the ‘last’ ratios of arc, chord and tangent as their included ‘contact’ angle vanishes are ones of equality, 112–114. Lemma VIII: and so too are those of any triangles similarly defined therein, 114. Lemma IX: where a straight line intersects a curve at a given angle, the ‘last’ ratios of triangles therein are as the squares of corresponding elements, 114. Lemma X: the spaces described under a central force are at the ‘beginning’ of motion as the squares of the times, 116. Lemma XI: the vanishing subtense of a contact angle is as the square of that of the bounding arc, 116. Classes of angles of contact, 118. Infinitesimal arguments are here adduced to avoid the monotony of classical proofs by reductio ad absurdum, 120. Only limit-ratios of vanishing infinitesimals (and never absolute indivisibles) are therein invoked, 122. ‘Propositions on motion in non-resisting spaces’. Proposition I repeats the proof of the generalised Keplerian area law, 124. Proposition II: conversely, if the area law holds for an orbit, then this is traversed under a (planar) vis centripeta to the centre, 124–6. Proposition III: and if the central body is itself in enforced motion, the total force is central and compounded of their sum, 126. Proposition IV: repeats the earlier derivation of the Huygenian measure of circular vis centripeta, 128–30. The corollary which is the circular case of Kepler’s third law is no longer attributed to its discoverer, 130. Proposition V: repeats the general measure of the central force inducing motion in a given orbit, 132. Proposition VI: the force to a point in its arc inducing motion in a circle is again computed, 134. Proposition VII: the force directed to a point at infinity which induces motion in a circle (erroneously generalised to the ellipse), 136. Proposition VIII: the (inverse-cube) force to its pole producing orbit in a logarithmic spiral, 136–8. Lemma XII: re-enunciates the earlier Lemma 2 of §1 [= Apollonius, Conics VII, 31], again without attribution, 138. Proposition IX: the law of force to its centre inducing motion in an ellipse is again shown to be as the direct distance, 138–40. Proposition X: and that to a focus again as the inverse square, 140–2. Proposition XI: the force to a focus of a hyperbola is likewise inverse-square, 142–4. Lemma XIII: (incorrect) determination of the latus rectum at a general point in a parabola, 144. Proposition XII: the force to a parabola’s focus is inverse-square, 146. ‘From Propositions X–XII all inverse-square orbits are some one of the conics’, 146–8. Variation in the angle between the aces of a central orbit as the law of force varies: that stated for the Boreillian case (of constant ‘gravity’) is only loosely accurate, 148–50. Propositions XIII/XIV: a more basic derivation of the third Keplerian law for elliptical motion round a focus, 152–4. Proposition XV: the tangential polar from the focus (force-centre) is inversely as the instantaneous, orbital speed, 154–6. Proposition XVI: given the speed and direction of motion at a point in a conic orbit round a focus, to construct it (essentially as in Problem 4 of §1), 158–60. Proposition XVII: given a focus and the major axis, to construct a central conic to pass through given points and to touch given lines, 160. Proposition XVIII: analogous construction for the parabola, 162. Lemma XV: from three given points to draw to a fourth straight lines whose differences are given, 162–4. Applied to resolve the Apollonian problem of circle tangencies à la Viète, 164. Proposition XIX: given a focus, to draw a conic through given points and to touch given lines (by means of its focus-directrix defining property), 164–6. A Gregorian variant, 166. Proposition XX: Kepler’s problem resolved by a circle construction in the parabolic case, 168. The previous Cavallerian approximation is again adduced in solution of the elliptical case, 170. An alternative Wardian resoluto by (none too accurately) ‘equating’ the upper-focus angle, 170–2. Proposition XXI: repeats Newton’s earlier construction of the distance of rectilinar fall in given time under the ‘urge’ of an inverse-square force, with a minimal extension to include the ‘parabolic’ case, 172–4. Propositions XXII–XXIV: construct the corresponding speed of fall at that time, 176–8. Conjectured content of the immediately following propositions, 178. [3] (ULC. Add. 3965.3: 11r–14r). The problem of computing the total ‘attractive’ potential of a body, 178–80. Proposition XXXIX: the total inverse-square pull of a laminar spherical shell upon an internal point is nil, 180. Proposition XL: but upon an
Analytical Table of Contents

external point it varies as the inverse-square of the distance from its centre, 180–2. Proposition XLI: that of a uniform sphere upon a point in its surface is directly proportional to the radius, 184. Proposition XLI: and hence its pull on an interior point varies directly as the latter’s distance from its centre, 184. ‘Shells’ are here conceived to be infinitesimally thin (and thick), 186. Proposition XLIII: the total inverse-square attraction of a uniform sphere upon an external point varies as the inverse square of the latter’s distance from its centre, 186. The Adams–Glaisher hypothesis criticised, 187–8.

Appendix 4. The ‘pull’ of a sphere upon an external point, and of a spheroid on a point in its axis. [1] (Principia, 1687: 200–11). The total pull of the direct-distance attraction of a uniform sphere upon an external point varies as the latter’s distance from its centre, 211–12. An Archimedean lemma on the surface-element of a sphere, 212–13. Computing the total potential of a uniform sphere to pull on an external point according to an arbitrary law of attraction, 214–17. Three illustrative examples (none of great significance): Newton passes by the easy direct-distance and inverse-square cases (presumably because they are already treated by separate ad hoc methods), 218–20. The analogous total pull upon an internal point is compared, 220–1. [2] (ibid.: 218–22). The total attraction of a laminar circle upon a point in the normal to its plane which passes axially through its centre, 222–3. And hence of a uniformly dense solid of revolution upon a point in its axis, 224. Evaluating the total pull in the case of a spheroid, 225–6. The attraction of the spheroid upon an arbitrary internal point varies directly as the latter’s distance from its centre, 227–8.

Article V: ‘On finding [conic] orbits, given neither focus’. Lemmas XVII–XXI, Proposition XXII and Case 1 of Proposition XXIII lightly remodel the seven opening propositions of Newton’s earlier ‘Solutio Problematis Veturum de Loco solido’. Lemmas XVII–XIX: the Greek 4-line locus is demonstrated to be one or other species of conic and is so constructed, 242–52. The name ‘conic’ is taken in its broadest sense (and includes line-pairs), 248. Lemma XX: Newton’s semi-projective defining ‘symptom’ of a conic is stated and proved, 252–4. Lemma XXI: and used to demonstrate his ‘organic’ construction of a general conic by moving angles, 254–6. Proposition XXII: to describe a conic through five points, using Newton’s symptom, 256–8. And by employing the organic construction, 258–60. Proposition XXIII: drawing a conic to pass through four points and touch a straight line, by means of Newton’s symptom and by the organic method, 262–4. Proposition XXIV: thence to construct one through three points and touch two straight lines, 264–6. Lemma XXII: ‘To change [plane] geometrical curves into others of the same class’ (by compounding an affine translation and a perspectivity), 268–72. Comparison with La Hire’s equivalent ‘planiconic’ transformation, 271. Halley’s ‘objection’ (October 1686), 272–3. Proposition XXV: the transformation used to construct a conic through two points and to touch three straight lines, 272–4. Proposition XXVI: and through a single point to touch four lines, 276. Lemma XXIII: an old rectilinear locus is resurrected as a rider, 276–8. Lemma XXIV: anharmonic property of parallel tangents to a conic [= Apollonius, Conics i, 37/39], 278. Lemma XXV: generalised to hold where the tangents are no longer parallel, 278–80. In corollary, the locus of the centres of conics touching a given quadrilateral is a straight line, 280. Proposition XXVII: thereby to draw a conic to touch five straight lines, 280–2. The axes and foci of an organically constructed conic, 282–4. The ‘bisecant’ locus of a conic is a homothetic conic, 280. Lemma XXVI: to set a given triangle between three given straight lines, one corner on each, 286–8. Proposition XXVIII: the similar fitting of a given ‘trajectory’, three points of which are to lie one each on the lines, 290. Lemma XXVII: to set a quadrilateral given in species between four straight lines, each corner lying on one, 290–2. The construction holds where the quadrilateral collapses into a straight line (to be cut by the lines into portions having a given ratio to each other), 292. A variant construction of this case (employs the technique following), 294–6. Proposition XXIX: the similar fitting of a quadrilateral given in species to the given lines, 298. An ingenious variant technique of constructing the problem (using the meets of auxiliary rectilinear loci), 298–8.

Article VI: ‘On finding the motions in given orbits’ (viz. by solving Kepler’s Problem). Proposition XXX: repeats the previous exact construction of the parabolic case (§2, Proposition XX), 298–300. Lemma XXVIII: ‘there exists no oval whose area cut off by straight lines may generally be found by finite equations’. Newton’s ‘proof’: its basic fallacy is pinpointed, 302–4. A similar ill-founded conjecture (already made in October 1665) regarding the oval’s perimeter, 306. Contemporary reactions: a firm counter-instance is given, 306–7. ‘Hence the general sector of an ellipse cannot rationally be determined’ (so that Kepler’s Problem in general has no exact algebraic construction), 308. Proposition XXXI: restates Wren’s construction of the elliptical case by means of a (transcendental) ‘stretched’ cycloid, 308–10. An involved approximate geometrical construction of this case is stated (no proof given, but it is highly accurate), 310–12. An efficient iterative inversion of the equivalent equation \(N = \theta - e \sin \theta \) (later simplified into standard ‘Newton–Raphson’ form), 314–16. A (weak) geometrical approximation in the hyperbolic case, 318. An improved (but still faulty) Wardian ‘equation’ of the upper-focus angle in the planetary ellipse, 318–22. Its error computed, 322.

Article VII: ‘On the rectilinear ascent and descent of bodies’. Propositions XXXII–XXXV repeat (with minimal improvements) the earlier Propositions XXI–XXIV (of§2),
constructing the distance fallen rectilinearly in given time under an inverse-square force, and the speed then instantaneously attained, 322–32. Propositions XXXVI/XXXVII (once also in the earlier text?) conversely construct the distances fallen in given times, 332–4. Proposition XXXVIII relates time and speed to distance fallen linearly (in ‘simple harmonic’ motion) under a direct-distance force, 334. Proposition XXXIX: the like where the impressed force is an arbitrary function of the distance (with areas expressing the ‘energy’ of the motion), 336–40.

Article VIII: ‘On the finding of [curvilinear] orbits traversed under the urge of an arbitrary central force.’ Proposition XL: the orbital speed varies only as the distance from the centre of force, 340–2. Proposition XLI: the defining polar equation of the trajectory and the time of orbit over a given arc, ‘granted the quadrature of curves’. 344–6. The application to the case of an inverse-square force is easy, but not here made by Newton, 348. The application to compute the path of a light ‘ray’ (viewed as a moving corpuscle under the attraction of a variable vis refractiva) is sketched, 350–1. Newton specifies (without proof) the secant spirals ensuing in the inverse-cube case, 352. Their later ‘discovery’ by Johann Bernoulli, 354–5. Motion in constrained paths: the general isochron, 355–6. Proposition XLII merely elaborates the construction of an orbit, given the law of central force and the speed and direction of motion at a point, 356. Motion in resisted central-force orbits (broached by Newton in Principia, Book 2, Section IV), 357–8.

Article IX: ‘On the motion of bodies in mobile orbits’. Proposition XLIII: determining the ‘disturbing’ central force which effects a given rotation of orbit, 358–60. Proposition XLIV: such a disturbing force is always as the inverse-cube of the distance from the force-centre, 360–2. Approximating a given (stationary) orbit by an ellipse rotating round its focus, 364. And by one rotating round its centre, 366. The secant spiral ingeniously deduced to be the general inverse-cube orbit, 368. Proposition XLV: the rotating ellipse used to determine the angular distance between successive apses in a near-circular general central orbit, 368–70. Exemplified in the Borellian constant-force orbit, 370–2. And where the force is as some general power of the distance, 372–4. Or a sum of such powers, 374–6. This serves to explain half the observed mean advance of the lunar apses, 378–80.

Article X: ‘On the constrained [but unrestricted] pendular motion of bodies’. Proposition XLVI: computing the motion of a body constrained to swing in a plane under a given force to an external point, ‘given the quadrature of curves’, 382. Proposition XLVII: the simple harmonic motion thus induced when the force varies as the direct distance, 384. Propositions XLVIII/XLIX: parallel rectification of the general arc of an epicycloid/hypocycloid (by comparing limit-increments of the arc and the corresponding arc of the generating circle), 386–8. The more cumbersome analytical equivalent, 388–9. Proposition L: ‘to make a pendulating body oscillate in a given cycloid’ (by suspending it along the similar evolute cycloid), 390. Proposition LI: under a direct-distance force to the deferent centre the constrained oscillations in a hypocycloid are isochronous, 392–4. Proposition LII: to define the speed of swing at a given place therein, and the time of oscillation to it (by adapting Proposition XXXVIII), 394–6. Comparing swings in unequal (hyp)ocycloids, 398–400. The ‘Tusi couple’ which results when the hypocycloid degenerates to be the diameter of the generating circle, 400–2. The Huygenian case of oscillation in an ordinary cycloid under simple (constant, vertically downwards) gravity which ensues when the diameter of the generating circle is infinite, 402. But ‘our demonstrated propositions conform to the true constitution’ (fallacious because of the earth’s heavy core, though Newton could not then know it), 402–4. Proposition LIII: enunciates the general condition for isochronous oscillation under a given law of central force, ‘granted the quadrature of curvilinear figures,’ 404–6. Proposition LIV: constructs a geometrical measure for the time of such oscillation, 406–8.

Appendix 1 (ULC. Dd. 9. 46: 53r/54r). Two rejected geometrical lemmas (intended as riders to the construction of rectilinear cometary orbits?). To set a given line-segment in a
Analytical Table of Contents

2. Approaches to the Solution of Particular Problems

2.1. The solid of revolution of least resistance to motion in a uniform fluid (along its axis).

§1. The solid of revolution of least resistance to motion in a uniform fluid (along its axis).

Appendix 1. (ULC. Add. 3965. 10: 134°). The resistance of a spherical surface to uniform rectilinear motion. Newton frames his ‘sine-square’ law of resistance on a surface element, 466–8. The resistance is exactly half that on the sphere’s transverse (circular) section, 468–9.

§8 (ULC. Add. 3990: 48°/51°–56°). The approximate determination of a parabolic cometary path (at the end of the ‘De motu Corporum Liber secundus’, c. autumn 1685). Newton’s new-found conviction that a cometary path is (very nearly) parabolic, 481–2. ‘Proof’ in the observed variation of cometary speeds with distance from the sun, 482–4. ‘Given the relationship between a comet’s speed and its distance from the sun, to ascertain its path’, 486. ‘Lemmas premised to the problem’s solution’: geometrical, trigonometrical and arithmetical (approximate) resolutions of a locus problem, 486–8. To incline a straight line through a given point so that it is intercepted by three straight lines in segments in given ratio to each other, 490. And thereby graphically to find the ‘hourly’ speed of a comet, 490–2. To find the longitude and latitude of a comet at given times, 492. Given the speed of a comet at three places, to determine its (parabolic) trajectory, 492–4. To correct the path so found, 496.

§3. Computation of the ‘hourly’ rate of motion of the moon’s apogee and of its mean secular advance (c. late 1686). [1] (ULC. Add. 3966. 12: 105°–107°/102°–104°/110°–111°). The main calculation. Newton’s circular models of lunar motion in the Principia (Book 3, Propositions XXV–XXXV): the more realistic Horrocksian ellipse is here employed for greater accuracy, 508–9. Two introductory lemmas: measuring the component of solar perturbation acting through the solar focus instantaneously to alter the eccentricity of the moon’s posited elliptical orbit, 508–12. And also the transverse component (acting at right angles to the focal radius vector), 512–16. Their application ‘to find the hourly motion of the moon’s apogee’: Newton’s basic hypothesis for compounding the radial and transverse
components of solar perturbation, 516–18. The ‘fudge factor’ (found ‘after I began the calculations’) is introduced, 518. The several layers of ensuing computation: Newton arrives at the expression \(k(1 + \lambda \cos 2\theta - A) \), \(\lambda = \frac{1}{3} \), for the hourly motion (having rejected \(\lambda = \frac{1}{2} \) and \(\lambda = \frac{1}{5} \) because they lead ultimately to poor values for the mean advance), 518–24. Calculation therefrom (by way of an ingenious exact integration) of the mean advance of lunar apogee, 524–30. Newton ‘achieves’ an annual mean motion less than 2° short of observed reality, 530. [2] (ibid.: 102°/103°). Newton aims to attain a yet closer approach to empirical truth by more drastically amending the initial fudge factor, 532–6. He leaves off when he sees that, contrary to his hope, a greater divergence will result, 536. The result published in the Principia (Book 3, Proposition XXXV, scholium), accurate but doubtlessly similarly ‘achieved’ (by choosing \(\lambda = 0 \)), 536–7.

3. THE ‘DE MOTU CORPORUM LIBER PRIMUS’ REMODELLED 538

Appendix 1 (ULC. Add. 3965.6: 86°). Initial revision of Corollary I to ‘Lex’ II of motion. The equivalent modes of compounding force-impulse ‘simul et semel’ and ‘gradatim et successive’ are set as parallel ‘cases’ of enforced motion, 562–3.

Appendix 2 (ULC. Adv. b. 39.1: facing p. 46). Revised corollaries to the new Proposition VII. Newton evaluates the ratio of the forces to two separate points (in its interior) which separately induce motion in the same given circle, 564. Analogous extension to the (infinitesimal) arc of any curve which the circle osculates, 565.

Appendix 3 (ULC. Add. 3966.2: 17°/17°). An intended insertion on disturbed elliptical orbits post Proposition XVII. Radial and transverse components of ‘solar’ perturbation are compounded in the Horrocksian hypothesis that the disturbed ‘lunar’ orbit is instantaneously an ellipse (of varying eccentricity), 566–7.

§2. More radical restructurings of the ‘Liber primus’. [1] (ULC. Add. 3965.6/12: 27°–28°/188°–189°/183°–183°/31°–32°). An extended (highly geometrical and over-elaborate) alternative scheme for evaluating the central force to an arbitrary point (in its plane) which induces motion in a given conic. Propositions V and VI are minimally revised and augmented, 568–72. Central forces to similarly positioned points in similar orbits are
xxxiv

Analytical Table of Contents

compared, 572. Forces to the same base point which induce motion in affinely related curves are compared, 574–6. As a corollary, the force to its centre which generates motion in an ellipse varies as the direct distance, 576. The ratio of the forces to two points in its plane which separately induce motion in the same orbit, 578. In corollary, the force to a focus of a given conic is inverse-square, 578–80. General measure of the force inducing motion in an arbitrary curve (repeats Proposition VI of §1. 3), 580. A lemma determining the chord of curvature (equal to the latus rectum) at an arbitrary point of a conic, 582–4. And applied to evaluate the force to an arbitrary point (in its plane) which produces motion in a given conic, 586. The (only simple) particular cases where the point is the conic’s centre or a focus, 586–8. [2] (ULC. Add. 3965. 2: 576–8). A general scholium to ‘Article IV’. The ‘law’ of central force to any point in the interior of a conic orbit is enunciated (without proof), 588. A generalised Moivrean fluxional measure of this force is stated (again without proof’), 590. An attempted application to determine the force to the centre

Appendix 1 (ULC. Add. 3965. 19: 744v). Propositions X and XII done ‘another way’. A new idem aliter to Proposition X (originally Corollary 2 to the augmented Proposition VI in §1. 3), 594–5. The similar alternative demonstration of Proposition XII, 595.

\[\frac{r}{y} - \frac{(r/y)}{x^2} = \frac{y}{2} \] (the computation is correct but abandoned because of its apparent complexity) and in the general parabola \(a^2x = y^{n+1} \), 599.

§8. The principal lemmas reset as an introductory group. [1] (Add. 3965. 17: 635v/635r). A first set of ‘Lemmas generalia’; I–XII are retained unchanged, but are followed by two new Lemmas XIII/XIV specifying focal properties of a central conic (the first used—and proved—in Propositions XI/XII, the latter sent to Locke in March 1690), 600. Lemmas XV–XIX repeat XIII, XIV and XXVIII of 1, §3; XXIX of 1, §2, Appendix 4; and XII of §2.1 preceding, 602. A new lemma on curvature (see [3]): XXI and XXII repeat Principia, Book 3, Lemma 5 and Book 2, Lemma 11 respectively, 604. [2] (ibid.: 636v/636r). The previous scheme is reduced to embrace fifteen lemmas only, 604. [3] (ibid.: 636v/636r). The new lemma on the curvature of curves is elaborated by cases, 606. And given corporate proof by means of Newton’s general theorem on the product of intercepts made by a curve on a straight line, 606–8.

Index of Names

611