Studies in Natural Language Processing

Systemic text generation as problem solving
Studies in Natural Language Processing

Executive Editor: Aravind K. Joshi
Sponsored by the Association for Computational Linguistics

This series publishes monographs, texts, and edited volumes within the interdisciplinary field of computational linguistics. Sponsored by the Association for Computational Linguistics, the series represents the range of topics of concern to the scholars working in this increasingly important field, whether their background is in formal linguistics, psycholinguistics, cognitive psychology or artificial intelligence.

Also in this series:

Memory and context for language interpretation by Hiyan Alshawi
Planning English sentences by Douglas E. Appelt
Computational linguistics by Ralph Grishman
Language and spatial cognition by Annette Herskovits
Semantic interpretation and the resolution of ambiguity by Graeme Hirst
Text generation by Kathleen R. McKeown
Machine translation edited by Sergei Nirenburg
Machine translation systems edited by Jonathan Slocum
Systemic text generation as problem solving

TERRY PATTEN

Department of Computer and Information Science,
The Ohio State University
Contents

Preface xii

1. Introduction 1
 1.1. The scientific context 1
 1.1.1. Major context: AI text generation 2
 1.1.2. Minor context: functional linguistics 3
 1.2. Important assumptions 4
 1.3. Specific overview 4

2. Background I: AI problem solving 6
 2.1. The architecture of AI problem solving 6
 2.2. The search-space model 8
 2.2.1. Brute-force search 9
 2.2.2. Heuristic search 9
 2.2.3. Forward-chaining 10
 2.2.4. Goal-directed backward-chaining 12
 2.3. Knowledge compilation 14
 2.3.1. Compilation and granularity 14
 2.3.2. Sources of compiled knowledge 15
 2.3.3. Reasoning from first principles 17
 2.4. Summary 18
Contents

3. Background II: systemic grammar 19
 3.1. History 19
 3.1.1. Malinowski (1884-1942) 19
 3.1.2. Firth (1890-1960) 20
 3.1.3. Hjelmslev (1899-1965) 21
 3.1.4. Halliday (1925-) 21
 3.2. The goals of systemic grammar 22
 3.3. Important concepts in systemic grammar 24
 3.3.1. Feature 24
 3.3.2. System 24
 3.3.3. System network 25
 3.3.4. Delicacy 27
 3.3.5. Functional analysis 27
 3.3.6. Rank 33
 3.3.7. Realization rules 34
 3.3.8. The metafunctions 39
 3.3.9. Recursive systems 41
 3.4. The strata 43
 3.4.1. The semantic stratum 43
 3.4.2. The grammatical stratum 44
 3.4.3. The phonological/orthographic stratum 44
 3.4.4. Interstratal preselection 44
 3.5. The semantic stratum 45
 3.5.1. Field 46
 3.5.2. Tenor 46
 3.5.3. Mode 46
 3.5.4. Register and metafunction 47
 3.5.5. A closer look 48
 3.6. Example 48
 3.7. Summary 50

4. The conflation 52
 4.1. The fundamental relationship 52
Contents

4.1.1. Alternatives in AI problem solving 53
4.1.2. Alternatives in systemic linguistics 53
4.1.3. The fountainhead 54

4.2. The conflation
4.2.1. Conflating gates and forward-chaining rules 56
4.2.2. Conflating systems and backward-chaining rules 57
4.2.3. Conflating the grammar and the knowledge base 57
4.2.4. Conflating text generation with problem solving 58
4.2.5. Conflating the semantic stratum with compiled knowledge 59
4.2.6. Conflating behaviour potential and general problem-solving knowledge 63

4.3. An example 64
4.4. Metatheoretical aspects of the conflation
4.4.1. The status of system networks 72
4.4.2. Limitations of the computational paradigm 73

4.5. Advantages 74

5. The formal model 77
5.1. Systemic syntactic structures 78
5.2. A formalization of systemic grammar 81
5.3. Generation 86
5.4. Soundness and completeness 89
5.5. Some realization rules 93
5.6. Generating structures. 94
5.7. Formulating realization rules in logic 96
5.8. Problem reduction 98
5.8.1. AND/OR graphs 98
5.8.2. System networks and AND/OR graphs 99
5.8.3. Backward-chaining and the solution graph 102
5.9. Summary 102

6. The implementation 104
6.1. Overview 104
Contents

6.1. The abstract architecture 105
 6.1.1. The abstract architecture 105
 6.1.2. The grammar productions 105
 6.1.3. The syntactic structures 108
 6.1.4. The control strategy 110
 6.1.5. Overview conclusion 110

6.2. SNORT (System Network --- OPS5 Rule Translator) 110
 6.2.1. The system network notation 111
 6.2.2. The production rule notation 115
 6.2.3. The translation 120

6.3. SLANG-I 121
 6.3.1. Realization productions 121
 6.3.2. The support system 126

6.4. Limitations of the current implementation 130

6.5. Alternative implementations 130
 6.5.1. Other production systems 130
 6.5.2. Inheritance hierarchies 131

6.6. Summary 132

7. Related work in text generation 133

7.1. The grammar-oriented approach 133
 7.1.1. PROTEUS 134
 7.1.2. Nigel 136
 7.1.3. Advantages of grammar-oriented systems 136

7.2. The goal-oriented approach 137
 7.2.1. KAMP 137
 7.2.2. MUMBLE 139
 7.2.3. Advantages of the goal-oriented approach 140

7.3. Combining the approaches 140
 7.3.1. TELEGRAM 140
 7.3.2. SLANG 142

7.4. Problem reduction in Nigel and SLANG 143

7.5. Summary 145
8. Conclusions 146
 8.1. Summary 146
 8.1.1. The problem 146
 8.1.2. The solution 147
 8.1.3. The formal model 148
 8.1.4. The implementation 148
 8.1.5. Related work in text generation 149
 8.2. Major problems 150
 8.3. Future research 151
 8.3.1. Incorporation of SLANG into an expert system 152
 8.3.2. Supplementary linguistic treatment 152
 8.3.3. Further compilation 153
 8.3.4. Reasoning with knowledge at the grammatical stratum 153
 8.4.5. Natural-language understanding 154
 8.4. Conclusion 156

Appendix A. OPS5 tutorial 157
 A.1. The left-hand side 157
 A.2. The right-hand side 159

Appendix B. Sample texts 161
 B.1. Explanation for a hypothetical expert system 161
 B.2. Sample explanation of a plan 166
 B.3. Examples from the semantic stratum 181

Appendix C. Excerpts from the grammar 186
 C.1. Excerpts from the clause network 186
 C.2. Excerpts from the nominal-group network 188
 C.3. Excerpts from the determiner network 189
 C.4. Excerpts from the quantifier network 189
 C.5. The prepositional-phrase network 190
 C.6. Excerpts from the verb network 190
 C.7. Excerpts from the noun network 192
 C.8. Excerpts from the conjunction network 193
Contents

C.9. Excerpts from the modal adjunct network 193
C.10. Excerpts from the preposition network 193
C.11. The semantic stratum 194

Notes 203

Bibliography 204

Index 208
For my parents
Preface

The research reported here was done within the Department of Artificial Intelligence at the University of Edinburgh. All the chapters but one are, with some modifications, chapters from my doctoral thesis. The exception (Chapter 5), is a slightly revised version of a paper written jointly with Graeme Ritchie, that was presented at the Third International Workshop on Natural Language Generation.

I would like to thank my thesis supervisor, Graeme Ritchie, for his patient and constructive criticism throughout the development of this work, and of course, for his direct contribution to Chapter 5. My other supervisor, Austin Tate, and the rest of the Edinburgh planning group provided insights into AI problem solving. I would also like to thank my thesis examiners, C. S. Mellish and Henry Thompson, for their helpful suggestions. I am also grateful to Mark Drummond, Andy Golding and Chris Soothcott for valuable technical discussions, to Mark Kingwell for proof-reading the thesis draft, and to Aravind Joshi as editor of the Cambridge University Press *Studies in Natural Language Processing* series.

This research was supported in part by Alberta and Canada Student Loans, and an Overseas Research Student Award. The word-processing and typesetting facilities used in the preparation of the final draft were kindly provided by the Department of Computer Science at the University of Calgary.