One of the greatest problems hydrology research faces today is how to quantify uncertainty, which is inherent in every hydrological process. This modern overview of uncertainty emphasises non-orthodox concepts, such as random fields, fractals and fuzziness. This book comprehensively reviews alternative and conventional methods of risk and uncertainty representation in hydrology and water resources. The water-related applications discussed in the book pertain to areas of strong recent interest, such as multifractals and climate change impacts.

The authors represent a variety of research backgrounds, achieving a broad subject coverage. The material covered provides an important insight into new theories of uncertainty related to the field of hydrology. The book is international in scope and will be welcomed by researchers and graduate students of hydrology and water resources.
New Uncertainty Concepts in Hydrology and Water Resources
New Uncertainty Concepts in Hydrology and Water Resources

Edited by
Zbigniew W. Kundzewicz (Polish Academy of Sciences, Poland)
Contents

List of Authors page xi
Preface xiii

I. INTRODUCTION

1. Hydrological uncertainty in perspective 3
 Z. W. Kundzewicz

II. FACETS OF UNCERTAINTY

1. Bayesian relative information measure – a tool for analyzing the outputs of general circulation models 13
 M. E. Moss

2. A stochastic weather generator using atmospheric circulation patterns and its use to evaluate climate change effects 25
 A. Bárdossy

3. Hydrological uncertainty – floods of Lake Eyre 32
 V. Kotwicki & Z. W. Kundzewicz

4. Some aspects of hydrological design under non-stationarity 39
 W. G. Strupczewski & H. T. Mitosek

5. New plotting position rule for flood records considering historical data and palaeologic information 45
 Guo Sheng Lian

III. NOVEL APPROACHES TO UNCERTAINTY: FRACTALS, FUZZY SETS AND PATTERN RECOGNITION, NON-PARAMETRIC METHODS

1. Dispersion in stratified soils with fractal permeability distribution 55
 M. W. Kemblowski & Jet-Chau Wen

2. Multifractals and rain 61
 S. Lovejoy & D. Schertzer

3. Is rain fractal? 104
 I. Zawadzki

4. Multifractal structure of rainfall occurrence in West Africa 109
 P. Hubert, F. Friggit & J. P. Carbonnel
5. Analysis of high-resolution rainfall data
K. P. Georgakakos, M. B. Sharifi & P. L. Sturdevant
114

6. Application of fuzzy theory to snowmelt runoff
K. Mizumura
121

7. On the value of fuzzy concepts in hydrology and water resources management
J. Kindler & S. Tyszewski
126

8. Application of neural network in groundwater remediation under conditions of uncertainty
133

9. Application of pattern recognition to rainfall–runoff analysis
K. Mizumura
141

10. Nonparametric estimation of multivariate density and nonparametric regression
W. Feluch
145

11. Nonparametric approach to design flood estimation with pre-gauging data and information
Guo Sheng Lian
151

IV. RANDOM FIELDS

1. Analysis of regional drought characteristics with empirical orthogonal functions
I. Krasovskaia & L. Gottschalk
163

2. Worth of radar data in real-time prediction of mean areal rainfall by nonadvective physically-based models
K. P. Georgakakos & W. F. Krajewski
168

3. Uncertainty analysis in radar-rainfall estimation
W. F. Krajewski & J. A. Smith
181

4. Design of groundwater monitoring networks for landfills
190

5. Spatial variability of evaporation from the land surface – random initial conditions
R. J. Romanowicz, J. C. I. Dooge & J. P. O’Kane
197

6. Detecting outliers in flood data with geostatistical methods
L. Gottschalk, I. Krasovskaia & Z. W. Kundzewicz
206

V. TIME SERIES AND STOCHASTIC PROCESSES

1. Prediction uncertainty in seasonal partial duration series
P. F. Rasmussen & D. Rosbjerg
217

2. A daily streamflow model based on a jump-diffusion process
F. Konecny & H. P. Nachtegeb
225

3. The influence of time discretization on inferred stochastic properties of point rainfall
S. Weglarczyk
230

4. The distribution of the l-day total precipitation amount
W. Jakubowski
238

5. Analysis of outliers in Norwegian flood data
L. Gottschalk & Z. W. Kundzewicz
245
CONTENTS

6. Stochastic modelling of the operation of hydrants in an irrigation network
G. Tsakiris & O. Manoliadis
252

7. Order and disorder in hydroclimatological processes
K. Kowalski
257

8. Towards the physical structure of river flow stochastic process
J. J. Napiórkowski & W. G. Strupczewski
261

VI. RISK, RELIABILITY AND RELATED CRITERIA

1. Stochastic approach to non-point pollution of surface waters
E. J. Plate
273

2. Statistically safe sets methodology for optimal management of reservoirs in risk situations
A. Karbowski
284

3. Risk assessment in control of reservoir systems
A. Kozłowski & A. Lodziński
293

4. Reliability-related criteria in water supply system studies
Z. W. Kundzewicz & A. Laski
299

5. Reliability analysis of reservoir operation
J. J. Bogardi & A. Verhoef
306

6. Composite risk model of Ogee type spillway
M. Sowiński & M. I. Yusuf
316
List of Authors

A. Bárdossy
Institute for Hydrology and Water Management, University of Karlsruhe, Germany

K. P. Georgakakos
Hydrologic Research Center, San Diego, California, and Scripps Institution of Oceanography, UCSD, La Jolla, California, USA

J. J. Bogardi
Wageningen Agricultural University, Department of Water Resources, Wageningen, The Netherlands

L. Gottschalk
Department of Geophysics, University of Oslo, Norway

J. P. Carbonnel
CNRS, Université P. & M. Curie, Paris, France

Guo Sheng Lian
Wuhan University of Hydraulic and Electric Engineering, Wuhan, People's Republic of China

J. C. I. Dooge
Centre for Water Resources Research, University College Dublin, Ireland

P. Hubert
CIG, Ecole des Mines de Paris, Fontainebleau, France

J. W. Eheart
Department of Civil Engineering, University of Illinois at Urbana-Champaign, USA

W. Jakubowski
Chair of Mathematics, Agriculture University of Wroclaw, Poland

W. Feluch
Technical University of Warsaw, Institute of Environmental Engineering, Warsaw, Poland

A. Karbowski
Institute of Automatic Control, Warsaw University of Technology, Warsaw, Poland

F. Friggit
EIIEEE, Ouagadougou, Burkina Faso

M. W. Kemblowski
Department of Civil and Environmental Engineering, Utah State University, Logan, Utah, USA

J. H. Garrett Jr
Department of Civil Engineering, University of Illinois at Urbana-Champaign, USA

J. Kindler
Institute of Environmental Engineering, Warsaw University of Technology, Warsaw, Poland

At present: World Bank, Washington D.C., USA

F. Konecny
Institute of Mathematics and Applied Statistics, Universität für Bodenkultur, Vienna, Austria

A. Kozłowski
Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland

V. Kotwicki
Department of Environment and Natural Resources, Adelaide, Australia

K. Kowalski
Research Centre of Agricultural and Forest Environment Studies, Polish Academy of Sciences, Poznań, Poland

W. F. Krajewski
Department of Civil and Environmental Engineering and Iowa Institute of Hydraulic Research, The University of Iowa, Iowa City, Iowa, USA

I. Krasowskaia
HYDROCONSULT AB, Uppsala, Sweden

Z. W. Kundzewicz
Research Centre of Agricultural and Forest Environmental Studies, Polish Academy of Sciences, Poznań, Poland
At present: World Meteorological Organization, Geneva, Switzerland
<table>
<thead>
<tr>
<th>A. Laski</th>
<th>E. J. Plate</th>
<th>P. L. Sturdevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYDROPROJEKT Consulting</td>
<td>Institute for Hydrology and Water Resources Planning, University of Karlsruhe, Germany</td>
<td>Department of Civil Engineering, Princeton University, Princeton, New Jersey, USA</td>
</tr>
<tr>
<td>Engineers, Warsaw, Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Łodziński</td>
<td>S. Ranjith</td>
<td>G. Tsakiris</td>
</tr>
<tr>
<td>Technical University of</td>
<td>Department of Civil</td>
<td>Laboratory of Rural</td>
</tr>
<tr>
<td>Warsaw, Warsaw, Poland</td>
<td>Engineering, University of</td>
<td>Technology, National</td>
</tr>
<tr>
<td></td>
<td>Illinois at Urbana-</td>
<td>Technical University of</td>
</tr>
<tr>
<td></td>
<td>Champaign, USA</td>
<td>Athens, Greece</td>
</tr>
<tr>
<td>S. Lovejoy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics Department, McGill</td>
<td></td>
<td></td>
</tr>
<tr>
<td>University, Montreal, Canada</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O. Manoliadis</td>
<td>P. F. Rasmussen</td>
<td>S. Tyszewski</td>
</tr>
<tr>
<td>Laboratory of Rural Technology, National Technical University of Athens, Greece</td>
<td>Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, Lyngby, Denmark</td>
<td>Institute of Environmental Engineering, Warsaw University of Technology, Warsaw, Poland</td>
</tr>
<tr>
<td>P. D. Meyer</td>
<td>R. Romanowicz</td>
<td>A. J. Valocchi</td>
</tr>
<tr>
<td>Department of Civil</td>
<td>Institute of Environmental</td>
<td></td>
</tr>
<tr>
<td>Engineering, University of</td>
<td>and Biological Sciences,</td>
<td></td>
</tr>
<tr>
<td>Illinois at Urbana-</td>
<td>Lancaster University,</td>
<td></td>
</tr>
<tr>
<td>Champaign, USA</td>
<td>Lancaster LA1 4YQ, UK</td>
<td></td>
</tr>
<tr>
<td>H. T. Miotek</td>
<td>D. Roshberg</td>
<td>A. Verhoef</td>
</tr>
<tr>
<td>Institute of Geophysics,</td>
<td>Institute of Hydrodynamics</td>
<td>Wageningen Agricultural</td>
</tr>
<tr>
<td>Polish Academy of Sciences,</td>
<td>and Hydraulic Engineering,</td>
<td>University, Wageningen,</td>
</tr>
<tr>
<td>Warsaw, Poland</td>
<td>Technical University of</td>
<td>The Netherlands</td>
</tr>
<tr>
<td>K. Mizumura</td>
<td>Denmark</td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Department, Kanazawa Institute of Technology, Ishikawa, Japan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. E. Moss</td>
<td>D. Schertzer</td>
<td>S. Węglarczyk</td>
</tr>
<tr>
<td>US Geological Survey, Tucson, Arizona, USA</td>
<td>Laboratoire de Météorologie</td>
<td>Institute of Water Engineering and Water Management, Cracow Technical University, Cracow, Poland</td>
</tr>
<tr>
<td>H.-P. Nachtegelb</td>
<td>Dynamique, C.N.R.S., Paris, France</td>
<td></td>
</tr>
<tr>
<td>Institute of Water Resources Management, Hydrology and Hydraulic Construction, Universität für Bodenkultur, Vienna, Austria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. J. Napiórkowski</td>
<td>M. B. Sharifi</td>
<td>J.-C. Wen</td>
</tr>
<tr>
<td>Institute of Geophysics,</td>
<td>Department of Civil</td>
<td>Department of Civil and</td>
</tr>
<tr>
<td>Polish Academy of Sciences,</td>
<td>Engineering, Maschhad</td>
<td>Environmental Engineering, Utah</td>
</tr>
<tr>
<td>Warsaw, Poland</td>
<td>University, Maschhad, Iran</td>
<td>State University, Logan, Utah, USA</td>
</tr>
<tr>
<td>J. P. O’Kane</td>
<td>J. A. Smith</td>
<td>M. I. Yusuf</td>
</tr>
<tr>
<td>University College Cork,</td>
<td>Department of Civil</td>
<td>Civil Engineering Programme,</td>
</tr>
<tr>
<td>Ireland</td>
<td>Engineering and Operations Research, Princeton University, Princeton, New Jersey, USA</td>
<td>Abukabar Tafawa Baleza University, Bauchi, Nigeria</td>
</tr>
<tr>
<td></td>
<td>M. Sowiński</td>
<td>I. Zawadzki</td>
</tr>
<tr>
<td></td>
<td>Department of Water Resources and Environment Engineering, Ahmadu Bello University, Zaria, Nigeria</td>
<td>Department of Physics, University of Québec in Montreal, Canada</td>
</tr>
<tr>
<td></td>
<td>W. G. Strupczewski</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Institute of Geophysics,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polish Academy of Sciences,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warsaw, Poland</td>
<td></td>
</tr>
</tbody>
</table>
Preface

The present volume contains the edited proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resources, held in Miechów near Warsaw, Poland from 24 to 26 September 1990. It was organized under the auspices of the Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland, and the International Commission on Water Resources Systems (ICWRS) – a body within the International Association of Hydrological Sciences (IAHS). The Organization and Programme Committee for the Workshop consisted of the following individuals: Professor Lars Gottschalk (Norway/ICWRS/IAHS), Professor Zdzisław Kaczmarek (Poland/IIASA), Professor Janusz Kindler (Poland), Professor Zbigniew W. Kundzewicz (Poland), who acted as the Secretary, Professor Uri Shamir (Israel/ICWRS/IAHS) and Professor Witold Strupczewski (Poland).

The Workshop was a continuation of a series of meetings organized under the aegis of the International Commission of Water Resources Systems (ICWRS) within the IAHS. This series of meetings was initiated by the former ICWRS President, Professor Mike Hamlin in Birmingham, 1984.

Last Workshop of similar character was organized by the ICWRS Secretary, Professor Lars Gottschalk in Oslo (1989).

The Workshop was primarily devoted to recent methods of representation of uncertainty in hydrology and water resources. This embraces newly introduced methods and approaches that, albeit not new, have raised considerable recent interest. In the menu of topics tackled at the Workshop were, among others, such diverse items, as fractals, risk and reliability-related criteria, fuzzy sets, pattern recognition, random fields, time series, outliers detection, non-parametric methods, etc. The apparent side effect of the Workshop was also putting different methods into perspective. It possibly helped assessing methodologies and answering the question, whether the apparent attractivity of particular methods is based on permanent values or it is just a band-wagon effect and the methods are likely to pass as a short-lasting fashion. The Workshop attracted 44 registered participants from 16 countries, who presented 44 oral contributions during nine technical sessions. The set of participants was highly heterogeneous, as regards their backgrounds, institutions represented, theoretical and practical experiences and research philosophies. The participants were, by background, hydrologists, civil, environmental and agricultural engineers, foresters, geographers, geologists, geophysicists, system scientists, mathematicians, computer scientists and physicists. The institutions, where participants worked ranged from universities, through non-university research institutes (e.g. academies of sciences), administration (government agencies) to consulting engineers. The variety of backgrounds, research orientations and preferences is clearly visible in this volume, where more descriptive contributions are neighbours to papers stuffed with heavy mathematical developments. The heterogeneity and multidisciplinarity is believed to have contributed to a broad subject coverage and to have caused a welcome cross-fertilization effect.

The idea of the Workshop was to report on recent research, to present and discuss work at different stages of progress. Some entries in the discussion were indeed thought-provoking and surely helped the presenters and the audience to shape their further research.

It is a pleasure of the editor of this volume (and also secretary of the Organization and Programme Committee) to thank the participants in the Workshop and the contributors to this volume for their fine work that made the Workshop an undoubted success. Thanks are extended to the organizing institutions mentioned. The financial support provided by the Institute of Geophysics, Polish Academy of Sciences and by the International Institute for Applied Systems Analysis (IIASA) in Laxenburg, Austria, is gratefully acknowledged. Last, but not least, thanks are due to the UNESCO and its Director of Division of Water Sciences, Dr Andras Szollosi-Nagy, for the invitation to publish this volume within the International Hydrology Series and for support of the editorial work.

It is believed that the present contribution contains a wealth of illuminating and stimulating material. It may be useful for researchers, lecturers and graduate students in hydrology and water resources.

Z. W. Kundzewicz