Contents

Preface
page xi

1 Preliminary information
1.1 Definition of the climatic system
1.2 Scales of temporal variability and its mechanisms
1.3 Predictability and non-uniqueness
1.4 Methods of experimental research
1.4.1 Ground-based measurements
1.4.2 Satellite measurements

2 Present state of the climatic system
2.1 Initial information
2.2 Mass budget
2.3 Heat budget
2.4 Moisture budget
2.5 Energy budget
2.6 Angular momentum budget
2.7 Carbon budget

3 Small-scale ocean–atmosphere interaction
3.1 Surface atmospheric layer
3.2 Vertical distribution of the mean velocity over an immovable smooth surface; viscous sublayer; logarithmic boundary layer
3.3 Vertical distribution of the mean velocity over an immovable rough surface: roughness parameter; hydrodynamic classification of underlying surfaces

© Cambridge University Press
www.cambridge.org
Contents

3.4 Hydrodynamic properties of the sea surface .. 116
3.5 Wind–wave interaction .. 123
3.6 Vertical distribution of the temperature and passive admixture over an immovable surface ... 131
3.7 Coefficients of resistance, heat exchange and evaporation for the sea surface ... 133
3.8 The Monin–Obukhov similarity theory .. 135
3.9 Transformation of the thermal regime of the surface atmospheric layer in the presence of wind–wave interaction ... 143
3.10 Methods for estimating surface fluxes of momentum, heat and humidity 147
3.11 Methods for estimating CO$_2$ flux at the ocean–atmosphere interface 154
3.12 Features of small-scale ocean–atmosphere interaction under storm conditions 160

4 Mesoscale ocean–atmosphere interaction .. 165
4.1 The planetary boundary layer .. 165
4.2 Problem of closure .. 168
 4.2.1 First-order closure ... 170
 4.2.2 Second-order closure .. 173
4.3 Laws of resistance and heat and humidity exchange ... 179
4.4 System of planetary boundary layers of the ocean and atmosphere 183
 4.4.1 Theoretical models using \textit{a priori} information on the magnitude and profile of the eddy viscosity coefficient ... 186
 4.4.2 Simplest closed models ... 189
 4.4.3 Semiempirical models not using \textit{a priori} information on the magnitude and profile of the eddy viscosity coefficient .. 193

5 Large-scale ocean–atmosphere interaction.. 201
5.1 Classification of climatic system models .. 201
5.2 Similarity theory for global ocean–atmosphere interaction 203
5.3 Zero-dimensional models .. 209
5.4 One-dimensional models ... 213
5.5 0.5-dimensional (box) models ... 219
5.6 1.5-dimensional models .. 239
5.7 Two-dimensional (zonal) models .. 244
5.8 Three-dimensional models .. 251
Contents

5.9 ENSO as a manifestation of the inter-annual variability of the ocean–atmosphere system 281

6 Response of the ocean–atmosphere system to external forcing 292

6.1 Sensitivity of the climatic system: mathematical methods of analysis 292

6.2 Equilibrium response to a change in ocean–land area ratio 304

6.3 Equilibrium response to a change in the concentration of atmospheric CO₂ 308

6.4 Equilibrium response to a change in land surface albedo 322

6.5 Equilibrium response to a change in soil moisture content 328

6.6 Equilibrium response to a change in vegetative cover 331

6.7 Transient response to a change in the concentration of atmospheric CO₂ 337

References 358

Index 373