This book deals with issues of fluid flow and solute transport in complex geologic environments under uncertainty. The resolution of such issues is important for the rational management of water resources, the preservation of subsurface water quality, the optimization of irrigation and drainage efficiency, the safe and economic extraction of subsurface mineral and energy resources, and the subsurface storage of energy and wastes. Over the last two decades, it has become common to describe the spatial variability of geologic medium flow and transport properties using methods of spatial (or geo-) statistics. According to the geostatistical philosophy, these properties constitute spatially correlated random fields. As medium properties are random, the equations that govern subsurface flow and transport are stochastic.

This volume describes the most recent advances in stochastic modeling. It takes stock of mathematical and computational solutions obtained for stochastic subsurface flow and transport equations, and their application to experimental field data, over the last two decades. The book also attempts to identify corresponding future research needs. This volume is based on the second Kozacs Colloquium organised by the International Hydrological Programme (UNESCO) and the International Association of Hydrological sciences. Fifteen leading scientists with international reputations review the latest developments in this area of hydrological research.

The book is a valuable reference work for graduate students, research workers and professionals in government and public institutions, interested in hydrology, environmental issues, soil physics, petroleum engineering, geological engineering and applied mathematics.
INTERNATIONAL HYDROLOGY SERIES

The International Hydrological Programme (IHP) was established by the United Nations Educational, Scientific and Cultural Organisation (UNESCO) in 1975 as the successor to the International Hydrological Decade. The long-term goal of the IHP is to advance our understanding of processes occurring in the water cycle and to integrate this knowledge into water resources management. The IHP is the only UN science and educational programme in the field of water resources, and one of its outputs has been a steady stream of technical and information documents aimed at water specialists and decision-makers.

The International Hydrology Series has been developed by the IHP in collaboration with Cambridge University Press as a major collection of research monographs, synthesis volumes and graduate texts on the subject of water. Authoritative and international in scope, the various books within the Series all contribute to the aims of the IHP in improving scientific and technical knowledge of fresh water processes, in providing research know-how and in stimulating the responsible management of water resources.

EDITORIAL ADVISORY BOARD:
Secretary to the Advisory Board:
Dr Michael Bonell Division of Water Sciences, UNESCO, 1 rue Miollis, Paris 75732, France

Members of the Advisory Board:
Professor B. P. F. Braga Jr. Centro Tecnológica de Hidráulica, Sao Paulo, Brazil
Professor G. Dagan Faculty of Engineering, Tel Aviv University, Israel
Dr J. Khouri Water Resources Division, Arab Centre for Studies of Arid Zones and Dry Lands, Damascus, Syria
Dr G. Leavesley U.S. Geological Survey, Water Resources Division, Denver Federal Center, Colorado, USA
Dr E. Morris British Antarctic Survey, Cambridge, United Kingdom
Professor I. Oyeinde Department of Geography and Planning, University of Lagos, Nigeria
Professor S. Sorouhian College of Engineering and Mines, University of Arizona, Tucson, USA
Professor K. Takeuchi Department of Civil and Environmental Engineering, Yamazaki University, Japan
Professor D. E. Walling Department of Geography, University of Exeter, United Kingdom
Dr I. White CSIRO Division of Environmental Mechanics, Canberra, Australia

TITLES IN PRINT IN THE SERIES:
Z. W. Kundzewicz New Uncertainty Concepts in Hydrology
R. A. Feddes Space and Time Scale Variability and Interdependencies in the Various Hydrological Processes
J. Gibert, J. Mathieu and F. Fournier Groundwater and Surface Water Ecosystems: Biological and Hydrological Interactions and Management Options
G. Dagan and S. Neuman Subsurface Flow and Transport: A Stochastic Approach
Contents

List of contributors ix
Preface xi
Acknowledgments xiii

I. INTRODUCTION 1
1. Stochastic modeling of flow and transport: the broad perspective 3
 Gedeon Dagan

II. SUBSURFACE CHARACTERIZATION AND PARAMETER ESTIMATION 21
1. Characterization of geological heterogeneity 23
 Mary P. Anderson
2. Application of geostatistics in subsurface hydrology 44
 F. Javier Samper Calvete
3. Formulations and computational issues of the inversion of random fields 62
 Jesús Carrera, Augustín Medina, Carl Axness and Tony Zimmerman

III. FLOW MODELING AND AQUIFER MANAGEMENT 81
1. Groundwater flow in heterogeneous formations 83
 Peter K. Kitanidis
2. Aspects of numerical methods in multiphase flows 92
 Richard E. Ewing
3. Incorporating uncertainty into aquifer management models 101
 Steven M. Gorelick

IV. TRANSPORT IN HETEROGENEOUS AQUIFERS 113
1. Transport of inert solutes by groundwater: recent developments and current issues 115
 Yoram Rubin
CONTENTS

2. Transport of reactive solutes
 Vladimir Cvetkovic
 133

3. Nonlocal reactive transport with physical and chemical heterogeneity: linear nonequilibrium sorption with random rate coefficients
 Bill X. Hu, Fei-Wen Deng and John H. Cushman
 146

4. Perspectives on field-scale application of stochastic subsurface hydrology
 Lynn W. Gelhar
 157

V. FRACTURED ROCKS AND UNSATURATED SOILS

1. Component characterization: an approach to fracture hydrogeology
 Jane C.S. Long, Christine Doughty, Akhil Datta-Gupta, Kevin Hestir and Don Vasco
 179

2. Stochastic analysis of solute transport in partially saturated heterogeneous soils
 David Russo
 196

3. Field-scale modeling of immiscible organic chemical spills
 Jack C. Parker
 207

VI. A VIEW TO THE FUTURE

1. Stochastic approach to subsurface flow and transport: a view to the future
 Shlomo P. Neuman
 229

2. Stochastic approach to subsurface flow and transport: a view to the future
 Shlomo P. Neuman
 231
Contributors

PROF. MARY P. ANDERSON
Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 West Drayton Street, Madison, WI 53706, USA

CARL AXNESS
Sandia National Laboratories, Albuquerque, New Mexico 87185-1328, USA

PROF. JESÚS CARRERA
Departamento de Ingeniería del Terreno y Cartográfica, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

PROF. JOHN H. CUSHMAN
Center for Applied Mathematics, Math Sciences Building, Purdue University, West Lafayette, IN 47907, USA

PROF. VLADIMIR CVETKOVIC
Department of Water Resources Engineering, Royal Institute of Technology, S-10044 Stockholm, Sweden

PROF. GEDEON DAGAN
Faculty of Engineering, Department of Fluid Mechanics and Heat Transfer, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978 Israel

AKHIL DATTA-GUPTA
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA and Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA

FEI-WEN DENG
Center for Applied Mathematics, Math Sciences Building, Purdue University, West Lafayette, IN 47907, USA

CHRISTINE DOUGHTY
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

PROF. RICHARD E. EWING
Institute for Scientific Computation, Texas A&M University, 236 Tague Research Center, College Station, TX 77843-3404, USA

PROF. LYNN W. GELHAR
Room 48-237, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

PROF. STEVEN M. GORELICK
Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA

KEVIN HEISTR
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA and Department of Mathematics, Utah State University

BILL X. HU
Center for Applied Mathematics, Math Sciences Building, Purdue University, West Lafayette, IN 47907, USA

PROF. PETER K. KITANIDIS
Civil Engineering Department, Stanford University, Stanford, CA 94305-4020, USA

DR JANE C. S. LONG
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

AGUSTÍN MEDINA
Departamento de Ingeniería del Terreno y Cartográfica, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain

PROF. SHLOMO P. NEUMAN
Department of Hydrology and Water Resources, The University of Arizona, Tucson, AZ 85721, USA

PROF. JACK C. PARKER
Environmental Systems & Technologies, Inc., Blacksburg, VA 24070-6326, USA
LIST OF CONTRIBUTORS

PROF. YORAM RUBIN
Department of Civil Engineering, 435 Davis Hall, University of California, Berkeley, CA 94720, USA

DON VASCO
Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA

DR. DAVID RUSSO
Department of Soil Physics, Institute of Soils and Water, Agricultural Research Organization, The Volcani Center, PO Box 6, P.A., Bet Dagan 50-250, Israel

D. A. ZIMMERMAN
Gram, Inc., 8500 Menaul Boulevard, Albuquerque, New Mexico, USA

PROF. F. JAVIER SAMPER CALVETE
Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de La Coruña, Campus de Elviña, 15192 La Coruña, Spain
Preface

This book contains the refereed and edited proceedings of the Second IHPIAHJS George Kovacs Colloquium on Subsurface Flow and Transport: The Stochastic Approach, held in Paris, France, during January 26–30, 1995. The Colloquium was convened by Professors Gedeon Dagan and Shlomo P. Neuman under the auspices of UNESCO’s Division of Water Sciences as part of its International Hydrological Programme (IHP), and the International Association of Hydrological Sciences (IAHS).

The book is devoted to issues of fluid flow and solute transport in complex geologic environments under uncertainty. The resolution of such issues is important for the rational management of water resources, the preservation of subsurface quality, the optimization of irrigation and drainage efficiency, the safe and economic extraction of subsurface mineral and energy resources, and the subsurface storage of energy and wastes. Over the last two decades, it has become common to describe the spatial variability of geologic medium flow and transport properties using methods of statistical continuum theory (or geostatistics). According to the geostatistical philosophy, these properties constitute spatially correlated random fields. As medium properties are random, the equations that govern subsurface flow and transport are stochastic. This book takes stock of mathematical and computational solutions obtained for stochastic subsurface flow and transport equations, and their application to experimental field data over the last two decades. The book also attempts to identify corresponding future research needs.

The book contains invited articles on selected topics by 15 leading experts in the emerging field of stochastic subsurface hydrology. All 15 authors have made seminal contributions to this field during its early formative years. The book opens with a broad retrospective on stochastic modeling of subsurface fluid flow and solute transport by G. Dagan. It then proceeds with three papers devoted to the characterization and estimation of subsurface medium properties that control flow and transport. The paper by M. P. Anderson emphasizes geological considerations in the characterization of subsurface heterogeneity that by J. Samper describes methods of geostatistical inference while J. Carrera addresses practical and theoretical aspects of parameter estimation by inversion (the so-called inverse problem). Flow modeling and aquifer management are discussed in three articles by P. K. Kitanidis, R. E. Ewing, and S. M. Gorelick. The first of these three articles concerns computer modeling of flow in randomly heterogeneous porous media; the second surveys and assesses the state of the art in numerical simulation of multiphase flows in such media; and the third shows how to incorporate uncertainty into computer models of aquifer management. Four articles are devoted to solute transport in randomly heterogeneous porous media. Y. Rubin presents an overview of purely advective transport; V. Cvetkovic extends the treatment to reactive solutes; J. H. Cushman highlights nonlocal effects on transport; and L. W. Gelhar explains how stochastic transport theories have been used in the interpretation of field-scale tracer tests. The difficult topic of flow and transport in fractured rocks is tackled in a specialty paper by J. C. S. Long. It is followed by two papers on multiphase phenomena: one by D. Russo on stochastic analysis of transport in partially saturated heterogeneous soils, and the other by J. C. Parker on field-scale modeling of multiphase flow and transport. The book closes with a view to the future by S. P. Neuman.

Gedeon Dagan, Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
Shlomo P. Neuman, Department of Hydrology and Water Resources, The University of Arizona, Tucson, Arizona 85721, USA.
Acknowledgments

The editors want to thank all those who have contributed to the success of the Second IHP/IAHS George Kovacs Colloquium and this book. We thank the sponsoring organizations and their dedicated officers, especially Dr Andrasz Szollosi-Nagy, Director of UNESCO’s Division of Water Sciences, and Dr Uri Shamir, President of IAHS, whose support and active help were instrumental in bringing about the Colloquium and publishing this book. We are grateful to UNESCO’s Division of Water Sciences staff, and particularly to Dr Alicia Aureli and M. Bonnell, who ensured the success of the organization of the meeting and of publishing the book. We are most grateful to the authors for accepting our invitation to share their expertise and erudition with the participants of the Colloquium and the readers of this book. The person who worked hardest on the final editing of this book, and deserves kudos for its professional appearance, is Ms Bette Lewis; we acknowledge with gratitude her dedication to the task.