Engineering and Product Development Management

Engineering and Product Development Management is a practical guide to the components of engineering management, using a holistic approach. It will help engineers and managers understand what they must do to improve the product development process by deploying new technology and new methods of working in concurrent teams. The book takes elements from six well-known and understood bodies of knowledge and integrates them into a holistic approach: integrated product development, project management, process management, systems engineering, product data management, and organizational change management. These elements are framed within an overall enterprise-wide architecture.

The techniques discussed in this book work for both huge multinational organizations and smaller enterprises. The emphasis throughout is on practical tools that will be invaluable for engineers, managers, and consultants responsible for project and product development.

Stephen C. Armstrong is founder and president of AMGI Management Group Inc, an international operations and technology management consulting firm. He combines the business experience of a Certified Management Consultant and the technical rigor of a Professional Engineer with the practicality of a five year aeronautical engineering apprenticeship. Born in Belfast, he completed his apprenticeship in Northern Ireland with Short Brothers Aircraft, and completed a BSc Hons Mechanical Engineering degree in England at the University of Westminster - Polytechnic of Central London. Since 1981, he has worked as a design and manufacturing engineer and as a manufacturing engineering manager in North America, spending six years at KPMG as a principal management consultant specializing in advanced manufacturing systems. A consultant to some of the world's largest aerospace companies, including Lockheed Martin, de Havilland, British Aerospace, Bombardier, and Messier Dowty, Mr. Armstrong and his firm specialize in transforming business by focusing on Integrated Product Development/Collaborative Product Commerce. Their website can be found at www.amgimanagement.com. Mr. Armstrong's email address is amgi@amgimanagement.com.

Engineering and Product Development Management

The Holistic Approach

Stephen C. Armstrong

PEng, CEng, MIMechE, CMC AMGI Management Group, Inc.

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521790697

© Cambridge University Press 2001

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2001 This digitally printed first paperback version 2005

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Armstrong, Stephen C. Engineering and product development management : the holistic approach / Stephen C. Armstrong. p. cm. ISBN 0-521-79069-7 1. Production management. 2. Production engineering. 3. New products. I. Title. TS155 .A683 2001 658.5 - dc21 00-064218 ISBN-13 .978-0.521-79069-7 hardback

ISBN-13 978-0-521-79069-7 hardback ISBN-10 0-521-79069-7 hardback

ISBN-13 978-0-521-01774-9 paperback ISBN-10 0-521-01774-2 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures and tables	<i>page</i> xiv
Forewords	xix
Preface	xxiii
Acknowledgments	xxvii
Layout of book at a glance	xxxi

PART 1 UNDERSTANDING ENGINEERING PROCESS MANAGEMENT

1	The ho	olistic approach to managing engineering operations	3
	1.1	Separate bodies of knowledge	4
		Integrated product development	4
		Project/program management	6
		Process management	7
		Organizational change/political management	7
		Product data management	7
		Systems engineering	8
	1.2	The holistic approach	9
	1.3	The motivation for taking the holistic approach	9
		IPD objectives	10
	1.4	Benefits of the IPD approach	10
	1.4.1	Ensuring high-quality product and process definition	11
		Effective communication	11
		Complete documentation	11
	1.4.2	Improving project management	11
		Project structuring and planning	11
		Project estimating	12
		Project execution	12
		Project control	12
	1.4.3	Capitalizing on experience	12
	1.4.4	Establishing consistency	12
	1.4.5	Providing a training framework	13

V

1.5 Overview of the IPD philosophy 13 1.5.1 Comparison of IPD and traditional approaches 14 1.5.2 The serial approach to product and process development 14 1.5.3 Team comparisons 16 1.5.4 Empowering the integrated product team 16 1.6 Critical success factors in implementation 17 Customer focus 18 18 Concurrent development of products and processes 18 Early and continuous life cycle planning 18 18 Maximize flexibility for using a subcontractor and partner 18 Encourage robust design and improved process capability 18 Encourage robust design and improved process capability 19 Enapowerment 19 Seamless management tools 19 Proactive identification and management of risk 19 Management commitment 19 Communication 19 Continuous process improvement 20 1.7 The integrated enterprise framework 20 1.7 The integrated enterprise framework 20 21 An overview of engineering pro	Contents		
1.5.1 Comparison of IPD and traditional approaches 14 1.5.2 The serial approach to product and process development 14 1.5.3 Team comparisons 16 1.5.4 Empowering the integrated product team 16 1.6 Critical success factors in implementation 17 Customer focus 18 Concurrent development of products and processes and processes 18 Early and continuous life cycle planning 18 Maximize flexibility for using a subcontractor and partner and partner 18 Encourage robust design and improved process capability process capability 18 Multidisciplinary teamwork 19 Bempowerment 19 Seamless management tools 19 Proactive identification and management of risk Management commitment 19 Continuous process improvement 20 Integrated product team leaders 20 IPT environment 20 I.7 The integrated enterprise framework 24 2.1 Engineering process framewo	1.5	Overview of the IPD philosophy	13
1.5.2 The serial approach to product and process development 14 1.5.3 Team comparisons 16 1.5.4 Empowering the integrated product team 16 1.6 Critical success factors in implementation 17 Customer focus 18 Concurrent development of products and processes and processes 18 Early and continuous life cycle planning 18 Maximize flexibility for using a subcontractor and partner and partner 18 Encourage robust design and improved process capability process capability 18 Ewent-driven scheduling 18 Multidisciplinary teamwork 19 Seamless management tools 19 Procactive identification and management of risk of risk 19 Management commitment 19 Continuous process improvement 20 Integrated enterprise framework 20 I.7 The integrated enterprise framework 20 2.1 Engineering process framework 24 2.2 Work breakdown structure	1.5	.1 Comparison of IPD and traditional approaches	14
1.5.3 Team comparisons 16 1.5.4 Empowering the integrated product team 16 1.6 Critical success factors in implementation 17 Customer focus 18 Concurrent development of products and processes and processes 18 Early and continuous life cycle planning 18 Maximize flexibility for using a subcontractor and partner and partner 18 Encourage robust design and improved process capability process capability 18 Event-driven scheduling 18 Multidisciplinary teamwork 19 Empowerment 19 Seamless management tools 19 Proactive identification and management of risk of risk 19 Management commitment 19 Continuous process improvement 20 Integrated enterprise framework 20 1.7 The integrated enterprise framework 20 2.1 Engineering process framework 20 2.2 Work breakdown structure 27 Subphases and level I proces	1.5	.2 The serial approach to product and process development	14
1.5.4 Empowering the integrated product team 16 1.6 Critical success factors in implementation 17 Customer focus 18 Concurrent development of products 18 and processes 18 Early and continuous life cycle planning 18 Maximize flexibility for using a subcontractor 18 and partner 18 Encourage robust design and improved 19 process capability 18 Multidisciplinary teamwork 19 Seamless management tools 19 Proactive identification and management 19 Communication 19 Communication 19 Continuous process improvement 20 Integrated product team leaders 20 IPT environment 20 1.7 The integrated enterprise framework 20 2.1 Engineering process framework 24 2.2 Work breakdown structure 27 Phases 27 Subphases and level I process 28 Task groups and tasks 28 28 23 24	1.5	.3 Team comparisons	16
1.6 Critical success factors in implementation 17 Customer focus 18 Concurrent development of products 18 and processes 18 Early and continuous life cycle planning 18 Maximize flexibility for using a subcontractor 18 and partner 18 Encourage robust design and improved 19 process capability 18 Multidisciplinary teamwork 19 Seamless management tools 19 Proactive identification and management 19 Continuous process improvement 20 Integrated product team leaders 20 IPT environment 20 1.7 The integrated enterprise framework 20 1.7 The integrated enterprise framework 20 2 An overview of engineering process management 24 2.1 Engineering process 28 Task groups and tasks 28 Worksteps 28 28 2.3 Customer deliverables 30 2.4 Milestones and maturity gates 33 2.5 Process m	1.5	.4 Empowering the integrated product team	16
Customer focus18Concurrent development of productsand processesand processes18Early and continuous life cycle planning18Maximize flexibility for using a subcontractorand partnerand partner18Encourage robust design and improvedprocess capabilityprocess capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework242.1Engineering process management242.2Work breakdown structure27Phases27Subphases and level I process282.3Customer deliverables302.42.4Milestones and maturity gates332.53.1Single-number tracking system422.1Laternated metraction system42	1.6	Critical success factors in implementation	17
Concurrent development of productsand processes18Early and continuous life cycle planning18Maximize flexibility for using a subcontractor18Maximize flexibility for using a subcontractor18Encourage robust design and improved18process capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Usynksteps282.3Customer deliverables302.4Milestones and maturity gates3332.5Process management243.1Single-number tracking system423.1Single-number tracking system42		Customer focus	18
and processes18Early and continuous life cycle planning18Maximize flexibility for using a subcontractorand partnerand partner18Encourage robust design and improvedprocess capabilityprocess capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Concurrent development of products	
Early and continuous life cycle planning18Maximize flexibility for using a subcontractorand partner18Encourage robust design and improvedprocess capability18Event-driven schedulingMultidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and managementof risk19Management commitment19Continuous process improvement20Integrated product team leaders2017The integrated enterprise framework21Engineering process framework22An overview of engineering process management242.1Engineering process framework23Customer deliverables242.3Customer deliverables25Process maturity3Organization of engineering tasks2122Latsensteid meeting tasks23Latsensteid meeting tasks242.1Single-number tracking system25Process maturity2627272823242525Process maturity262727282920202021		and processes	18
Maximize flexibility for using a subcontractor and partner18Encourage robust design and improved process capability18Encourage robust design and improved19process capability18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Of risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Early and continuous life cycle planning	18
and partner18Encourage robust design and improved process capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Of risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Vorksteps28232.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Maximize flexibility for using a subcontractor	
Encourage robust design and improved process capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Vorksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		and partner	18
process capability18Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Proactive identification and management19Or risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Encourage robust design and improved	
Event-driven scheduling18Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Proactive identification and management19Management commitment19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		process capability	18
Multidisciplinary teamwork19Empowerment19Seamless management tools19Proactive identification and management19Proactive identification and management19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Event-driven scheduling	18
Empowerment19Seamless management tools19Proactive identification and management19Proactive identification and management19Of risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Multidisciplinary teamwork	19
Seamless management tools19Proactive identification and managementof risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks422.2Integrated maturity gates42		Empowerment	19
Proactive identification and management19of risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks422.2Integrated magement42		Seamless management tools	19
of risk19Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Proactive identification and management	
Management commitment19Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Vorksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		of risk	19
Communication19Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Management commitment	19
Continuous process improvement20Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42		Communication	19
Integrated product team leaders20IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated morter play45		Continuous process improvement	20
IPT environment201.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Interpreted meeter plane45		Integrated product team leaders	20
1.7The integrated enterprise framework202An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated master plan45		IP1 environment	20
2An overview of engineering process management242.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system42	1.7	The integrated enterprise framework	20
2.1Engineering process framework242.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated meeter play45	2 Ar	overview of engineering process management	24
2.2Work breakdown structure27Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated meeter play45	2.1	Engineering process framework	24
Phases27Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated meeter play45	2.2	Work breakdown structure	27
Subphases and level I process28Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated master plan45		Phases	27
Task groups and tasks28Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system422.2Integrated master plan45		Subphases and level I process	28
Worksteps282.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system422.2Integrated master plan45		Task groups and tasks	28
2.3Customer deliverables302.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system422.2Integrated master plan45		Worksteps	28
2.4Milestones and maturity gates332.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Intermeted meeter plan45	2.3	Customer deliverables	30
2.5Process maturity373Organization of engineering tasks423.1Single-number tracking system423.2Integrated meeter plan45	2.4	Milestones and maturity gates	33
3 Organization of engineering tasks423.1 Single-number tracking system422.2 Integrated matter plan45	2.5	Process maturity	37
3.1Single-number tracking system423.2Integrated meeter plan45	3 Or	ganization of engineering tasks	42
2.2 Intermeted marten plan (5)	3.1	Single-number tracking system	42
5.2 Integrated master plan 45	3.2	Integrated master plan	45

		Contents	vii
3.3	Integrated master schedule	47	
3.4	Developing a workplan template	48	
PART 2	APPLYING ENGINEERING PROCESSES TO PROGRAM MANAGEMENT		
4 Rol	es and responsibilities	51	
4.1	The customer	51	
4.2	The partner	57	
4.3	The sponsor	59	
4.4	The program director	59	
4.5	The functional director	62	
4.6	The project manager/engineer	64	
4.7	The functional manager	66	
4.8	The program coordinator	67	
4.9	The IPT leader	68	
4.10	The team member	71	
4.11	Support functions	73	
	Administrative – Business management	73	
	Reporting	73	
	Scheduling and coordination of IPT activities	74	
4.10	Critical success factors	74	
4.12	Skill types	74	
4.13	Training guidelines	15	
5 App	proach to program and project management	76	
5.1	What is program/project management?	76	
5.2	Why are program offices necessary?	79	
5.3	Critical success factors – Secrets of success	80	
5.3.	A genuine understanding of the program	80	
5.3.	2 Executive commitment to the program	80	
5.3.	3 Effective leadership by the program and functional directors	81	
5.3.	4 Organizational adaptability – The toughest challenge	81	
5.3.	5 Commitment to planning and control	82	
5.4	Program management elements	82	
5.5	Program management and business initiatives	83	
5.5. 5.5.	The "soft" side of program management is loadership	84 97	
5.5.	² The soft side of program management is leadership	04	

/iii Con	tents		
	5.6	Framework for program management	85
	5.7	Elements of the program office	86
6	An int	tegrated team member's guide to performing a task	87
	6.1	Integrated product team member responsibilities	87
	6.2	Performing a specific task	87
	6.2.1	Understanding what the task involves	88
		Roadmaps	89
		Task guideline and design tip	90
		General topic information	93
	6.2.2	Understanding individual work products	94
		Deliverable definitions	94
		Sample deliverables	95
	6.2.3	Gathering necessary materials to perform the work	96
	6.0.1	Related materials	97
	6.2.4	Performing the task	97
7	Progra	am structuring and planning	98
	7.1	Program structuring	100
	7.2	Selecting and tailoring subphases and deliverables	102
	7.2.1	Tailoring subphases and subphase objectives	103
	7.2.2	Tailoring deliverables and sections of deliverables	103
	7.2.3	Performing risk assessment	105
	7.3	Program planning – The integrated master plan	105
	7.3.1	The workplans	108
	7.3.2	Planning activities	109
		Tailor the workplan templates	109
		Determine task relationships and workflow diagrams	113
		Estimate tasks	113
		Adjust estimates based on program risks	114
		Assign resources	115
		Develop integrated master schedule	115
		Tune the detailed workplan	115
	7 2 2	Adjust the integrated master plan	110
	7.3.3	Strategies and plans within the process integration	110
	1.3.4	framework	116
		Planning for program reviews	110
		Planning for walkthroughs	116
		Planning for testing	117
		Planning for team training	117

			Contents	ix
8	Risk a	ssessment	119	
	8.1	Performing a risk assessment	119	
	8.1.1	When should a risk assessment be done?	120	
	8.1.2	The risk assessment process	120	
	8.1.3	The risk assessment questionnaire	122	
	8.2	Strategies for managing risks	122	
	8.2.1	Managing specific size risks	123	
	8.2.2	Managing program structure risks	124	
	8.2.3	Managing process and product technology risks	124	
)	Progra	am initiation and execution	126	
	9.1	Program initiation	126	
	9.1.1	Establish program goals	126	
	9.1.2	Establish product definition	127	
	9.1.3	Organizing and briefing the program IPT	128	
		Prepare the organization for integrated product		
		development	128	
		Establish a resource profile	129	
	9.1.4	Conducting IPT training	131	
		Training resources	132	
	9.1.5	Setting up the program environment	133	
	9.1.6	Staffing integrated product teams	133	
		Membership	133	
		Integrated product team	134	
		Integration team	134	
	9.1.7	Team goals and agreements	135	
		Technical	135	
		Schedule	135	
		Cost	136	
		Team agreements	136	
	9.1.8	Team operations	137	
		Colocation	137	
		Communication	138	
		Tools for team operations	138	
	9.2	Program execution	140	
	9.2.1	Monitoring program work	140	
	9.2.2	Performance measurement	141	
	9.2.3	Progress reporting	141	
	9.2.4	Managing engineering change	143	
	9.2.5	Replanning the program	143	
	9.2.6	Conducting or coordinating meetings	143	
		Customer and supplier involvement	144	
		Specialty organizations support	144	

Cambridge University Press	
9521017742 - Engineering and Product Development Management: The Holistic Approach	
Stephen C. Armstrong	
Frontmatter	
Aore information	

x Contents

10	Progra	m reviews	145
	10.1	Quality assurance factors	145
	10.2	What is quality assurance?	146
	10.3	Defining and measuring quality	148
	10.4	Quality assurance through the holistic approach	153
	10.5	Tailoring the program review process	153
	10.5.1	Selecting program review points	154
	10.5.2	Selecting the types of program review participants	155
	10.5.3	Determining the involvement of the program	
		review executives	158
	10.5.4	Outlining program review requirements	158
	10.6	Elements of the program review process	159
	10.6.1	Structured process and deliverable walkthroughs	159
	10.6.2	Quality evaluations	160
	10.6.3	The program review board	163
11	Fnging	ering change management and product data management	167
11		What is an sine science and product data management	107
	11.1	what is engineering change?	16/
	11.2	How to deal with engineering change	167
	11.3	Managing engineering change through design freezes	168
	11.4	The engineering change management process	169
	11.4.1	Requesting an engineering change	169
	11.4.2	Engineering change management log	174
	11.4.3	Evaluation of the engineering change request	175
	11.4.4	Disposition of the engineering change request	176
	11.5	Product data management	176
	11.5.1	Introduction to PDM	176
	11.5.2	PDM functionality	178
	11.5.3	PDM functions and features	179
		Data vault and document management	179
		Workflow and process management	181
		Product structure/configuration management	182
		Classification and retrieval	183
		Program/project management	184
		Communication and notification	184
		Data transport	185
		Data translation	183 195
		A dministration	10J
	1154		196
			1.2.6

Cambridge University Press
0521017742 - Engineering and Product Development Management: The Holistic Approach
Stephen C. Armstrong
Frontmatter
More information

			Contents	xi
	11.5.5	Benefits and justification of PDM systems	186	
		PDM offers more	187	
		Concurrent engineering	187	
		Improved design productivity	187	
		Better management of engineering change	188	
		A major step toward quality management	188	
		People, process, technology balance	188	
		Realistic implementation cost	188	
PA	RT 3 D	EPLOYING ENGINEERING PROCESS MANAGEMENT		
12	Organi	zing for deployment	191	
	12.1	Initiative program organization	191	
	12.1.1	Steering committee	192	
	12.1.2	Implementation program director assignments	193	
	12.1.3	Team member assignment	195	
	12.2	Engineering initiative program charter	196	
	12.3	Using an external consultant	196	
	12.4	Program planning	197	
	12.5	Objectives	198	
	12.6	General program plan	198	
		Detailed task scheduling	198	
		Training	199	
	12.7	Budgeting for the engineering initiative	200	
	12.8	Sample deployment plan	200	
	12.9	Roles and responsibilities of project team members	201	
		Subproject leads	201	
		Technical team managers	202	
		Process team managers	204	
		Core team members	204	
	12.10	Presenting the program plan	205	
	12.11	Special considerations for divisional and corporate	2 0 7	
		initiatives	205	
	12.12	Pitfalls	206	
	12.13	Conclusion	207	
13	Overco	ming resistance to change	208	
	13.1	Organizational politics	208	
	13.1.1	Managing organizational politics	209	
	13.1.2	Focus on the future	211	

	13.1.3	Political tactics	212
	13.1.4	Reasons for resistance	215
	13.2	Adopting the team-based approach to the engineering	
		organization	223
	13.2.1	Obstacles to IPT effectiveness	224
	13.2.2	Differences in orientation	224
	13.2.3	Inequalities among members	224
	13.2.4	Too much spirit	225
	13.2.5	The team myth	225
	13.2.6	Hidden agendas and politics	226
	13.2.7	Weak or inappropriate team goals	227
	13.2.8	Autonomous team	227
	13.2.9	Full-time, full-duration team	228
	13.2.10	Colocated team in a program management organization	229
	13.2.11	Small teams are more effective	229
	13.2.12	Team rewards	230
	13.2.13	Team of doers	230
	13.3	Team leader change management skills	230
	13.3.1	Clarify and build commitment to the team purpose	230
	13.3.2	Charismatic, interpersonally competent, involved	231
	13.3.3	Facilitate teamwork	234
	13.4	Team behavior	234
	13.5	Conclusions	237
14	Implem	enting IPD – Lessons learned case study	238
	14.1	Leadership and commitment	238
	14.2	IPT setup	241
	14.3	Decision making	242
	14.4	Roles and responsibilities	243
	14.5	Communication	244
	14.6	Team skills and training	245
		A changing work sequence to develop engineering	
		products	246
		A balanced systems approach to IPD and IPTs	247
	14.7	Conclusion	248
PA	RT4 AI	PPENDIXES	

A	IPD maturity self-evaluation tools	251
B	Chapter 2 tables	258

		Contents	xiii
С	Chapter 3 table	274	
D	Program structuring and planning checklist	282	
E	Chapter 8 tables	285	
F	Understanding the ERP and the PDM connection	301	
	Glossary Bibliography Index	311 317 319	

List of Figures and Tables

Figure 1-1: The six management bodies of knowledge	page 5
Figure 1-2: The holistic view of the bodies of knowledge	9
Figure 1-3: Serial approach to product and process development	14
Figure 1-4: Integrated product development approach	14
Figure 1-5: Cost impact	15
Figure 1-6: Cost impact of change	16
Table 1-1: Comparison of IPT and other teams	17
Figure 1-7: Integrated enterprise framework	21
Figure 1-8: Top-level business processes – example	22
Figure 1-9: Top-level process framework – example (Courtesy	
Ontario Store Fixtures, Inc.)	22
Figure 2-1: Process framework example 1 – Tier 1 processes	
(Courtesy Bombardier Aerospace – de Havilland Division)	25
Figure 2-2: Process framework example 2 – Tier 1 processes	
(Courtesy British Aerospace Military Aircrafts	
and Aero Structures)	26
Figure 2-3: Process framework example 3 – Tier 1	
(Courtesy Ontario Store Fixtures, Inc.)	26
Figure 2-4: Work breakdown structure example	27
Figure 2-5: Management uses a process framework to link corporate	
goals to individual objectives	29
Figure 2-6: Business process vs. company business objectives matrix	29
Figure 2-7: Process information map to user	30
Figure 2-8: Define/Build interface	31
Figure 2-9: Deliverables architecture	32
Figure 2-10: Deliverable architecture flowchart example	33
Figure 2-11: Customer deliverables mapped by process framework	
example	34
Figure 2-12: Design alternatives	35
Figure 2-13: Maturity gates and the process framework	36
Figure 2-14: Gate alignment matrix	36

List of Figures and Tables XV

Figure 2-15: Maturity matrix example (Courtesy British Aerospace	
Military Aircraft)	37
Figure 2-16: Process maturity route map	38
Figure 2-17: Five-level process maturity model	39
Figure 2-18: Detailed process maturity criteria	39
Figure 3-1: Specification tree	43
Figure 3-2: Standards, specs, and references organized by technical	
discipline	44
Figure 3-3: Engineering tasks organized by business process number	45
Figure 3-4: Task planning process data flow diagram – Tier 3	
of process hierarchy	46
Figure 3-5: A workplan template	47
Table 4-1: Proposal phase roles and responsibilities	52
Table 4-2: Program start-up roles and responsibilities	53
Table 4-3: Program implementation phase roles and responsibilities	54
Figure 4-1: Sample program organization	60
Figure 4-2: Engineering functional organization	64
Figure 4-3: Functional deployment of engineers	66
Figure 4-4: Program management implementation format	69
Figure 4-5: IPT team leader responsibilities	69
Figure 4-6: Integrated product team operation deliverables by phases	72
Figure 4-7: Team member responsibilities	73
Figure 4-8: Concurrency matrix	75
Figure 5-1: The five major processes of project/program management	77
Figure 5-2: Sample resource load by function and phase	78
Figure 5-3: Contrasting project and program management	79
Figure 5-4: Program management framework	85
Figure 6-1: Process documentation used to gain an understanding	
of the task process framework and subphase objective chart	88
Figure 6-2: Using the process framework and the subphase	
objectives chart	89
Figure 6-3: Example ROADMAP	90
Figure 6-4: Example task guideline and design tip	91
Figure 6-5: Components used to gain an understanding	
of individual work products	94
Figure 6-6: Components used to gather materials necessary	
to complete the task	95
Figure 6-7: The process of performing the task on an IPT	96
Figure 7-1: Approach to planning	99
Figure 7-2: The major program-structuring activities	102
Figure 7-3: Sample workflow diagram for the create detail product	
data subphase	104
Figure 7-4: How the questionnaire ties to the strategy table	106

xvi List of Figures and Tables

Figure 7-5: The planning window	107
Figure 7-6: Planning activities	110
Figure 7-7: Worksheet for adjusting estimated risk factors	111
Figure 7-8: Developing a scheduled cost to complete	113
Figure 7-9: How the program management phase fits in with	
the process framework	118
Figure 8-1: Sample of recommended risk assessment points	121
Figure 8-2: The risk assessment process	121
Figure 9-1: Design-to-cost model	127
Figure 9-2: Relationship of WBS and organizational structure	130
Figure 9-3: Achieving target costs	136
Figure 9-4: Colocation of cross-functional teams	138
Figure 9-5: Quality design tools	139
Figure 9-6: Quality function deployment	139
Figure 9-7: QFD planning structure	140
Figure 10-1: Quality assurance components	147
Figure 10-2: Quantitative measurement of quality	147
Figure 10-3: Measurement categories	149
Figure 10-4: Staffing ratios	149
Figure 10-5: Concurrency activities	150
Figure 10-6: Linking of strategy to process improvement	150
Figure 10-7: Sample program review points in the process	
framework	154
Figure 10-8: Recommended evaluators for the life cycle	156
Figure 10-9: Quality evaluators key questions	157
Figure 10-10: Three levels of quality review	160
Figure 10-11: Quality review milestones in the life	
cycle – Example 1 – Aircraft	161
Figure 10-12: Comprehensive list of objectives for program review	
points – Example 1 – Aerospace company	162
Figure 10-13: Comprehensive list of objectives for program review	
points – Example 2 – Engine manufacturer	164
Figure 11-1: Design freezes during the IPD process framework	168
Figure 11-2: Sample of change request form	170
Figure 11-3: A checklist of deliverables – Aerospace example	172
Figure 11-4: Engineering change management log	174
Figure 11-5: Product information environment	177
Figure 11-6: PDM concept overview presentation	178
Figure 11-7: PDM functions	179
Figure 11-8: Check in-check out of a PDM system	181
Figure 12-1: Engineering improvement initiative program	
organization chart	192
Figure 12-2: Two organizational layers – Functional and initiative	193

List of Figures and Tables xvii

Figure 12-3: Bill of material project charter	197
Figure 12-4: BPR initiatives obstacles	201
Figure 12-5: Seven integrated phases to the program plan	202
Figure 12-6: Internal resource needs	203
Figure 12-7: Deployment team skill requirements	203
Figure 13-1: Management view versus individual view	209
Figure 13-2: Change management guideposts	212
Figure 13-3: Political management ignorance	213
Figure 13-4: Sociologist versus consultant view	214
Figure 13-5: Individual view of the world	214
Figure 13-6: Political tools to overcome resistance	215
Figure 13-7: Business transformation including political	
management	216
Figure 13-8: Economic system	216
Figure 13-9: Economic and political system	217
Figure 13-10: Maslow's hierarchy	218
Figure 13-11: Messages by hierarchy position	218
Figure 13-12: Economic and shadow organization relationship	219
Figure 13-13: Zero-sum game	220
Figure 13-14: Broker influence	220
Figure 13-15: Impact on the shadow organization of changes that	
conflict with unwritten rules	221
Figure 13-16: Dysfunctional social systems	221
Figure 13-17: Aligned versus unaligned systems	222
Figure 13-18: Most business transformation assignments pose	
a significant threat to at least part of the organization	222
Figure 13-19: Radical change unaligned at the core	223
Figure 13-20: Hierarchical force is a tough way to bring	
about change	225
Figure 13-21: Types of resistance and tactics to overcome	226
Figure 13-22: Common ground value proposition	227
Figure 13-23: The two change agendas must be managed in parallel	228
Figure 13-24: From negotiation to cooperation	229
Figure 13-25: Three important qualities associated with	
IPT leadership	231
Figure 13-26: Key roles	232
Figure 13-27: Unsuccessful sponsor strategy	233
Figure 13-28: Successful sponsor strategy	233
Figure 13-29: The silos and hierarchy are a big part of the barrier	234
Figure 13-30: Map of support and resistance for an improvement	
initiative	236
Figure 13-31: Removing the blocker	236
Figure 14-1: High-level business process model	239

xviii	List	of	Figures	and	Tables
-------	------	----	---------	-----	--------

Table A-1: IPD maturity self-evaluation survey	253
Table A-2: Sample sizes to achieve various tolerances at a 90 percent	
confidence level	257
Table A-3: IPD maturity scale	257
Table 2-1: IPD phase objectives and deliverables example	258
Table 2-2: IPD phase descriptions and deliverables example	260
Table 2-3: Customer deliverables/definition example – Major phases	266
Table 2-4: Customer deliverables/definition example – Subphase	267
Table 2-5: Example of milestones – Aircraft example	272
Table 3-1: Task planning process descriptions	274
Table 8-1: Risk assessment questionnaire	288
Table 8-2: Risk assessment questionnaire – Summary sheet	291
Table 8-3: Risk strategies	292

Forewords

The vision of engineering management presented by Stephen Armstrong is one that is both broad in its context and deep in its coverage. He offers the engineering project manager an extensive set of management tools that, when used in total, will assure project success while improving overall project engineering effectiveness. Managers that employ this methodology will soon find this to be their indispensable desktop reference manual as they progress through the phases of product development.

The demands on the modern engineering manager are greater than they have ever been and the challenges to program success continue to grow exponentially. The rapid growth of technology has resulted in most of the products being developed by current and future companies - large and small - being inordinately complex systems of integrated technologies. This complexity is exacerbated by the complicated interdependencies among the technologies of the various product components. The availability of highly capable e-design, e-analysis, and e-prototyping tools and the growth in new methods that better integrate design and manufacturing are both wonderful benefits and potential burdens to the engineering teams using them. The move to virtual prototyping changes the planning and staffing profiles from that of the traditional project engineering organization. Added to these changes are the increasing demands for shorter and shorter engineering span times accompanied by the further expectation that engineering costs must be reduced by factors of 30 to 50 percent for businesses to remain competitive, and in some cases these reductions are expected to be recurring. These factors bring additional uncertainties and risk to an activity that has traditionally been risky.

Given this backdrop, Stephen Armstrong urges us to view the engineering management problem from a different perspective from what has been offered before. Engineering managers should adopt a total perspective of the problems that they have facing them. Even though they divide the work along the logical lines of work breakdown, they must also undertake the effort with the right tools and processes to ensure success. At the core of these processes are the ones that provide a logical and systematic definition of workflow and that provide the mechanisms to control and manage risk. Because an engineering effort is simply

xx Forewords

the maturation of information, understanding the flow of information and the management of it is critical to success. We are also cautioned that the answers to good engineering management are more than just technical or administrative. The engineering manager must recognize that his or her primary resource is people and must provide a human side to the management of engineering teams.

The managers who read this book will find the formula for successful projects. They will find useful management methods - a pattern starts to unfold and the powerful concept of an integrated technical management will form. Their approach to successful engineering management will never be the same.

Dr. Woody Sconyers, PhD Director, Virtual Product Development Lockheed Martin Tactical Aircraft Systems Fort Worth, Texas

Forewords xxi

Stephen Armstrong has presented a holistic and structured approach to engineering management. It is customer focused, dealing with processes, people, communication, and their working relationships. This approach is comprehensive and offers the engineering executive an extensive and structured methodology that brings together an integrated team to enable extraordinary project success in terms of quality, cost, and schedule.

I was introduced to a holistic view of engineering management through Stephen Armstrong. This approach was first implemented at Bombardier de Havilland on the Lear 45 Wing Program with great success. Later, Bombardier Aerospace used a holistic philosophy and applied it corporation-wide. With the implementation of this management methodology, it has developed into their superb Bombardier Engineering System. It is currently being applied on new Bombardier programs such as the BD100 Continental jet.

Twenty-first-century customers are becoming significantly more sophisticated and are demanding shorter and shorter product development times, higher quality, more product performance, and lower cost. This is an ongoing challenge. The product must meet design expectations the first time. Today, customers are virtually demanding zero tolerance. To add to this challenge, new products are being developed more and more by corporate consortiums and partnerships that are faced not only with developing their components but with integrating them into the final product. Most of this is now being done with e-tools. Not only are e-tools subject to their own continuous development, but they must also be integrated with partners who are faced with a continuous training program to use these tools. The risks are increasing dramatically, and the complexity of managing all of this has become formidable indeed.

In this book, Stephen Armstrong presents a management methodology that will enable success with programs of all sizes. He takes the disciplines of integrated product development, project management, process management, systems engineering, product data management, and organizational change management and integrates them into a holistic approach for managing engineering and product development. He treats the most important constituent of a program – the people and the organizational culture. This methodology is documented in a simplified xxii Forewords

way that can be easily understood and employed by all levels of management. Knowing and understanding the information flow, workflow, and human aspect is paramount for the success of any team.

Success will come to those who read and implement the methodologies presented in this book. The material is presented with a logical flow. It provides the breadth of knowledge and the tools needed. It will lead one to the structure, organization, and effective management of a team that will make the changes required.

> Carl Gerard, P Eng, MSc Eng (Cranfield) Vice-president Engineering 1992–7 (Retired) Bombardier Aerospace de Havilland

Preface

As the frontiers of technology advance and the work of engineers takes on an increasingly important role in our economy, companies with effective product development and engineering processes will be poised to create value for their shareholders. Those without the will to improve engineering and product development processes will be destined to lag behind.

Our university engineering programs focus on graduating technically sound engineers. Students study the disciplines of structural design or fluid mechanics. However, in both North America and Europe, little attention is paid to teaching the practice of engineering management. Engineering programs typically contain a fourth-year course on engineering economics, where students are taught the mechanics of discounted cash flows and budgets. The courses do not deal with the challenges of managing complex engineering-driven companies. With this gap in the training of engineers, it should come as no surprise when a graduate engineer practices engineering for two or three years and then leaves the profession to take an MBA. Many of these bright young engineers cut all ties to engineering. However, MBA programs are not designed to create engineering managers. The best of them teach the integration of management disciplines to teach general management; however, the worst provide the engineer with little more than a few specialized tools to apply in the area of marketing or finance. Generally speaking, the practice of engineering management is not taught in our universities. It is not a major area of research and learning, but it is vitally important to the success of today's technically driven enterprises. This problem is being addressed. Courses are being added, and enrollment is strong. The research base is lean, but certainly this book will help to fill the void.

The engineering manager at all levels has a very complex task. Just as the general manager must integrate marketing, engineering, operations, and finance, the engineering manager has an equally broad, equally complex task. Many engineering departments have specialists who have developed knowledge of a specific element of technical management. However, in today's environment, the management team must be able to look at problems from a broad, holistic perspective. To be truly successful, engineering managers must learn to integrate the concepts of a broad area of technical management disciplines. The engineering manager

xxiii

xxiv Preface

will need to mobilize his or her organization around this new approach. Only then will the goal of delivering new programs cheaper, faster, and with higher quality than ever before be realizable. In this book, the author takes elements from six well-known and understood bodies of knowledge and integrates them into a holistic approach for managing engineering. The disciplines of Integrated Product Development, Project Management, Process Management, Systems Engineering, Product Data Management, and Organizational Change Management are usually considered distinct, and often their implementation winds up with disastrous consequences. Never before has one integrated system been proposed to manage an engineering department from a holistic standpoint. The approach described in this book will help managers develop new products or improve existing ones faster, more cheaply, and with higher quality than ever before.

We believe that this book will provide you with the breadth of knowledge and the practical tools necessary to lead just such a change. Is this a daunting task? Perhaps, but we will address the changes required, with the same structured approach that we will learn to use to manage your new product development programs. Large problems will be broken down into manageable chunks, and suddenly they will seem very manageable indeed.

The author has been able to put a fine point on the problem after more than ten years as a consultant to large engineering organizations. In this practice, he has worked with the engineers on the CAD system improving a single workstep, all the way to the CEO in the boardroom setting a vision for an entire organization. This experience has given him a unique perspective on the problem we have just described. He knows intimately the individual management tools, but he also knows how to make them fit into a cohesive holistic plan that executives can describe but don't know enough details to implement.

The author has been involved in process management and integrated product development pretty much from its inception. In 1988–9 as a consultant for Ernst & Whinney, he facilitated the team that designed and implemented the integrated product development approach at McDonnel Aircraft in St. Louis, Missouri. McAir utilized this approach to conduct product improvements on both the Harrier and F-18 programs.

In 1991, Ernst & Whinney merged with KPMG Peat Marwick in Canada. And this led to a major business transformation assignment at Boeing de Havilland in Toronto. Bombardier Aerospace acquired de Havilland in 1992. The author received further assignments, which tended to be fundamental improvement projects to deliver step changes in organizational performance. During this time, the author left KPMG to found AMGI, the organization of which he is president today. His work at Bombardier led to the creation of the Bombardier Engineering System or BES. Building on the earlier work at McAir, the BES brought integrated cross-functional design teams to a traditional "over the wall" design engineering process. The greatest challenge on the BES was the aspect of managing organizational change within the project. The BES team fostered

Preface xxv

a common process across three countries and four cultures. Each company had the pride of its engineering heritage, bolstered by a nationalistic pride that comes from being a "national aerospace company." Today, Bombardier has applied the BES successfully on the Regional Jet RJ700, on major components of the Lear 45 business jets, and on the new Dash 8–400 regional commuter aircraft.

The author completed several assignments at the world's major military aircraft manufacturers in the period from 1996 to 2000. He assisted in the development and deployment of integrated product development to several military aircraft programs. The concept of concurrent product and process development stuck with him and has helped set the basis of the processes surrounding collaborative projects involving several partners working on a single design.

Being involved with integrated product development from its inception provides a unique perspective. The U.S. defense industry moved quickly to implement IPD, with mixed results. Typically they were trying to drive IPD separate from the other dynamics within their organization.

AMGI switched focus and began to develop a holistic approach to engineering management. Many companies will pick an initiative from one of the common management approaches. They will attempt to implement integrated product development, project management process management, systems engineering, or product data management, often with disastrous consequences because the rest of the organization actively resists the change. The holistic approach described here is unique, however, because it makes sense. Of course, new cross-functional processes are needed to support the implementation of cross-functional teams, but change of this magnitude takes vision and leadership to implement successfully. We believe that this book will provide the breadth of knowledge and the practical tools necessary to lead such a change. Top executives in most of the companies that the author has consulted have expressed their neglect of the human issues when deploying IPD or process management.

The approach documented here is a proven winner. It integrates the best thinking in the field of engineering management. Over the past ten years, we have had tremendous success putting our mark on the engineering processes of such successful engineering enterprises as Lockheed Martin Tactical Aircraft, British Aerospace Military Aircraft, Bombardier Aerospace, McDonnell Douglas, and Messier Dowty, as well as many smaller enterprises such as Ontario Store Fixtures.

This book aims to describe a straightforward model for organizing and running an engineering program and to suggest guidelines for selecting and dealing with the most important ingredient in any program, its people, and the collective organizational culture.

With the birth of e-engineering, many smaller companies are examining their product development processes. The danger is that they will fall into the trap of developing a purely electronic process. We believe that the approach we outline in this book is a prerequisite for making the move to electronic, collaborative projects. The book does not dwell on technology. Instead, it deals with people, xxvi Preface

politics, processes, and management. No technological solution will succeed if it does not consider the impact that solution will have on people. Electronic file sharing is useless if no one knows who has the authority to approve a drawing, or worse yet if the previous signatory is upset that a "team" now triggers the signoff. These are the issues we deal with in this book. Software teams will get the electronic system up and running. Only a leader with a broad vision can make it work.

Acknowledgments

This book is based on the experience the author gained from apprenticeship in the 1970s through to the management consulting assignments performed from 1988 to 2000. Many special people have influenced, inspired, and encouraged the author to improve constantly both personally and professionally. And others in senior executive leadership positions have had the courage to risk adapting new management systems. They did this despite resistance from the established culture. Many years after an innovation is launched the original pioneers are often forgotten in the politics of change, but they are the true leaders. The following people deserve special thanks for their efforts. I am a better person for knowing them.

Technical Editing

Jim Saunders, Professional Engineer and Business Executive, for editing the book through three versions since 1997. His in-depth practical understanding of IPD and engineering management made the book possible. Jim led the original design of the Bombardier Engineering systems as an employee at de Havilland and fostered the adaptation of BES to the corporate level (1993–6).

Manuscript Typing and Layout

Jaswinder Dehal for typing endless modifications to the manuscripts from 1998 to 2000. Her precision, dedication to get the job done on time, and quality of work have been a blessing.

Jan Bowins for typing the manuscript from 1996 to 1998.

Marlene Warnysky for typing the initial manuscript from 1993 to 1996.

Consulting Assignments

Messier Dowty, Toronto, Canada, 1995–2000

Ken Laver, President, for being an executive with vision and the wisdom to adapt advanced process management methods throughout the Canadian operations of the Messier Dowty enterprise. As President of de Havilland

xxvii

xxviii Acknowledgments

in 1993, he sowed the original seed that led to the Bombardier Engineering System. This was later sponsored by the new President Gaston Hebert. The original sponsors of a successful change initiative are often forgotten years after it has become a way of life in a company.

Lockheed Martin Tactical Aircraft Systems, Fort Worth, Texas, 1997–2000

Dr. Woody Sconyers, Director, Virtual Product Development, and Dr. Jack Garner, Manager, Engineering Processes, for leadership in pushing the integration of process management with Virtual Product Software tool development. Dr. Sconyers provided valuable input into this book as a reviewer.

Computer Science Corporation, Cincinatti, Ohio, and Dallas, Texas, 1996-8

David Howells, Partner, for having faith in my work by introducing me to two major aerospace clients and supporting my work. In addition, Dave provided valuable input into this book as a reviewer. My work with Dave originated on the McDonnel Aircraft IPD project in 1989. And since then he has become an authority in engineering systems in the United States.

Bombardier Aerospace - de Havilland, Toronto, Canada, 1991-6

- Carl Gerrard, Vice President, Engineering, for demonstrating leadership and adapting process management in engineering and product development for the first time in the company's history. This was so successful it became a corporate initiative and later an institutionalized system.
- Jan McDonald, BES Coordinator, for her commitment, enthusiasm, and process excellence and for coordinating the development of BES in the early stages.
- Jim Schwalm, President, for outstanding leadership in operations management and for initiating a business transformation program. His vision and handson approach have had an impact on Bombardier long after he was gone.

British Aerospace, Military Aircraft Division, Warton, Lancashire, UK, 1996-9

Ross Bradley, Director, Eurofighter and the OEI Transformation Program, for showing leadership in questioning the status quo and for embracing the need to address the softer human issues in process management, particularly with the Integrated Product Development initiative.

McDonnel Aircraft, St. Louis, Missouri, 1988-9

Bob Riley, Chief Program Engineer, AV8B Harrier Program, for being an inspiration when we developed the IPD approach for McAir. This was a first in the aerospace industry. The work at McDonnel Aircraft was the seed for the development and implementation of integrated product

Acknowledgments xxix

development systems at both British Aerospace Military Division and Bombardier Aerospace.

Employers

KPMG – Peat Marwick Stevenson and Kellogg (formerly Ernst & Whinney), Toronto, Canada, 1988–93

George Russel, Partner, for coaching me in the practice of management consulting and through the Certified Management Consulting (CMC) process. He is a truly outstanding mentor in the profession and I was blessed to have worked with him.

Ernst & Whinney, Cleveland, Ohio, 1988-9

Larry Michaels, Senior Manager, for coaching me in my first major aerospace consulting assignment at McDonnel Aircraft. This was truly an inspiring project and my first at applying the IPD philosophy in engineering and product development.

BBC Brown Boveri, Toronto, Canada, 1983–6

Roland Knoblauch for coaching and mentoring me in my first job in manufacturing systems and for learning the MRP II philosophy. This was a major career shift from engineering design to management.

Short Brothers Ltd., Belfast, Northern Ireland, 1972-7

- Liam Begley, Senior Tool Development Engineer, for mentoring me through my apprenticeship when I moved from the shop floor into the manufacturing engineering technical department.
- A. B. Treacher, Chief Planning Engineer, and Ernie Crone, Planning Engineer, for encouraging me to continue my studies and inspiring me to study engineering at the university level. I am indebted.

Publishers

- Dr. Philip Meyler, Senior Commissioning Editor, Cambridge University Press, Cambridge, England, for helping me through the initial preparation phase of the publishing process.
- Milicent Trealor, Editor, Society of Manufacturing Engineers, for encouraging me to approach Cambridge University Press and for coaching me through the process.

Family

Various family members in both Northern Ireland and the United States for providing me with a solid foundation in which to carry out my work and for showing faith in me throughout the years. Many are deceased but will never be forgotten.

Layout of Book at a Glance

Part 1 – Learn the underlying body of knowledge

Part 2 – Learn the tools and techniques of engineering management

Part 3 – Learn how to make use of this knowledge in your organization and overcome resistance

 THE HOLISTIC APPRO MANAGING ENGINEER OPERATIONS Bodies of Knowledge The Holistic Approach IPD Philosophy The Integrated Enterprise Framework 	ACH TO RING BACH TO RING Process De Customer L Maturity G Process Ma	EW OF NG PROCESS ENT composition eliverables ttes turity	3 – ORG/ ENG • Tracl • Integ • Integ Sche • Work	ANIZATION OF INEERING TASKS king System rated Master Plan rated Master dule k Plan Templates
RT 2 - APPLYING OCESSES TO PRO	ENGINEERING DGRAM MANAGEMEN BILITIES	PART T ENGII MANA	3 – DEPL Neering Agement	.0YING PROCESS
Customer • Spor	Project Manager	12 – 0	RGANIZING F	OR
- APPROACH TO PROGRA MANAGEMENT Program Office Success Factors Program Modules	M AND PROJECT Framework Soft Side Hard Side	Prc Ch Ext Bu IPI)gram Organiza arter & Objecti ternal Consulta dgeting D Plan	ation ives int
- AN INTEGRATED TEAM I	MEMBER'S GUIDE TO	• Sec	etor v. Corporat	te
PERFORMING A TASK IPT Member • Wo Responsibilities Pro	ork • Performing oducts Tasks	13-0 T(• Pol	O CHANGE	Overcoming Resistance to
- PROGRAM STRUCTURIN Approach/Benefits Structuring Tailoring	IG AND PLANNING Integrated Master Plan Review Plan	Ad Tea Ob Eff	apting ams stacles to fectiveness	 Change Approach Leadership Behaviors
 RISK ASSESSMENT Performing an Assessment 	 Strategies for Risk Management 	14 - IN Li	APLEMENTIN EARNED CAS	G IPD – LESSONS E STUDY Roles &
– PROGRAM INITIATION A Setting Goals Training Team Management	ND EXECUTION • Environment • Work Management • Re-planning	• IPT • De Ma	C Setup cision aking	Responsibilitie Communicatio Team Skills & Training
0 – PROGRAM REVIEWS				
Q & A Factors Tailoring	Q & A in IPD Review Process			