Taking as its starting point the interdependence of human and natural systems this book provides a comprehensive introduction to the emerging field of ecological economics. The authors, who have written extensively on the economics of sustainability, build on insights from both mainstream economics and ecological sciences. It assumes no prior knowledge of economics and is well suited for use on interdisciplinary environmental science and management courses.

Michael Common is Emeritus Professor at the Graduate School of Environmental Studies, University of Strathclyde and a member of the editorial board of the journal Ecological Economics. He is highly respected both for his teaching and as author of numerous journal and book publications on the economics of the environment since 1973.

Sigrid Stagl is a Senior Research Fellow at SPRU, University of Sussex. She is a member of the editorial board of the journal Environmental Values and is currently Vice-President of the European Society of Ecological Economics. She was awarded the first Ph.D in Ecological Economics worldwide.

Companion website: www.cambridge.org/common
Common and Stagl have written the definitive text to date for ecological/environmental economics. It presents the standard theories of neoclassical economics and points the way toward a richer understanding of the relationship between the human economy and the natural world. The field of economics is undergoing a revolution that will fundamentally change economic theory and policy. Central to this revolution is the recognition by economists that economic behavior cannot be understood outside its social and environmental context. This text brings environmental economics into the twenty-first century and will be the standard in the field for years to come.

John Gowdy, Professor of Economics, Rensselaer Polytechnic Institute, and former President of the U.S. Society for Ecological Economics

Environmental economics has existed as a powerful discipline for nearly 50 years. Ecological economics borrows heavily from it, and overlaps it significantly. But there are differences. Ecological economics perhaps invests more heavily in understanding ecological science, takes more note of discontinuities and non-linearities in ecological and economic systems, and pays less attention to notions of economic efficiency and outcomes determined by short-term human wants. Anyone wanting an explanation and exploration of these differences in a lucid and informative manner will want to own Mick Common and Sigrid Stagl’s textbook. It is a very fine introduction.

David Pearce, Emeritus Professor of Environmental Economics, University College London

Clear presentations of the reasoning and facts underlying environmental science and economics, a steady focus on the high hopes of economists and the earthly fears of ecologists, and inspiring descriptions of how ecological economists are trying to make sense of life on earth. This is the book we have been waiting for.

Richard B. Norgaard, Professor of Energy and Resources, University of California, Berkeley, and former President of the International Society for Ecological Economics

This book provides a coherent account of the major environmental challenges to economic and human progress of the twenty first century. It is clear, direct and easily understandable and conveys a powerful message that we
ignore the sustainability and ecological aspects of the economy at our peril. I recommended it highly to all students and scholars of the emerging field.

Neil Adger, Reader in Environmental Economics, University of East Anglia.

'This book satisfies the urgent need for an introductory text on Ecological Economics that is informative but not overly detailed on environmental sciences, strong on and where necessary critical of economics, and representative in its coverage of new theory and methods.'

Jeroen C. J. M. van den Bergh, Professor of Environmental Economics, Free University, Amsterdam

'With this excellent text, Mick Common and Sigrid Stagl have provided an authoritative introduction to ecological economics. It offers a very clear and comprehensive review of the concepts, methods and issues on which ecological economics focuses, with a wealth of examples and worked simulations. Assuming nothing more than the most basic knowledge of mathematics, the book develops the economic principles relevant to environmental policy; it also introduces the necessary understanding of the relevant natural scientific concepts and principles. These economic and scientific methods are then synthesised to analyse current environmental problems and to indicate policy approaches to their solution. With extensive referencing to the current literature, the book is an excellent basis for the study of ecological economics and environmental policy.'

John Proops, Professor of Ecological Economics, Keele University, and former President of the International Society for Ecological Economics

'Here it is – the book that fills the gap! It offers students a very good introduction to environmental management as the interdisciplinary challenge it is. It integrates core elements from natural and social sciences into a coherent text – a rare feature. In doing so it is really enlightening, well structured and enjoyable to read. Moreover, it is well organized for teaching purposes – even with a web page attached to it.'

Arild Vatn, Professor of Environmental Sciences, and Vice-President of the European Society for Ecological Economics, Norwegian University of Life Sciences

'This book offers an innovative and sophisticated approach to teaching ecological economics at the introductory level. For economics students, Common and Stagl provide a basic understanding of the biophysical foundations and environmental impacts of economic activity. For environmental studies students, the authors provide a grounded and yet accessible introduction to the concepts and methods of economics – especially as they relate to the interplay between economic growth, natural resource depletion, and the achievement of sustainable development. “Ecological Economics: An Introduction” could and should
be used in core courses in academic programs aimed at integrating ecology and economics at the levels of research and praxis.'

Richard B. Howarth, Professor of Environmental Studies, Dartmouth College

'This textbook is a brilliant guide to understanding the global environmental and distributional challenges we are facing. Common and Stagl master a truly transdisciplinary approach and take a fresh look at the structuring of the issues, resulting in a textbook that is both committed and balanced and which offers an alternative perspective to traditional environmental economics introductions. Furthermore, the educational presentation is very carefully prepared and clear, ideal for beginning students.'

Inge Røpke, Associate Professor, Technical University of Denmark

'This is the most comprehensive and readable treatment of the complex transdisciplinary field of Ecological Economics to date. It will be a standard reference for students and practitioners for years to come. When it has come to replace "Samuelson" as the standard textbook for introductory economics courses, we will know the world is on a path toward sustainability.'

Robert Costanza, Gund Professor of Ecological Economics and Director, Gund Institute of Ecological Economics, The University of Vermont, and former President of the International Society for Ecological Economics

'How refreshing to see an introductory economics textbook which begins by stating, "The pursuit of sustainable development . . . cannot be left to markets – there is an inescapable role for government!" This new text is the first I've seen which actually begins from the beginning, setting the economy in its environmental context and requiring no prior economics indoctrination (which then would need to be critiqued and expunged). It explains the rationale behind modelling and explores basic principles of ecology, thermodynamics and economics before discussing their many complex interrelationships with currency and style. The sections on policy and governance are sophisticated and comprehensive. This is an introduction to economics for the 21st century, economics as it must become if the profession – and the global economy itself – are to survive.'

Patricia E. Perkins, Associate Professor, York University, Toronto

'This is the most coherent book introducing ecological economics to date. Other attempts have proven to be a mishmash to standard economics and alternative thinking which is often contradictory. Common and Stagl tackle what makes ecological economics distinct head on and provide the strongest textbook currently on the market. Their coverage of ethical issues upfront is particularly welcome. The text is clear and well written for the uninitiated.'

Professor Clive L. Spash, Research Chair in Environmental & Rural Economics, University of Aberdeen, and President of the European Society for Ecological Economics
Contents

List of figures xx
List of tables xxiii
List of boxes xxv
Preface xxvii
Introduction xxix

Chapter 1 An introduction to ecological economics 1
1.1 What is ecological economics? 1
1.2 A brief history of the environment in economics 3
1.3 Science and ethics 6
1.4 Sustainability and sustainable development 8
1.5 The relationship between ecological and neoclassical economics 9
1.6 A guided tour 13
Keywords 15
Further Reading 16
Websites 17
Discussion Questions 17

PART I INTERDEPENDENT SYSTEMS 19

Chapter 2 The environment 21
2.1 Planet earth 22
2.1.1 Systems 22
2.1.2 The lithosphere 23
2.1.3 The hydrosphere 24
2.1.4 The atmosphere 25
2.1.5 The biosphere 25
2.2 Thermodynamics 26
2.2.1 Energy, heat and work 26
2.2.2 First law of thermodynamics 26
2.2.3 Thermodynamic systems classification 29
2.2.4 Second law of thermodynamics 30
2.2.5 Plants as open systems 32
2.2.6 Animals as open systems 34
2.3 Ecosystems 37
 2.3.1 Energy and nutrient flows 37
 2.3.2 Population dynamics 43
 2.3.3 System dynamics 50

2.4 Nutrient cycles 56
 2.4.1 The carbon cycle 56

2.5 Evolution 59
 2.5.1 Biological evolution 59
 2.5.2 Coevolution 61

Summary 62

Appendix: Doubling times with exponential growth 63

Further Reading 64

Websites 65

Exercises 65

Chapter 3 Humans in the environment – some history 66
 3.1 Human evolution 66
 3.1.1 Cultural evolution 67
 3.2 The history of human numbers 68
 3.3 Hunter-gatherers 69
 3.4 The transition to agriculture 72
 3.5 The second transition 74
 3.5.1 Energy slaves 76
 3.5.2 Human numbers in the industrial phase of human history 77
 3.6 Energy and agriculture 78
 3.7 The extent of the human impact on the biosphere 82

Summary 83

Keywords 84

Further Reading 84

Discussion Questions 85

Chapter 4 The economy in the environment – a conceptual framework 86
 4.1 The big picture 86
 4.2 Stocks and flows 88
 4.3 The economy 90
 4.3.1 Consumption 90
 4.3.2 Production 90
 4.3.3 Investment 91
 4.3.4 The productivity of capital accumulation 92
 4.3.5 Open and closed economies 93
Contents

4.4 Resource extraction 94
4.4.1 Flow resources 94
4.4.2 Stock resources 95
4.5 Waste insertion 98
4.5.1 Stocks and flows 98
4.5.2 Damage relationships 100
4.6 Implications of the laws of thermodynamics 102
4.6.1 Conservation of mass 102
4.6.2 Entropy 103
4.6.3 Energy flow as an approximate measure of environmental impact 104
4.7 Recycling 105
4.8 Amenity services 107
4.8.1 Sustainable amenity service consumption 108
4.8.2 Ex situ consumption of amenity services 109
4.9 Life support services 110
4.10 Interactions 111
4.10.1 A river estuary 111
4.10.2 Resource quality, energy use and waste generation 112
4.10.3 The enhanced greenhouse effect 113
4.11 Threats to sustainability 114
4.11.1 Resource depletion 114
4.11.2 Waste accumulation 115
4.11.3 Loss of resilience 115
4.11.4 Responses 116
4.11.5 The global perspective 117
Summary 118
Keywords 118
Further Reading 119
Discussion Questions 120
Exercises 120

PART II ECONOMIC ACTIVITY 123

Chapter 5 Economic accounting 125
5.1 Input–output accounting 125
5.1.1 The basic accounts 125
5.1.2 Input–output analysis 128
5.1.3 Accounting for direct and indirect requirements 129
5.1.4 Input–output accounting and the environment 130
5.1.5 Input–output structures in history 132
5.2 National income accounting conventions 136
 5.2.1 The basic ideas 136
 5.2.2 Gross and net national product 138
 5.2.3 Investment is necessarily equal to saving 139
 5.2.4 Accounting for government 140
 5.2.5 Foreign trade: national and domestic national income 142
 5.2.6 National income accounting in practice 143
5.3 National income as the measure of economic performance 144
 5.3.1 Income or consumption? 145
 5.3.2 Gross or net income? 145
 5.3.3 Adjustment for population size and growth 147
 5.3.4 What national income does not include 147
 5.3.5 Defensive expenditure 148
 5.3.6 The problem of differing relative prices 148
5.4 National income accounting and the environment 154
 5.4.1 Natural resource balance sheets 155
 5.4.2 Satellite accounting 156
Summary 158
Keywords 159
Appendix: Input–output algebra 160
Further Reading 163
Websites 164
Discussion Questions 165
Exercises 165

Chapter 6 Economic growth and human well-being 167
 6.1 The rich and the poor 167
 6.1.1 International comparisons of per capita national income 167
 6.1.2 Many poor, few rich 169
 6.1.3 Poverty in the world economy 169
 6.2 Why are some countries rich and some poor? 171
 6.3 What drives economic growth? 173
 6.3.1 The basic growth model 173
 6.3.2 The basic model and the data 182
 6.3.3 Efficiency 184
 6.3.4 Technological change 185
 6.3.5 Endogenous technological progress 186
 6.3.6 Explaining economic growth 188
Contents

6.4 The desirability of economic growth 189
 6.4.1 Economists and dentists 190
 6.4.2 Poverty alleviation 191
 6.4.3 Growth and inequality 193
 6.4.4 Ecological economics on the desirability of economic growth 194

6.5 Non-economic indicators of well-being 194
 6.5.1 International comparisons 195
 6.5.2 Are things getting better? 195
 6.5.3 Relationships between GDP per capita and well-being indicators 196
 6.5.4 GDP per capita and happiness 198

6.6 Human needs and desires – what makes people happy? 200
 6.6.1 Measuring and explaining happiness 200
 6.6.2 Relationships between income and happiness 203
 6.6.3 Does inequality matter? 205
 Summary 205
 Keywords 206
 Further Reading 206
 Discussion Questions 208
 Exercises 208

Chapter 7 Economic growth and the environment 210

 7.1 The IPAT identity 210
 7.1.1 Scenarios for the near future 212
 7.1.2 The commodity composition of GDP – ‘consumption technology’ 216

 7.2 Modelling growth and the environment 218
 7.2.1 On substitution possibilities 219
 7.2.2 Renewable resources 221
 7.2.3 Non-renewable resources 228
 7.2.4 Summary and overview 234

 7.3 Limits to Growth? 236
 7.3.1 Growth and the environment in history 236
 7.3.2 The limits to growth 237
 7.3.3 Reactions to The limits to growth 244
 7.3.4 Beyond the limits 246

 7.4 Growth as the solution to environmental problems? 247
 7.4.1 The EKC hypothesis 247
 7.4.2 The empirical status of the hypothesis 248
 7.4.3 EKC implications 250
Chapter 8 Exchange and markets 261

8.1 Exchange and specialisation 261
 8.1.1 Exchange 261
 8.1.2 Specialisation in production 262
 8.1.3 Money and prices 266

8.2 How markets work 268
 8.2.1 Demand and supply functions 268
 8.2.2 Non-price influences on demand and supply 274
 8.2.3 Elasticities 275

8.3 Applications of market analysis 282
 8.3.1 Price ceilings 282
 8.3.2 Price floors 283
 8.3.3 Commodity taxation 286

8.4 Lending and borrowing, saving and investing 289
 8.4.1 Compounding and discounting 289
 8.4.2 Saving and lending 290
 8.4.3 Investing and borrowing 292
 8.4.4 Savings, investment and the interest rate 299

Summary 304
Keywords 304
Further Reading 306
Discussion Questions 306
Exercises 306

Chapter 9 Limits to markets 308

9.1 Markets and efficiency 308
 9.1.1 The invisible hand – allocative efficiency 309
 9.1.2 What is allocative efficiency? 310
 9.1.3 How markets could achieve allocative efficiency 311
 9.1.4 Intertemporal efficiency 316

9.2 Market failure and its correction 320
 9.2.1 The conditions needed for markets to produce allocative efficiency 320
Contents

9.2.2 Market failure is the norm 322
9.2.3 Consumer sovereignty 324
9.2.4 Correcting market failure 325
9.2.5 Multiple sources of market failure 331
9.3 Markets and equity 332
 9.3.1 Intratemporal equity 333
 9.3.2 Intertemporal efficiency and distribution 336
9.4 Markets and the environment 337
 9.4.1 Property rights 337
 9.4.2 Natural resources 339
 9.4.3 Waste flows and sinks 349
 9.4.4 Amenity and life support services 349
9.5 Markets and sustainability 350
 9.5.1 Non-renewable resource depletion and sustainability 350
 9.5.2 The efficient level of waste emissions 352
Summary 354
Keywords 354
Further Reading 356
Discussion Questions 357
Websites 357
Exercises 357

PART III GOVERNANCE 359

Chapter 10 Determining policy objectives 361

10.1 The history of the sustainable development principle 362
 10.1.1 The early days of sustainable development 362
 10.1.2 The 'Brundtland Report' – our common future 362
10.1.3 The United Nations Conference on Environment and Development (UNCED) 364
10.1.4 The World Summit on Sustainable Development (WSSD) 369
10.2 Operationalising the principle 372
 10.2.1 What is the principle meant to deliver? 372
10.2.2 Sustainability in neoclassical economics 374
10.2.3 Sustainability in ecology 376
10.2.4 Sustainability in ecological economics 377
Chapter 10
Decision making under imperfect knowledge 379
10.3 Project appraisal with imperfect information 380
10.3.1 Project appraisal with imperfect information 380
10.3.2 Imperfect information and the environment 385
10.4 The Precautionary Principle and safe minimum standards 389
10.4.1 The Precautionary Principle 389
10.4.2 Safe minimum standards 392
10.4.3 The Precautionary Principle in the EU 394
10.4.4 The Precautionary Principle in the US 394
10.5 Science and precaution 395
10.6 From policy principles to policy objectives 396
Summary 397
Keywords 397
Further Reading 398
Websites 399
Discussion Questions 400
Exercises 400

Chapter 11
Environmental policy instruments 402
11.1 Choice of environmental policy instruments 403
11.2 Moral suasion 406
11.2.1 Changing preferences 407
11.2.2 Varieties of preferences 407
11.2.3 Innovations in measuring and reporting economic and environmental performance 409
11.3 Command-and-control instruments 410
11.3.1 Non-transferable emissions licences 411
11.3.2 Minimum technology requirements 412
11.3.3 Regulation of location of polluting activities 412
11.4 Creation of property rights 413
11.5 Taxation 415
11.5.1 Taxation for allocative efficiency 415
11.5.2 Taxation for an arbitrary standard 417
11.5.3 Taxation and the goods market 418
11.5.4 Environmental taxes raise revenue 422
11.6 Tradable permits 425
11.7 The least cost theorem 427
11.8 Environmental performance bonds 431
11.9 Interdependence of policy goals 434
Summary 434
Keywords 435
Contents

Further Reading 436
Websites 437
Discussion Questions 437
Exercises 438
Appendix Input-output analysis of carbon taxation 438

PART IV THE INTERNATIONAL DIMENSION 443

Chapter 12 A world of nation states 445
 12.1 The case for international trade 445
 12.1.1 The principle of comparative advantage 445
 12.1.2 Domestic winners and losers 447
 12.1.3 Some qualifications to the principle of comparative advantage 449
 12.1.4 Trade and the environment – a first look 451
 12.2 Patterns of international trade 452
 12.3 International trade and sustainable development 454
 12.3.1 Positive consequences of international trade 455
 12.3.2 Negative consequences of international trade 460
 12.4 Institutions regulating international trade 464
 12.4.1 Trade measures – WTO rules 464
 12.4.2 Multilateral Environmental Agreements 467
 12.5 Towards trade rules for sustainability 468
 12.6 Globalisation 471
 12.6.1 Role of transnational and multinational corporations 472
 Summary 476
 Keywords 476
 Further Reading 478
 Websites 479
 Discussion Questions 480
 Exercises 480

Chapter 13 Climate change 482
 13.1 The nature and extent of the problem 482
 13.1.1 The greenhouse effect 483
 13.1.2 The enhanced greenhouse effect 484
13.1 The Intergovernmental Panel on Climate Change
13.1.1 The Intergovernmental Panel on Climate Change 485
13.1.2 The greenhouse gases 486
13.1.3 The enhanced greenhouse effect – impacts of climate change 493
13.1.4 Responding to the enhanced greenhouse effect 495
13.2 Why the problem is difficult 498
13.2.1 A global public bad 498
13.2.2 Equity issues 499
13.2.3 Complexity and ignorance 504
13.2.4 Energy use and supply 506
13.3 Mitigation targets and instruments 506
13.3.1 Setting a global target 506
13.3.2 Instrument regimes 508
13.3.3 National sovereignty and mitigation 509
13.4 What is being done about the problem? 510
13.4.1 The United Nations Framework Convention on Climate Change 510
13.4.2 The Kyoto Protocol 511
13.4.3 What would Kyoto’s impact be? 514
13.4.4 Assessment 516
Summary 517
Keywords 517
Further Reading 518
Websites 519
Discussion Questions 519
Exercises 519

Chapter 14 Biodiversity loss 521
14.1 The biodiversity-loss problem 521
14.1.1 What is biodiversity? 521
14.1.2 How fast is biodiversity being lost? 523
14.1.3 Why is it being lost so fast? 525
14.1.4 Why does biodiversity loss matter? 526
14.2 Why it is a difficult problem 527
14.2.1 Publicness 527
14.2.2 Equity 528
14.2.3 Uncertainty 529
14.3 Conservation policy 529
14.3.1 Ex situ versus in situ conservation 529
14.3.2 Which species to preserve? 530
14.3.3 Habitat preservation and protected areas 532
14.4 The Convention on Biological Diversity 534
14.4.1 Objectives and principles 534
14.4.2 Instruments 535
14.4.3 Assessment 537
Summary 537
Keywords 537
Further Reading 538
Websites 539
Discussion Questions 539

References 540
Index 552
Figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Locating ecological economics</td>
</tr>
<tr>
<td>1.2</td>
<td>The economy in the environment</td>
</tr>
<tr>
<td>1.3</td>
<td>Ethical positions of neoclassical and ecological economics</td>
</tr>
<tr>
<td>2.1</td>
<td>Four interacting environmental systems</td>
</tr>
<tr>
<td>2.2</td>
<td>System and environment</td>
</tr>
<tr>
<td>2.3</td>
<td>Living plant as an open system</td>
</tr>
<tr>
<td>2.4</td>
<td>Living animal as an open system</td>
</tr>
<tr>
<td>2.5</td>
<td>A foodweb for a woodland ecosystem</td>
</tr>
<tr>
<td>2.6</td>
<td>A trophic pyramid</td>
</tr>
<tr>
<td>2.7</td>
<td>Energy and nutrient movement in ecosystems</td>
</tr>
<tr>
<td>2.8</td>
<td>Exponential growth</td>
</tr>
<tr>
<td>2.9</td>
<td>Density-dependent growth</td>
</tr>
<tr>
<td>2.10</td>
<td>Some types of population dynamics</td>
</tr>
<tr>
<td>2.11</td>
<td>Forest succession</td>
</tr>
<tr>
<td>2.12</td>
<td>Resilience</td>
</tr>
<tr>
<td>2.13</td>
<td>Another look at resilience</td>
</tr>
<tr>
<td>2.14</td>
<td>The carbon cycle</td>
</tr>
<tr>
<td>3.1</td>
<td>Human population growth</td>
</tr>
<tr>
<td>3.2</td>
<td>The energetics of food production systems</td>
</tr>
<tr>
<td>4.1</td>
<td>Economy-environment interdependence</td>
</tr>
<tr>
<td>4.2</td>
<td>Stock and flow</td>
</tr>
<tr>
<td>4.3</td>
<td>Density-dependent growth</td>
</tr>
<tr>
<td>4.4</td>
<td>Dose–response relationships</td>
</tr>
<tr>
<td>4.5</td>
<td>Recycling</td>
</tr>
<tr>
<td>4.6</td>
<td>Recreational use relationships</td>
</tr>
<tr>
<td>4.7</td>
<td>Environmental service interactions</td>
</tr>
<tr>
<td>6.1</td>
<td>Substitution possibilities with a Cobb–Douglas production function</td>
</tr>
<tr>
<td>6.2</td>
<td>Growth in the basic model</td>
</tr>
<tr>
<td>6.3</td>
<td>Growth and saving</td>
</tr>
<tr>
<td>6.4</td>
<td>Income and population growth</td>
</tr>
<tr>
<td>6.5</td>
<td>Growth and income</td>
</tr>
<tr>
<td>6.6</td>
<td>Growth with technological progress</td>
</tr>
<tr>
<td>6.7</td>
<td>Endogenous technical progress: efficiency and capital</td>
</tr>
<tr>
<td>6.8</td>
<td>Longevity and GDP per capita</td>
</tr>
<tr>
<td>6.9</td>
<td>Infant mortality and GDP per capita</td>
</tr>
<tr>
<td>6.10</td>
<td>Literacy and GDP per capita</td>
</tr>
<tr>
<td>6.11</td>
<td>Happiness and GDP per capita</td>
</tr>
<tr>
<td>6.12</td>
<td>Post-World War II trends in happiness and GDP per capita in the USA</td>
</tr>
</tbody>
</table>
Figures

7.1 Isoquants for three types of substitution situation 220
7.2 Extraction as a constant proportion of remaining stock 230
7.3 Resource stock for declining extraction 230
7.4 Non-renewable resource use with a Leontief production function 231
7.5 Non-renewable resource use with a Leontief production function and technical progress 232
7.6 Non-renewable resource use with a Cobb-Douglas production function 233
7.7 Non-renewable resource use with a Cobb-Douglas production function and technical progress 234
7.8 Exogenous fertility and mortality 238
7.9 Endogenous fertility and mortality 239
7.10 The World Model 240
7.11 Standard run 241
7.12 Increased resources run 242
7.13 The sustainable world run 243
7.14 Hypothesised EKC relationship 247
7.15 Data consistent with the EKC hypothesis 249
7.16 An EKC for carbon dioxide 250
7.17 Emissions for population growth at 2.5 per cent 251
7.18 Emissions for population growth at 5 per cent 252
7.19 Emissions when there is a lower limit to per capita emissions 254
8.1 Gains from production specialisation 264
8.2 Graphical representation of a demand function 270
8.3 Equilibrium price and quantity 271
8.4 Excess supply and demand 272
8.5 Price and quantity adjustment 273
8.6 Elasticity of demand 276
8.7 Elasticity of supply 279
8.8 Short- and long-run market adjustments 280
8.9 Price ceiling 283
8.10 Price floor 284
8.11 Commodity taxation 287
8.12 Lending and saving 292
8.13 Borrowing and investing 297
8.14 Bond market equilibrium 300
8.15 Joint equilibrium in two financial asset markets 302
8.16 Joint equilibria in two economies 303
9.1 The efficiency of market equilibrium 314
9.2 Rates of return and levels of investment 318
9.3 Equalisation of rates of return 319
9.4 The externality problem 327
9.5 The monopoly problem 331
9.6 Two widget market equilibria 334
9.7 Two efficient intertemporal allocations 337
9.8 The market for a non-renewable resource 342
9.9 Efficient fish harvesting 345
<table>
<thead>
<tr>
<th>Figures</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10</td>
<td>Open access means overfishing</td>
<td>346</td>
</tr>
<tr>
<td>9.11</td>
<td>Effects of depletion on open-access harvesting</td>
<td>347</td>
</tr>
<tr>
<td>9.12</td>
<td>An intertemporally efficient consumption path</td>
<td>351</td>
</tr>
<tr>
<td>10.1</td>
<td>Net Official Development Assistance as percentage of GNI (2003)</td>
<td>365</td>
</tr>
<tr>
<td>11.1</td>
<td>The economically efficient level of pollution minimises the sum of abatement and damage cost</td>
<td>416</td>
</tr>
<tr>
<td>11.2</td>
<td>Economically efficient level of emissions abatement</td>
<td>416</td>
</tr>
<tr>
<td>11.3</td>
<td>Impact of environmental tax on goods market</td>
<td>419</td>
</tr>
<tr>
<td>11.4</td>
<td>Revenue from environment-related taxes as percent of GDP</td>
<td>425</td>
</tr>
<tr>
<td>11.5</td>
<td>Least cost theorem</td>
<td>429</td>
</tr>
<tr>
<td>12.1</td>
<td>The effects of trade</td>
<td>447</td>
</tr>
<tr>
<td>12.2</td>
<td>An import tariff</td>
<td>448</td>
</tr>
<tr>
<td>12.3</td>
<td>Trends in world trade in goods (volume) vs. GDP (1990 = 100)</td>
<td>453</td>
</tr>
<tr>
<td>12.4</td>
<td>Diving through the EKC</td>
<td>458</td>
</tr>
<tr>
<td>12.5</td>
<td>Global diffusion of environmental policy innovation</td>
<td>459</td>
</tr>
<tr>
<td>13.1</td>
<td>Physics of the greenhouse effect</td>
<td>483</td>
</tr>
<tr>
<td>13.2</td>
<td>The enhanced greenhouse effect</td>
<td>484</td>
</tr>
<tr>
<td>13.3</td>
<td>Atmospheric carbon stock for emissions stabilisation 50 years out</td>
<td>503</td>
</tr>
<tr>
<td>13.4</td>
<td>Atmospheric carbon stock for emissions stabilisation now</td>
<td>503</td>
</tr>
<tr>
<td>13.5</td>
<td>Atmospheric carbon stock for a 50 per cent emissions cut now</td>
<td>504</td>
</tr>
<tr>
<td>13.6</td>
<td>Some feedbacks in the enhanced greenhouse effect</td>
<td>505</td>
</tr>
</tbody>
</table>
Tables

2.1 Net primary productivities for selected biomes
2.2 Annual growth rates and doubling times
3.1 Energy accounts for food production
3.2 Human appropriation of net primary productivity
5.1 Input-output transactions table, $ million
5.2 Input-output coefficient table
5.3 Total output requirements per unit delivery to final demand
5.4 CO₂ releases from fossil fuel combustion
5.5 CO₂ intensities and levels for deliveries to final demand, Australia 1986/7
5.6 The input-output structure for a hunter-gatherer economy
5.7 The input-output structure for an agricultural phase economy
5.8 The input-output structure for an industrial economy
5.9 Summary national income accounting for the United Kingdom 2001
5.10 A numerical example for measuring the change in GDP
5.11 Nominal and real GDP: constant relative prices
5.12 Nominal and real GDP: changing relative prices
5.13 Measuring real GDP when quantities go down as well as up
5.14 Departures from purchasing power parity according to Big Mac prices
5.15 Calculating GDP in PPP US$
5.16 Opening and closing natural resource balance sheets
5.17 Alternative estimates of the depreciation of Australia’s non-renewable resources
6.1 International comparisons of per capita GDP
6.2 Current and projected population sizes
6.3 People living in poverty
6.4 Implications of 100 years’ growth at different rates
6.5 Implied growth rates over 500 years
6.6 Income and capital per capita in the basic model
6.7 Income per capita after 100 years
6.8 Economic growth and efficiency in input use
6.9 Income and capital per capita with technological progress
6.10 Endogenous technological progress
6.11 Recent growth rates and per capita GDP projections
6.12 The implications of recent growth rates for global income inequalities
6.13 Some basic indicators of well-being
6.14 Recent trends in well-being indicators
6.15 GDP compared with other indicators
Table

6.16 Effects of changes on happiness 202
6.17 Percentages reporting various states of happiness by income group, USA 204
7.1 United Nations population projections for 2050, millions 213
7.2 The effect of population growth on global CO2 emissions 214
7.3 Economic growth and CO2 emissions 214
7.4 CO2 emissions for population growth and economic growth 214
7.5 Sustainable yield input to a Cobb–Douglas production function 224
7.6 Varying the importance of the resource input 224
7.7 Technical progress with a Cobb–Douglas production function 226
7.8 Technical progress with a Leontief production function 226
7.9 The effects of population stabilisation 227
7.10 Extraction as a constant proportion of the remaining stock 229
8.1 Production and opportunity costs without specialisation 263
8.2 Consumption opportunities with specialisation in production and exchange at three loaves for one fish 264
8.3 Consumption opportunities at different exchange rates 265
8.4 A demand function 269
8.5 A supply function 271
8.6 Project A 293
8.7 Project B 293
8.8 The general project 294
8.9 Calculating Project A’s NPV 295
9.1 Marginal revenue for a downward-sloping demand function 330
10.1 The formal definitions of risk, uncertainty, ambiguity and ignorance 386
11.1 Price increases for a carbon tax of $20 per tonne in Australia 421
11.2 Taxes in OECD member countries levied on electricity 423
11.3 Past and current tradable permit schemes in OECD countries 428
12.1 Share of merchandise and services exports – world exports in million US$ and shares as % by country group 454
12.3 World’s top 50 non-financial TNCs in 2001 (million US$ and number of employees) 474
12.4 Selected indicators of FDI and international production, 1982–2002 475
13.1 Greenhouse gas atmospheric concentrations 487
13.2 A simplified free-rider problem 499
13.3 Current R and A for developing and developed 500
13.4 Current I and T for developing and developed 500
13.5 Current data for some selected countries 501
13.6 CO2 emissions projections – no de-carbonisation 501
13.7 CO2 emissions projections – de-carbonisation at 2% per year 501
14.1 Species numbers described and estimated 1995 522
14.2 Species numbers described and estimated 2002 522
14.3 Species extinctions since 1600 523
14.4 Threatened species 524
14.5 National Biodiversity Index values 528
Boxes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Energy measurement</td>
</tr>
<tr>
<td>2.2</td>
<td>Animal food-gathering strategies</td>
</tr>
<tr>
<td>3.1</td>
<td>The Australian aboriginals</td>
</tr>
<tr>
<td>4.1</td>
<td>Economics of ‘Spaceship Earth’</td>
</tr>
<tr>
<td>5.1</td>
<td>Accounting for carbon dioxide emissions</td>
</tr>
<tr>
<td>5.2</td>
<td>The Big Mac Index</td>
</tr>
<tr>
<td>5.3</td>
<td>Estimating the depreciation of Australia’s non-renewable resources</td>
</tr>
<tr>
<td>6.1</td>
<td>Physioeconomics and the ‘Equatorial Paradox’</td>
</tr>
<tr>
<td>6.2</td>
<td>Redistribution or economic growth to help the poor?</td>
</tr>
<tr>
<td>7.1</td>
<td>Input–output analysis of Our common future scenario – is it feasible?</td>
</tr>
<tr>
<td>8.1</td>
<td>Agricultural support policy in the EU</td>
</tr>
<tr>
<td>9.1</td>
<td>There is no invisible hand</td>
</tr>
<tr>
<td>10.1</td>
<td>The Rio Declaration on Environment and Development</td>
</tr>
<tr>
<td>10.2</td>
<td>The changing relationship of the UN and NGOs</td>
</tr>
<tr>
<td>10.3</td>
<td>Views on WSSD</td>
</tr>
<tr>
<td>10.4</td>
<td>The Sustainable Development Timeline</td>
</tr>
<tr>
<td>10.5</td>
<td>Late lessons from early warnings</td>
</tr>
<tr>
<td>10.6</td>
<td>Recent examples of public consultation in the UK</td>
</tr>
<tr>
<td>11.1</td>
<td>Eco-labelling</td>
</tr>
<tr>
<td>11.2</td>
<td>Best Available Technology Regulation in Europe</td>
</tr>
<tr>
<td>11.3</td>
<td>Environmental racism and classism</td>
</tr>
<tr>
<td>11.4</td>
<td>Input–output analysis of carbon taxation and commodity prices in Australia</td>
</tr>
<tr>
<td>11.5</td>
<td>Emissions trading in the European Union</td>
</tr>
<tr>
<td>11.6</td>
<td>Suggestion for an application of environmental performance bonds to wetland restoration</td>
</tr>
<tr>
<td>14.1</td>
<td>The Galápagos Islands</td>
</tr>
</tbody>
</table>
Preface

We will explain what this text is about, who it is written for, and how it is organised in the Introduction, and in Chapter 1. In regard to subject matter, we can say here that ecological economics is the transdisciplinary study of the human economy as part of nature’s economy. In modern terms, the idea that the human economy needs to be, and can be, studied in this way is a relatively new one. Institutionally, ecological economics can be said to date from the establishment of the International Society for Ecological Economics, ISEE, in 1989.

ISEE now has several thousand members throughout the world, and our first acknowledgement is of the intellectual stimulation and nourishment provided by fellow members of that organisation. Perusal of the contents of the journal *Ecological Economics*, or of the proceedings of one of the many conferences and workshops organised by ISEE and its affiliated regional societies, will make clear our debt here. It is impossible to fully acknowledge our debts to the many individuals, not all members of ISEE, who have contributed to the development of ecological economics. Some indications of some of these debts are given in the Further Reading sections at the end of each chapter.

A number of colleagues, not all members of ISEE, were kind enough to read various draft chapters and offer comments and advice. In naming Steve Dovers, Felix Fitzroy, John Gowdy, Greig Mill, Roger Perman, Charles Perrings and John Proops we thank them and absolve them from any blame for deficiencies due to our not following their advice. We have both also benefited from feedback from students at the universities in Australia, Austria, UK and the US at which we have used some of the material here when teaching ecological economics.

We would like to thank staff at Cambridge University Press for their work in producing this textbook, especially Chris Harrison and Pat Maurice for, respectively, commissioning it and organising and supervising production. Finally, we thank our partners – Branwen Common and Peter Kaufmann – for putting up with the disruptions to family life that writing a book always entails, and for their encouragement to persevere with what at times was a daunting task.
Introduction

WHO IS THIS BOOK FOR?

This textbook is written for students who are beginning a programme which is essentially concerned with the interdependence of the economy and the natural environment. We have called it Ecological Economics: An Introduction because that interdependence is what Ecological Economics is all about. However, programmes dealing with it also go under such labels as Environmental Management or Sustainable Development, and programmes in Environmental Science often include substantial components dealing with human systems and their effect on the environment.

Such interdisciplinary programmes are offered at both the undergraduate and postgraduate levels. This textbook is written primarily for beginning undergraduates. However, where such programmes are at the postgraduate level, most beginning students are to some degree in the same position as beginning undergraduates – they have no previous background in one of the traditional disciplines involved. So, we think that this book should be useful to graduate as well as undergraduate students. For the former particularly, we have included Further Reading sections with each chapter which point to more advanced treatments.

While the book is mainly aimed at students beginning these kinds of programmes, we should say that in our view it would also serve very well as an introductory text in an economics programme. It is our view that all economists should appreciate that the material basis for economic activity is the natural environment, and have some idea about how that works in relation to human interests. Starting the study of economics here seems to us the proper way to ensure that they do.

Nowhere do we assume prior knowledge of ecology, economics or environmental science – it is an introductory text. Those who come to the book having previously studied in one of these areas can use the chapters selectively. Nor do we assume that readers have any background in mathematics beyond arithmetic and elementary algebra.

CONTENTS AND ORGANISATION

The book is organised into four parts. These are preceded by a chapter that introduces ecological economics, and the ideas of sustainability and sustainable development, which are themes that run through the book. This chapter also explains the relationship between ecological economics and ‘ordinary’ economics and how that is handled in the book.
Part I is called ‘Interdependent Systems’. Chapters 2 to 4 provide necessary ideas and information from ecology and environmental science, look at the history of our species, and then set out a framework for thinking about the interdependence of the modern economy and its environment.

Part II, ‘Economic Activity’, Chapters 5 to 9, is focused mainly on the economy and on economics. It starts with an introduction to economic accounting, and then looks at economic growth and human well-being, on the one hand, and economic growth and the environment, on the other. Chapter 8 introduces the case for markets as the means to organise economic activity, while Chapter 9 examines limits to what markets can do in regard to the natural environment and sustainability.

The pursuit of sustainable development, which requires sustainability, cannot be left to markets – there is an inescapable role for government. This is what Part III, ‘Governance’, Chapters 10–11, is about. In considering government policy it is helpful to distinguish between policy targets and policy instruments. Chapter 10 deals with the former, Chapter 11 with the latter.

Many of the problems that ecological economics is concerned with, and which threaten sustainability, transcend the boundaries of the nation states that are the principal means by which the world is organised politically. Part IV, Chapters 12 to 14, is called ‘The International Dimension’. Chapter 12 is about international trade and related institutions, and the final two chapters deal with two major threats to sustainability that are essentially global in nature – climate change in Chapter 13 and biodiversity loss in Chapter 14.

We see the book as the basis for a two-semester course, and for that purpose the chapters follow a logical progression. However, we realise that in many programmes it may not be possible to devote two semesters to ecological economics. Often, some of the material that is in this book will be covered in parallel, or subsequent, modules/units in the programme. The book is an introduction, and all of the topics that it covers could beneficially be revisited in more depth and rigour in a degree programme dealing with the interdependence of human and natural systems. The range of topics will vary depending on the specific degree programme.

The wide variety of such programmes, and of the backgrounds of students beginning them, makes it difficult to be prescriptive about how the book could be used for a one-semester course – it depends a lot on what other courses the programme includes. However, we do offer the following list of chapters as a suggestion which could be useful in a variety of contexts:

1. An introduction to ecological economics
2. The environment
3. Humans in the environment – some history
4. The economy in the environment – a conceptual framework
5. Economic growth and human well-being
6. Economic growth and the environment
7. Policy instruments
8. Climate change

Chapter 4 is the key chapter, setting out a way of thinking about economy-environment interdependence. Chapter 2 covers some topics in environmental science necessary for a proper appreciation of the significance of that interdependence – those who have done, are doing, or will do basic environmental science
in other units could skip this. Chapter 3 provides some historical perspective. Chapter 6 deals with human poverty and economic growth as the means to its alleviation, and Chapter 7 with the question of whether growth can be sustained given economy–environment interdependence. The climate change problem, Chapter 13, is perhaps the biggest global environmental problem, and exemplifies all of the dimensions of the global sustainable development problem. Biodiversity loss, Chapter 14, is similar in many respects, but this chapter is short and probably worth reading with Chapter 13. Chapter 11, on policy instruments, provides some background to the discussion of policy in these two chapters.

PEDAGOGICAL FEATURES

Each chapter begins with a clear statement of what it will cover, and ends with a summary and a list, with page references, of key words and their meanings. At the end of each chapter there is a Further Reading section, and a list of website addresses where relevant material can be found. The Further Reading references are mainly intended for those who wish to take things further, whether in terms of the depth of treatment or the technical level of treatment. References at a similar introductory level to this text are marked with an *. If you flick through the pages of this book you may well form the impression that there are lots of numbers and lots of mathematics. We assure you that, while this is true, there is no reason for anybody who considers themselves not proficient mathematically to be concerned. There is use of arithmetic and simple algebra where that is the simplest and most efficient way of getting across the basic ideas at an introductory level – as it often is. But, be assured, there is nothing beyond arithmetic and simple algebra, and every time either is used it is explained very carefully. Most of the time, it is just arithmetic. In a few places, the algebra is simple but tedious and it has been put in an appendix. In some chapters we use simulations done using a spreadsheet on a pc. In such cases the repetitive arithmetic that the spreadsheet does is carefully explained. Simulations are a very useful tool in the study of all kinds of systems.

SPECIAL FEATURES

Each chapter contains many features designed to enhance student learning.

+ Chapters open with a list of four to eight key areas covered in the chapter to focus student learning.
+ Focus boxes enliven the material with real-world illustrations drawn from various sources.
+ Keywords are highlighted in bold throughout the text. End-of-chapter lists of keywords facilitate review of important terms.
+ End-of-chapter discussion questions stimulate discussion and debate inside and outside the classroom.
+ End-of-chapter exercises encourage students to work with and apply the material, gaining increasing mastery of concepts, models and techniques of analysis.
+ The book has a companion website.
COMPANION WEBSITE

Ecological economics is a developing field of transdisciplinary study, and sustainability and sustainable development issues are increasingly prominent in political debate and policy making. New publications, new data, new institutions and new policies are continuously appearing. Given this, there is a companion website to this book, which will be periodically updated to keep abreast of the latest developments. The companion website will also provide links to other related websites, which links will also be periodically updated. The address for this website is www.cambridge.org/common.

Part of this website will have restricted access for instructors. This contains transparencies for all graphs in the book, answers to end-of-chapter exercises and notes on discussion questions.