

COSMIC RAYS AND PARTICLE PHYSICS

Fully updated for the second edition, this book introduces the growing and dynamic field of particle astrophysics. It provides an overview of high-energy nuclei, photons, and neutrinos, including their origins, their propagation in the cosmos, their detection at Earth, and their relation to each other. Coverage is expanded to include new content on high energy physics, the propagation of protons and nuclei in cosmic background radiation, neutrino astronomy, high-energy and ultra-high-energy cosmic rays, sources and acceleration mechanisms, and atmospheric muons and neutrinos. Readers are able to master the fundamentals of particle astrophysics within the context of the most recent developments in the field. This book will benefit graduate students and established researchers alike, equipping them with the knowledge and tools needed to design and interpret their own experiments and, ultimately, to address a number of questions concerning the nature and origins of cosmic particles that have arisen in recent research.

THOMAS K. GAISSER is Martin A. Pomerantz Professor of Physics at the University of Delaware. He is a Fellow of the American Physical Society and recipient of the Alexander von Humboldt prize. His research at the Bartol Research institute in the Department of Physics and Astronomy includes cosmic-ray physics, atmospheric neutrinos, and neutrino astronomy.

RALPH ENGEL is a senior scientist at the Karlsruhe Institute of Technology (KIT). He specializes in the application of high energy physics to problems in particle astrophysics, focusing on the physics and detection of high-energy and ultra-high-energy cosmic rays. He is an author of several simulation codes commonly applied in cosmic ray physics.

ELISA RESCONI is a Heisenberg Professor of Physics at the Technical University Munich (TUM). Prof. Resconi's research focuses on experimental physics with cosmic particles at TUM's Physics Department and Cluster of Excellence "Universe", and includes studies of neutrinos in both astrophysics and particle physics. Most noteworthy, Prof. Resconi has developed novel methods in the search for cosmic neutrinos and their astrophysical sources, and in the fundamental study of neutrino properties.

COSMIC RAYS AND PARTICLE PHYSICS

THOMAS K. GAISSER

University of Delaware

RALPH ENGEL

Karlsruhe Institute of Technology

ELISA RESCONI

Technical University Munich

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9780521016469

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2016

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloguing in Publication data

Names: Gaisser, Thomas K., author. | Engel, Ralph, 1965– author. | Resconi,
Elisa, 1971– author.

Title: Cosmic rays and particle physics/Thomas K. Gaisser (University of Delaware), Ralph Engel (Karlsruhe Institute of Technology), Elisa Resconi (Technical University Munich).

Description: Second edition. | Cambridge, United Kingdom: Cambridge University Press, 2016. | © 2016 | Includes bibliographical references and index.

Identifiers: LCCN 2016003557 | ISBN 9780521016469 | ISBN 0521016460 Subjects: LCSH: Cosmic rays. | Particles (Nuclear physics) | Nuclear astrophysics.

Classification: LCC QC485 .G27 2016 | DDC 523.01/97223-dc23 LC record available at http://lccn.loc.gov/2016003557

ISBN 978-0-521-01646-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface to the first edition		page xi
	Prefe	ace to the second edition	xiii
1	Cosr	mic rays	1
	1.1	What are cosmic rays?	1
	1.2	Objective of this book	1
	1.3	Types of cosmic ray experiment	3
	1.4	Composition of cosmic rays	6
	1.5	Energy spectra	7
	1.6	Energy density of cosmic rays	10
2	Cosmic ray data		12
	2.1	Lessons from the heliosphere	13
	2.2	Measurements with spectrometers	17
	2.3	Measurements with calorimeters	20
	2.4	Spectrum of all nucleons	22
	2.5	Indirect measurements at high energy	23
	2.6	Primary composition from air shower experiments	28
3	Part	icle physics	30
	3.1	Historical relation of cosmic ray and particle physics	30
	3.2	The Standard Model of particle physics	32
	3.3	Quark model of hadrons and hadron masses	41
	3.4	Oscillation of neutral mesons	45
	3.5	Electron-positron annihilation	47
	3.6	Weak decays	49
	3.7	QCD-improved parton model and high- p_{\perp} processes	52
	3.8	Concepts for describing low- p_{\perp} processes	60

vi		Contents	
4	Had	ronic interactions and accelerator data	65
	4.1	Basics	65
	4.2	Total and elastic cross sections	72
	4.3	Phenomenology of particle production	84
	4.4	Nuclear targets and projectiles	97
	4.5	Hadronic interaction of photons	101
	4.6	Extrapolation to very high energy	105
5	Caso	eade equations	107
	5.1	Basic equation and boundary conditions	107
	5.2	Boundary conditions	109
	5.3	Energy loss by charged particles	110
	5.4	Electrons, positrons and photons	111
	5.5	Nucleons in the atmosphere	116
	5.6	Hadrons in the atmosphere	119
	5.7	The atmosphere	121
	5.8	Meson fluxes	122
6	Atm	ospheric muons and neutrinos	126
	6.1	Meson decay	126
	6.2	Production of muons and muon neutrinos	129
	6.3	Muons in the atmosphere	133
	6.4	Relation to primary energy	135
	6.5	Muon charge ratio	137
	6.6	Neutrinos in the atmosphere	140
	6.7	Non-power law primary spectrum and scaling violations	147
7	Neut	rino masses and oscillations	149
	7.1	Neutrino mixing	149
	7.2	Oscillation in vacuum	153
	7.3	Oscillation in matter	157
	7.4	Neutrino mass hierarchy	159
	7.5	Oscillation over astronomical distances	160
8	Muons and neutrinos underground		163
	8.1	Passage of muons through matter	164
	8.2	Atmospheric muons underground	166
	8.3	Neutrinos underground	170
	8.4	Prompt leptons	179
	8.5	Seasonal variation of atmospheric muons and neutrinos	183

		Contents	V11
9	Cosm	nic rays in the Galaxy	186
	9.1	Cosmic ray transport in the Galaxy	187
	9.2	The Galaxy	189
	9.3	Models of propagation	191
10	Extragalactic propagation of cosmic rays		204
	10.1	Energy loss for protons and neutrons	205
	10.2	Photodisintegration of nuclei	210
	10.3	Secondary particle production	212
	10.4	The role of magnetic fields	217
11	Astrophysical γ-rays and neutrinos		220
	11.1	γ -rays from decay of π^0	220
	11.2	Production of gamma rays by electron bremsstrahlung	224
	11.3	Diffuse γ -rays from the Galactic plane	225
	11.4	Neutrinos from the Galactic plane	228
	11.5	Spectrum of electrons	230
	11.6	Positrons	231
	11.7	Cosmic rays and γ -rays in external galaxies	233
12	Acceleration		236
	12.1	Power	237
	12.2	Shock acceleration	237
	12.3	Acceleration at supernova blast waves	243
	12.4	Nonlinear shock acceleration	246
	12.5	The knee of the cosmic ray spectrum	254
	12.6	Acceleration to higher energy	255
13	Supe	rnovae in the Milky Way	258
	13.1	The Milky Way galaxy	258
	13.2	Supernovae	263
	13.3	The compact remnant: neutron stars and black holes	267
	13.4	High-energy binary systems	270
	13.5	Supernova remnants	271
	13.6	Pulsar wind nebulae	278
	13.7	Examples of supernova remnants	279
14	Astro	physical accelerators and beam dumps	282
	14.1	Radiative processes in beam dumps	282
	14.2	Active galactic nuclei	289
	14.3	Gamma ray bursts	295

viii		Contents	
15	Electr	romagnetic cascades	302
	15.1	Basic features of cascades	302
	15.2	Analytic solutions in cascade theory	304
	15.3	Approximations for total number of particles	309
	15.4	Fluctuations	310
	15.5	Lateral spread	311
16	Exten	sive air showers	313
	16.1	Basic features of air showers	313
	16.2	The Heitler–Matthews splitting model	315
	16.3	Muons in air showers	316
	16.4	Nuclei and the superposition model	320
	16.5	Elongation rate theorem	323
	16.6	Shower universality and cross section measurement	324
	16.7	Particle detector arrays	326
	16.8	Atmospheric Cherenkov light detectors	330
	16.9	Fluorescence telescopes	334
	16.10	Radio signal detection	337
17	Very l	nigh energy cosmic rays	341
	17.1	The knee of the spectrum	342
	17.2	Depth of shower maximum and composition	345
	17.3	Ultra-high-energy cosmic rays	348
	17.4	Sources of extragalactic cosmic rays	351
	17.5	Future experiments	355
18	Neutr	ino astronomy	356
	18.1	Motivation for a kilometer-scale neutrino telescope	357
	18.2	From DUMAND to IceCube and beyond	358
	18.3	Signals and backgrounds in a neutrino detector	359
	18.4	Event types	362
	18.5	Searching for point sources of neutrinos	363
	18.6	Observation of astrophysical neutrinos	365
	18.7	Sources of astrophysical neutrinos	368
	18.8	Multi-messenger astronomy	372
App	endix		374
	A.1	Units, constants and definitions	374
	A.2	References to flux measurements	374
	A.3	Particle flux, density and interaction cross section	375
	A.4	Fundamentals of scattering theory	378

	Contents	ix
A.5	Regge amplitude	384
A.6	Glauber model of nuclear cross sections	386
A.7	Earth's atmosphere	390
A.8	Longitudinal development of air showers	391
A.9	Secondary positrons and electrons	393
A.10	Liouville's theorem and cosmic ray propagation	395
A.11	Cosmology and distance measures	397
A.12	The Hillas splitting algorithm	399
Refere	ences	402
Index		441

Preface to the first edition

The connection between cosmic rays and particle physics has experienced a renewal of interest in the past decade. Large detectors, deep underground, sample groups of coincident cosmic ray muons and study atmospheric neutrinos while searching for proton decay, monopoles, neutrino oscillations, etc. Detector arrays at the surface measure atmospheric cascades in the effort to identify sources of the most energetic naturally occurring particles. This book is an introduction to the phenomenology and theoretical background of this field of particle astrophysics. The book is directed to graduate students and researchers, both experimentalists and theorists, with an interest in this growing interdisciplinary field.

The book is divided into an introductory section and three main parts. The two introductory chapters give a brief background of cosmic ray physics and particle physics. Chapters 5 through 8 concern cosmic rays in the atmosphere – hadrons, photons, muons and neutrinos. The second major part (chapters 9–13) is about propagation, acceleration and origin of cosmic rays in the galaxy. Air showers and related topics are the subject of the last four chapters.

I am grateful to many colleagues at Bartol and elsewhere for discussions which have helped me learn about aspects of the field. I thank Alan Watson, Raymond Protheroe, Paolo Lipari, Francis Halzen, David Seckel, Todor Stanev, Floyd Stecker and Carl Fichtel for reading various chapters and offering helpful suggestions.

I thank Leslie Hodson, Jack van der Velde, Jay Perrett and Sergio Petrera for providing me with photographs to illustrate the book.

Preface to the second edition

Interest and activity in particle astrophysics has continued to grow. It has now been 25 years since publication of the first edition. A new edition is long overdue, but nevertheless well-motivated in view of the growth of the field and several important discoveries in the interim. The discoveries include flavor oscillations in atmospheric and solar neutrinos, the cutoff of the spectrum of ultra-high-energy cosmic rays, TeV gamma rays from supernova remnants in the Galaxy and from distant active galaxies, an unexpected excess of positrons at high energy (but not of anti-protons) and, most recently, high-energy astrophysical neutrinos.

The discoveries are the result of major investments in the development of new instruments: the major underground experiments, Super-Kamiokande, SNO and Borexino; the giant air shower arrays, Auger and Telescope Array; the imaging atmospheric Cherenkov telescopes VERITAS, H.E.S.S. and MAGIC, and the Fermi Satellite; the particle spectrometers in space, PAMELA and AMS-02, along with balloon-borne detectors ATIC and CREAM; and the neutrino telescopes AMANDA and Baikal, ANTARES and IceCube.

Corresponding developments on the side of particle physics stem from the colliding beam machines at DESY, Fermilab and CERN. These have provided measurements of parton distribution functions over an unprecedented kinematic range, the discovery of the top quark and, most recently, the discovery of the Higgs boson. The LHC is now running at a center of mass energy equivalent to 10^{17} eV in the lab, well above the knee in the cosmic ray spectrum.

All of the discoveries mentioned have given rise to new questions that stimulate continuing interest in particle astrophysics. In writing this expanded edition, we have kept the basic structure of the first edition while adding chapters on new topics stimulated by some of these open questions. Topics of the new chapters include neutrino oscillations, propagation of ultra-high energy cosmic rays in the cosmic microwave background, sources of the highest energy cosmic rays and neutrino

xiii

xiv

Preface to the second edition

astronomy. The chapters on atmospheric muons and neutrinos, and those on acceleration and propagation of cosmic rays, go into greater depth and focus on new results. Most important are the two chapters on particle physics, which are completely new, and are intended to bring the latest results from high-energy physics to bear on cosmic ray physics.

We are grateful to many colleagues who, in one way or another, helped us to understand and explain the material in this book.