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Lectures on Cyclotomic Hecke Algebras

Susumu Ariki

1 Introduction

The purpose of these lectures is to introduce the audience to the theory of
cyclotomic Hecke algebras of type G(m, 1, n). These algebras were introduced
by the author and Koike, Broué and Malle independently. As is well known,
group rings of Weyl groups allow certain deformation. It is true for Coxeter
groups, which are generalization of Weyl groups. These algebras are now
known as (Iwahori) Hecke algebras.

Less studied is its generalization to complex reflection groups. As I will
explain later, this generalization is not artificial. The deformation of the
group ring of the complex reflection group of type G(m, 1, n) is particularly
successful. The theory uses many aspects of very modern development of
mathematics: Lusztig and Ginzburg’s geometric treatment of affine Hecke
algebras, Lusztig’s theory of canonical bases, Kashiwara’s theory of global
and crystal bases, and the theory of Fock spaces which arises from the study
of solvable lattice models in Kyoto school.

This language of Fock spaces is crucial in the theory of cyclotomic Hecke
algebras. I would like to mention a little bit of history about Fock spaces in
the context of representation theoretic study of solvable lattice models. For
level one Fock spaces, it has origin in Hayashi’s work. The Fock space we
use is due to Misra and Miwa. For higher level Fock spaces, they appeared
in work of Jimbo, Misra, Miwa and Okado, and Takemura and Uglov. We
also note that Varagnolo and Vasserot’s version of level one Fock spaces have
straight generalization to higher levels and coincide with the Takemura and
Uglov’s one. The Fock spaces we use are different from them. But they are
essential in the proofs.

Since the cyclotomic Hecke algebras contain the Hecke algebras of type A
and type B as special cases, the theory of cyclotomic Hecke algebras is also
useful to study the modular representation theory of finite classical groups of
Lie type.

I shall explain theory of Dipper and James, and its relation to our theory.
The relevant Hecke algebras are Hecke algebras of type A. In this case, we
have an alternative approach depending on the Lusztig’s conjecture on quan-
tum groups, by virtue of Du’s refinement of Jimbo’s Schur-Weyl reciprocity.
Even for this rather well studied case, our viewpoint gives a new insight. This
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viewpoint first appeared in work of Lascoux, Leclerc and Thibon. This Fock
space description looks quite different from the Kazhdan-Lusztig combina-
torics, since it hides affine Kazhdan-Lusztig polynomials behind the scene.
Inspired by this description, Goodman and Wenzl have found a faster algo-
rithm to compute these polynomials. Leclerc and Thibon are key players in
the study of this type A case. I also would like to mention Schiffman and
Vasserot’s work here, since it makes the relation of canonical bases between
modified quantum algebras and quantized Schur algebras very clear.

I will refer to work of Geck, Hiss, and Malle a little if time allows, since
we can expect future development in this direction. It is relevant to Hecke
algebras of type B. Finally, I will end the lectures with Broué’s famous dream.

Detailed references can be found at the end of these lectures. The first
three are for overview, and the rest are selected references for the lectures.
[i-] implies a reference for the i th lecture.

2 Lecture One

2.1 Definitions

Let k be a field (or an integral domain in general). We define cyclotomic
Hecke algebras of type G(m, 1, n) as follows.

Definition 2.1 Let v1, . . . , vm, q be elements in k, and assume that q is in-
vertible. The Hecke algebra Hn(v1, . . . , vm; q) of type G(m, 1, n) is the k-
algebra defined by the following relations for generators ai (1≤ i≤ n). We
often write Hn instead of Hn(v1, . . . , vm; q). If we want to make the base ring
explicit, we write Hn/k.

(a1 − v1) · · · (a1 − vm) = 0, (ai − q)(ai + 1) = 0 (i ≥ 2)

a1a2a1a2 = a2a1a2a1, aiaj = ajai (j ≥ i+2)

aiai−1ai = ai−1aiai−1 (3≤ i≤n)

The elements Li = q
1−iaiai−1 · · · a2a1a2 · · · ai (1 ≤ i ≤ n) are called (Jucy-)

Murphy elements or Hoefsmit elements.

0I would like to thank all the researchers involved in the development. Good interaction
with German modular representation group (Geck, Hiss, Malle; Dipper), British combi-
natorial modular representation group (James, Mathas, Murphy), French combinatorics
group (Lascoux, Leclerc, Thibon), modular representation group (Broué, Rouquier; Vign-
eras), geometric representation group (Varagnolo, Vasserot, Schiffman) and Kyoto solvable
lattice model group (Okado, Takemura, Uglov) has nourished the rapid development. We
still have some problems to solve, and welcome young people who look for problems.
I also thank Kashiwara, Lusztig, Ginzburg for their theories which we use.
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Remark 2.2 Let Ĥn be the (extended) affine Hecke algebra associated with
the general linear group over a non-archimedian field. For each choice of
positive root system, we have Bernstein presentation of this algebra. Let
P = Zǫ1 + · · · + Zǫn be the weight lattice as usual. We adopt ”geometric
choice” for the positive root system. Namely {αi := ǫi+1 − ǫi} are simple
roots. Let S be the associated set of Coxeter generators (simple reflections).
Then Ĥn has description via generators Xǫ (ǫ ∈ P ) and Ts (s ∈ S). We omit
the description since it is well known. The following mapping gives rise a
surjective algebra homomorphism from Ĥn to Hn.

Xǫi

→ Li, Tsαi


→ ai+1

This fact is the reason why we can apply Lusztig’s theory to the study of
cyclotomic Hecke algebras. Since the module theory for Hn has been developed
by different methods, it has also enriched the theory of affine Hecke algebras.

Remark 2.3 Let ζm be a primitive m th root of unity. If we specialize q =
1, vi = ζ

i−1
m , we have the group ring of G(m, 1, n). G(m, 1, n) is the group

of n × n permutation matrices whose non zero entries are allowed to be m
th roots of unity. Under this specialization, Li corresponds to the diagonal
matrix whose i th diagonal entry is ζm and whose remaining diagonal entries
are 1. We would like to stress two major differences between the group algebra
and the deformed algebra Hn.

(1) (Li − v1) · · · (Li − vm) is not necessarily zero for i > 1.

(2) If we consider the subalgebra generated by Murphy elements, its dimen-
sion is not mn in general. Further, the dimension depends on parameters
v1, . . . , vm, q.

Nevertheless, we have the following Lemma. aw is defined by ai1 · · · ail for
a reduced word si1 · · · sil of w. It is known that aw does not depend on the
choice of the reduced word.

Lemma 2.4 {Le1
1 · · ·Len

n aw|0 ≤ ei < m,w ∈ Sn} form a basis of Hn.

(How to prove) We consider Hn over an integral domain R, and show that
∑

RLe1
1 · · ·Len

n aw is a two sided ideal. Then we have that these elements
generate Hn as an R-module. To show that they are linearly independent, it
is enough to take R = Z[q,q−1,v1, . . . ,vm]. In this generic parameter case,
we embed the algebra into Hn/Q(q,v1, . . . ,vm). Then we can construct
enough simple modules to evaluate the dimension. �

An important property of Hn is the following.

Theorem 2.5 (Malle-Mathas) Assume that vi are all invertible. Then Hn

is a symmetric algebra.
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(How to prove) Since Hn is deformation of the group algebra of G(m, 1, n),
we can define a length function l(w) and aw for a reduced word of w. Unlike
the Coxeter group case, aw does depend on the choice of the reduced word.
Nevertheless, the trace function

tr(aw) =

{

0 (w �= 1)
1 (w = 1)

is well defined. (u, v) := tr(uv) (u, v ∈ Hn) gives the bilinear form with the
desired properties. �

Remark 2.6 We have defined deformation algebras for (not all but most of)
other types of irreducible complex reflection groups by generators and rela-
tions. (G(m, p, n): the author, other exceptional groups: Broué and Malle.)

The most natural definition of cyclotomic Hecke algebras is given by Broué,
Malle and Rouquir. It coincides with the previous definition in most cases.

Let A be the hyperplane arrangement defined by complex reflections of
W . For each C ∈ A/W , we can associate the order eC of the cyclic group
which fix a hyperplane in C. Primitive idempotents of this cyclic group are
denoted by ǫj(H) (0 ≤ j < eC). We set M = Cn \ ∪H∈AH.

Definition 2.7 For each hyperplane H, let αH be the linear form whose ker-
nel is H. It is defined up to scalar multiple. We fix a set of complex numbers
tC,j. Then the following partial differential equation for CW -valued functions
F on M is called the (generalized) KZ equation.

∂F

∂xi
=

1

2π
√
−1

∑

C∈A/W

eC−1
∑

j=0

∑

H∈C

∂(logαH)

∂xi
tC,jǫj(H)F

Theorem 2.8 (Broué-Malle-Rouquier) Assume that parameters are suf-
ficiently generic. Let B be the braid group attached to A. Then the mon-
odromy representation of B with respect to the above KZ equation factors
through a deformation ring of CW . If W = G(m, 1, n) for example, it coin-
cides with the cyclotomic Hecke algebra with specialized parameters.

2.2 Representations

If all modules are projective modules, we say thatHn is a semi-simple algebra,
and call these representations ordinary representations. We have

Proposition 2.9 (Ariki(-Koike)) Hn is semi-simple if and only if q
ivj−vk

(|i| < n, j �= k) and 1 + q + · · · + qi (1 ≤ i < n) are all non zero. In
this case, simple modules are parametrized by m-tuples of Young diagrams of
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total size n. For each λ = (λ(m), . . . , λ(1)), the corresponding simple module
can be realized on the space whose basis elements are indexed by standard
tableaux of shape λ. The basis elements are simultaneous eigenvectors of
Murphy elements, and we have explicit matrix representation for generators
ai (1 ≤ i ≤ n).

These represenations are called semi-normal form representations.
Hence we have complete understanding of ordinary representations. If Hn is
not semi-simple, representations are called modular representations. A
basic tool to get information for modular representations from ordinary ones
is ”reduction” procedure.

Definition 2.10 Let (K,R, k) be a modular system. Namely, R is a discrete
valuation ring, K is the field of fractions, and k is the residue field. For an
Hn/K-module V , we take an Hn/R-lattice VR and set V = VR ⊗ k. It is
known that V does depend on the choice of VR, but the composition factors
do not depend on the choice of VR. The map between Grothendieck groups of
finite dimentional modules given by

decK,k : K0(mod−Hn/K) −→ K0(mod−Hn/k)

which sends [V ] to [V ] is called a decomposition map. Since Grothendieck
groups have natural basis given by simple modules, we have the matrix repre-
sentation of the decomposition map with respect to these bases. It is called the
decomposition matrix. The entries are called decomposition numbers.

In the second lecture, we also consider the decomposition map between
Grothendieck groups of KGL(n, q)−mod and kGL(n, q)−mod.

Remark 2.11 Decomposition maps are not necessarily surjective even after
coefficients are extended to complex numbers. If we take m = 1, 2 and q ∈ k
to be zero, we have counter examples. These are called zero Hecke algebras,
and studied by Carter. Note that we exclude the case q = 0 in the
definition. In the case of group algebras, the theory of Brauer characters
ensures that decomposition maps are surjective.

In the case of cyclotomic Hecke algebras, we have the following result.

Theorem 2.12 (Graham-Lehrer) Hn is a cellular algebra. In particular,
the decomposition maps are surjective.

The notion of cellularity is introduced by Graham and Lehrer. It has some
resemblance to the definition of quasi hereditary algebras. This is further
pursued by König and Changchang Xi.

In this lecture, we follow Dipper, James and Mathas’ construction of
Specht modules. We first fix notation.
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Let λ = (λ(m), . . . , λ(1)), µ = (µ(m), . . . , µ(1)) be two m-tuples of Young
diagrams. We say λ dominates µ and write λ � µ if

∑

j>k

|λ(j)|+
l

∑

j=1

λ
(k)
j ≥

∑

j>k

|µ(j)|+
l

∑

j=1

µ
(k)
j

for all k, l. This partial order is called dominance order.
For each λ =

(

λ(m), . . . , λ(1)
)

, we set ak = n− |λ(1)| − · · · − |λ(k)|.
We have n ≥ a1 ≥ · · · ≥ al > 0 and ak = 0 for k > l for some l. we denote l
by l(a). For a = (ak), we denote bySa the set of permutations which preserve
{1, . . . , al}, . . . , {ak + 1, . . . , ak−1}, . . . {a1 + 1, . . . , n}. We also set

ua = (L1 − v1) · · · (La1 − v1)× (L1 − v2) · · · (La2 − v2)× · · ·
· · · × (L1 − vl(a)) · · · (Ll(a) − vl(a))

Let tλ be the canonical tableau. It is the standard tableau on which
1, . . . , n are filled in by the following rule;
1, . . . , λ

(m)
1 are written in the first row of λ(m); λ

(m)
1 + 1, . . . , λ

(m)
1 + λ

(m)
2 are

written in the second row of λ(m); . . . ; |λ(m)|+1, . . . , |λ(m)|+λ(m−1)
1 are written

in the first row of λ(m−1); and so on.
The row stabilizer of tλ is denoted by Sλ. We set

xλ =
∑

w∈Sλ

aw, mλ = xλua = uaxλ.

Let t be a standard tableau of shape λ. If the location of ik ∈ {1, . . . , n}
in t is the same as the location of k in tλ, We define d(t) ∈ Sn by k 
→ ik
(1 ≤ k ≤ n).

Definition 2.13 Let ∗ : Hn → Hn be the anti-involution induced by a∗i = ai.
For each pair (s, t) of standard tableaux of shape λ, we set mst = a

∗
d(s)mλad(t).

Remark 2.14 {mst} form a cellular basis of Hn.

Proposition 2.15 (Dipper-James-Mathas) Let (K,R, k) be a modular
system. We set Iλ =

∑

Rmst where sum is over pairs of standard tableaux
of shape strictly greater than λ (with respect to the dominance order). Then
Iλ is a two sided ideal of Hn/R.

(How to prove) It is enough to consider straightening laws for elements aimst

and mstai. We can then show that muv appearing in the expression have
greater shapes with respect to the dominance order. �

Definition 2.16 Set zλ = mλ mod Iλ. Then the submodule Sλ = zλHn of
Hn/Iλ is called a Specht module.
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Theorem 2.17 (Dipper-James-Mathas)
{zλad(t)| t : standard of shape λ} form a basis of Sλ.

(How to prove) We can show by induction on the dominance order that these
generate Sλ. Hence the collection of all these generate Hn. Thus counting
argument completes the proof. �

Definition 2.18 Sλ is equipped with a bilinear form defined by

〈zλad(t), zλad(s)〉mλ = mλad(s)a
∗
d(t)mλ mod Iλ

Theorem 2.19 (General theory of Specht modules)
(1) Dλ = Sλ/rad〈 , 〉 is absolutely irreducible or zero module. {Dλ �= 0}
form a complete set of simple Hn- modules.
(2) Assume Dµ �= 0 and [Sλ : Dµ] �= 0. Then we have µ � λ.

Remark 2.20 In the third lecture, we give a criterion for non vanishing of
Dλ.

Theorem 2.21 (Dipper-Mathas) Let {v1, . . . , vm} = ⊔a
i=1Si be the decom-

position such that vj, vk are in a same Si if and only if vj = vkq
b for some

b ∈ Z. Then we have

mod−Hn ≃
⊕

n1,...,na

mod−Hn1 ⊠ · · · ⊠mod−Hna

where Hn = Hn(v1, . . . , vm; q), Hni
= Hni

(Si; q), and the sum runs through
n1 + · · ·+ na = n.

Hence, it is enough to consider the case that vi are powers of q.

Remark 2.22 For the classification of simple modules, we can use arguments
of Rogawski and Vigneras for the reduction to the case that vi are powers of
q. Hence we do not need the above theorem for this purpose.

2.3 First application

Let k×q = k
×/〈q〉. We assume that q �= 1, and denote the multiplicative order

of q by r. A segment is a finite sequence of consecutive residue numbers
which take values in Z/rZ. A multisegment is a collection segments. As-
sume that a multisegment is given. Take a segment in the multisegment. By
adding i (i ∈ Z/rZ) to the entries of the segment simultaneously, we have a
segment of shifted entries. If all of these r segments appear in the given multi-
segment, we say that the given multisegment is periodic. If it never happens
for all segements in the multisegment, we say that the given multisegment is
aperiodic. We denote by Map

r the set of aperiodic multisegments.
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Theorem 2.23 (Ariki-Mathas) Simple modules over Ĥn/k are parametrized
by

Map
r (k) = {λ : k×q → Map

r |
∑

x∈k×q

|λ(x)| = n}

(How to prove) We consider a setting for reduction procedure, and show that
a lower bound and an upper bound for the number of simple modules coincide.
To achieve the lower bound, we use the integral module structure of the direct
sum of Grothendieck groups of proj−Hn with respect to a Kac-Moody algebra
action, which will be explained in the second lecture. The upper bound is
achieved by cellularity. �

Remark 2.24 The lower bound can be achieved by a different method. This
is due to Vigneras.

Let F be a nonarchimedian local field and assume that the residue field
has characteristic different from the characteristic of k. We assume that k is
algebraically closed. We consider admissible k-representations of GL(n, F ).
We take modular system (K,R, k) and consider reduction procedure.

Theorem 2.25 (Vigneras) All cuspidal representations are obtained by re-
duction procedure. The admissible dual of k-representations is obtained from
the classification of simple Ĥn/k-modules.

Hence we have contribution to the last step of the classification.

Remark 2.26 Her method is induction from open compact groups and theory
of minimal K-types. In the characteristic zero case, it is done by Bushnell
and Kutzko. ConsideringM := indG,K(σ) where (K, σ) is irreducible cuspidal
distinguished K-type, she shows that EndkG(M) is isomorphic to product of
affine Hecke algebras, and M satisfies the following hypothesis.

”There exists a finitely generated projective module P and a surjective
homomorphism β : P →M such that Ker(β) is EndkG(P )-stable.”

Then the classification of simple kG-modules reduces to that of simple
EndkG(M)-modules. This simple fact is known as Dipper’s lemma.

3 Lecture Two

3.1 Geometric theory

Let N be the set of n×n nilpotent matrices, F be the set of n-step complete
flags in Cn. We define the Steinberg variety as follows.

Z = {(N,F1, F2) ∈ N × F × F|F1, F2 are N -stable}

www.cambridge.org/9780521010405
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G := GL(n,C)× C× naturally acts on Z via

(g, q)(N,F1, F2) = (q
−1Ad(g)N, gF1, gF2).

Let KG(Z) be the Grothendieck group of G-equivariant coherent sheaves on
Z. It is an Z[q,q−1]- algebra via convolution product.

Theorem 3.1 (Ginzburg)
(1) We have an algebra isomorphism KG(Z) ≃ Ĥn.
(2) Let us consider a central character of the center Z[X±

ǫ1
, . . . , X±

ǫn
]Sn [q±]

induced by ŝ : Xǫi

→ λi. By specializing the center via this linear character,

we obtain a specialized affine Hecke algebra. Let s be diag(λ1, . . . , λn). Then
H∗(Z

(s,q),C) equipped with convolution product is isomorphic to the specialized
affine Hecke algebra. Here the homology groups are Borel-Moore homology
groups, and Z(s,q) are fixed points of (s, q) ∈ G.
Remark 3.2 All simple modules are obtained as simple modules of various
specialized affine Hecke algebras.

Theorem 3.3 (Sheaf theoretic interpretation)
Let Ñ be {(N,F ) ∈ N × F|F is N-stable}, µ : Ñ → N be the first

projection. Then

(1) H∗(Z
(s,q),C) ≃ Ext∗(µ∗CÑ (s,q) , µ∗CÑ (s,q)).

(2) Let µ∗CÑ (s,q) = ⊕O ⊕k∈Z LO(k) ⊗ IC(O,C)[k]. Then LO := ⊕k∈ZLO(k)
is a simple H∗(Z

(s,q),C)-module or zero module. Further, non-zero ones form
a complete set of simple H∗(Z

(s,q),C)-modules. If q is not a root of unity, all
LO are non-zero. If q is a primitive r th root of unity, LO �= 0 if and only
if O corresponds to a (tuple of) aperiodic multisegments taking residues in
Z/rZ.

In the above theorem, the orbits run through orbits consisting of isomor-
phic representations of a quiver, which is disjoint union of infinite line quivers
or cyclic quivers of length r. The reason is that N (s,q) is the set of nilpotent
matrices N satisfying sNs−1 = qN , which can be identified with representa-
tions of a quiver via considering eigenspaces of s as vector spaces on nodes
and N as linear maps on arrows. This is the key fact which relates the affine
quantum algebra of type A∞, A

(1)
r−1 and representations of cyclotomic Hecke

algebras.

Definition 3.4 Let Cn be the full subcategory of mod−Ĥn whose objects are
modules which have central character ŝ with all eigenvalues of s being pow-
ers of q. Let z be an indeterminate and set cn(z) = (z − Xǫ1) · · · (z −
Xǫn

. We denote by Pcn(z),(z−qi1 )···(z−qin )(−) the exact functor taking gener-
alized eigenspaces of eigenvalue (z − qi1) · · · (z − qin) with respect to cn(z).
We then set

i−Res(M) =
⊕

f(z)∈k[z]

Pcn−1(z),f(z)/(z−qi)

(

ResĤn

Ĥn−1

(

Pcn(z),f(z)(M)
)

)
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This is an exact functor from Cn to Cn−1. We set Un = HomC(K0(Cn),C),
fi = (i−Res)T : Un−1 → Un.

I shall give some historical comments here. The motivation to introduce
these definitions was Lascoux-Leclerc-Thibon’s observation that Kashiwara’s
global basis on level one modules computes the decomposition numbers of
Hecke algebras of type A over the field of complex numbers. The above
notions for affine Hecke algebras and cyclotomic Hecke algebras were first
introduced by the author in his interpretation of Fock spaces and action of
Chevalley generators in LLT observation into (graded dual of) Grothendieck
groups of these Hecke algebras and i-restriction and i-induction operations.
This is the starting point of a new point of view on the representation theory
of affine Hecke algebras and cyclotomic Hecke algebras. As I will explain
below, it allows us to give a new application of Lusztig’s canonical basis.
It triggered intensive studies of canonical bases on Fock spaces. These are
carried out mostly in Paris and Kyoto. On the other hand, the research on
cyclotomic Hecke algebras are mostly lead by Dipper, James, Mathas, Malle
and the author. In the third lecture, these two will be combined to prove
theorems on Specht module theory of cyclotomic Hecke algebras.

We now state a key proposition necessary for the proof of the next theo-
rem. In the top row of the diagram, we allow certain infinite sum in U(g(A∞))
in accordance with infinite sum in Un. Note that we do not have infinite sum
in the bottom row.

Proposition 3.5 (Ariki) There exists a commutative diagram

U−(g(A∞)) ≃ ⊕

n≥0 Un/q
↑ ↑

U−(g(A
(1)
r−1)) ≃ ⊕

n≥0 Un/q=
r
√
1

such that the left vertical arrow is inclusion, the right vertical arrow is induced
by specialization q→ q, and the bottom horizontal arrow is an U−(g(A

(1)
r−1))-

module isomorphism. Under this isomorphism, canonical basis elements of
U−(g(A

(1)
r−1)) map to dual basis elements of {[simple module]}.

(How to prove) We firstly construct the upper horizontal arrow by using
PBW-type basis and dual basis of {[standard module]} of affine Hecke al-
gebras. Here we use Kazhdan-Lusztig induction theorem. We also use re-
striction rule for Specht modules. We then appeal to folding argument. On
the left hand side, we consider this folding in geometric terms. Since only
short explanation was supplied in my original paper, I also refer to Varagnolo-
Vasserot’s argument for this part. Note that the Hall algebra of the cyclic
quiver is realized as the vector space whose basis is given by infinite sums of
dual basis elements of {[standard module]}. We then use

[standard module:simple module]=[canonical basis:PBW-type basis]
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