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37. Pólya theory of counting 522
The cycle index of a permutation group, counting

orbits, weights, necklaces, the symmetric group, Stir-
ling numbers



Contents ix

38. Baranyai’s theorem 536
One-factorizations of complete graphs and complete

designs

Appendix 1. Hints and comments on problems 542
Hints, suggestions, and comments on the problems in

each chapter

Appendix 2. Formal power series 578
Formal power series ring, formal derivatives, inverse

functions, residues, the Lagrange–Bürmann formula
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1
Graphs

A graph G consists of a set V (or V (G)) of vertices, a set E (or
E(G)) of edges, and a mapping associating to each edge e ∈ E(G)
an unordered pair x, y of vertices called the endpoints (or simply
the ends) of e. We say an edge is incident with its ends, and that
it joins its ends. We allow x = y, in which case the edge is called
a loop. A vertex is isolated when it is incident with no edges.

It is common to represent a graph by a drawing where we repre-
sent each vertex by a point in the plane, and represent edges by line
segments or arcs joining some of the pairs of points. One can think
e.g. of a network of roads between cities. A graph is called planar
if it can be drawn in the plane such that no two edges (that is, the
line segments or arcs representing the edges) cross. The topic of
planarity will be dealt with in Chapter 33; we wish to deal with
graphs more purely combinatorially for the present.

edge ends

a x, z
b y, w
c x, z
d z, w
e z, w
f x, y
g z, w

Figure 1.1

Thus a graph is described by a table such as the one in Fig. 1.1
that lists the ends of each edge. Here the graph we are describing
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has vertex set V = {x, y, z, w} and edge set E = {a, b, c, d, e, f, g};
a drawing of this graph may be found as Fig. 1.2(iv).

A graph is simple when it has no loops and no two distinct edges
have exactly the same pair of ends. Two nonloops are parallel
when they have the same ends; graphs that contain them are called
multigraphs by some authors, or are said to have ‘multiple edges’.

If an ordered pair of vertices is associated to each edge, we have
a directed graph or digraph. In a drawing of a digraph, we use an
arrowhead to point from the first vertex (the tail) towards the sec-
ond vertex (the head) incident with an edge. For a simple digraph,
we disallow loops and require that no two distinct edges have the
same ordered pair of ends.

When dealing with simple graphs, it is often convenient to iden-
tify the edges with the unordered pairs of vertices they join; thus
an edge joining x and y can be called {x, y}. Similarly, the edges
of a simple digraph can be identified with ordered pairs (x, y) of
distinct vertices.

(i) graph (ii) graph with loop (iii) digraph (iv) multiple edges

Figure 1.2

There are several ways to draw the same graph. For example,
the two graphs of Fig. 1.3 are essentially the same.

We make this more precise, but to avoid unnecessarily technical
definitions at this point, let us assume that all graphs are undirected
and simple for the next two definitions.

We say two graphs are isomorphic if there is a one-to-one cor-
respondence between the vertex sets such that if two vertices are
joined by an edge in one graph, then the corresponding vertices are
joined by an edge in the other graph. To show that the two graphs
in Fig. 1.3 are the same, find a suitable numbering of the vertices
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in both graphs (using 1, 2, 3, 4, 5, 6) and observe that the edge sets
are the same sets of unordered pairs.

Figure 1.3

A permutation σ of the vertex set of a graph G with the property
that {a, b} is an edge if and only if {σ(a), σ(b)} is an edge, is called
an automorphism of G.

Problem 1A. (i) Show that the drawings in Fig. 1.4 represent the
same graph (or isomorphic graphs).

(ii) Find the group of automorphisms of the graph in Fig. 1.4.
Remark: There is no quick or easy way to do this unless you are
lucky; you will have to experiment and try things.

Figure 1.4

The complete graph Kn on n vertices is the simple graph that
has all

(
n
2

)
possible edges.

Two vertices a and b of a graph G are called adjacent if they are
distinct and joined by an edge. We will use Γ(x) to denote the set
of all vertices adjacent to a given vertex x; these vertices are also
called the neighbors of x.
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The number of edges incident with a vertex x is called the degree
or the valency of x. Loops are considered to contribute 2 to the
valency, as the pictures we draw suggest. If all the vertices of a
graph have the same degree, then the graph is called regular.

One of the important tools in combinatorics is the method of
counting certain objects in two different ways. It is a well known
fact that if one makes no mistakes, then the two answers are the
same. We give a first elementary example. A graph is finite when
both E(G) and V (G) are finite sets. We will be primarily con-
cerned with finite graphs, so much so that it is possible we have
occasionally forgotten to specify this condition as a hypothesis in
some assertions.

Theorem 1.1. A finite graph G has an even number of vertices
with odd valency.

Proof: Consider a table listing the ends of the edges, as in Fig.
1.1. The number of entries in the right column of the table is twice
the number of edges. On the other hand, the degree of a vertex x
is, by definition, the number of times it occurs in the table. So the
number of entries in the right column is

(1.1)
∑

x∈V (G)

deg(x) = 2|E(G)|.

The assertion follows immediately. �
The equation (1.1) is simple but important. It might be called

the ‘first theorem of graph theory’, and our Theorem 1.1 is its first
corollary.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G),
E(H) ⊆ E(G), and the ends of an edge e ∈ E(H) are the same
as its ends in G. H is a spanning subgraph when V (H) = V (G).
The subgraph of G induced by a subset S of vertices of G is the
subgraph whose vertex set is S and whose edges are all the edges
of G with both ends in S.

A walk in a graph G consists of an alternating sequence

x0, e1, x1, e2, x2, . . . , xk−1, ek, xk
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of vertices xi, not necessarily distinct, and edges ei so that the ends
of ei are exactly xi−1 and xi, i = 1, 2, . . . , k. Such a walk has length
k. If the graph is simple, a walk is determined by its sequence of
vertices, any two successive elements of which are adjacent.

If the edge terms e1, . . . , ek are distinct, then the walk is called a
path from x0 to xk. If x0 = xk, then a walk (or path) is called closed.
A simple path is one in which the vertex terms x0, x1, . . . , xk are
also distinct, although we say we have a simple closed path when
k ≥ 1 and all vertex terms are distinct except x0 = xk.

If a path from x to y exists for every pair of vertices x, y of G,
then G is called connected. Otherwise G consists of a number of
connected components (maximal connected subgraphs). It will be
convenient to agree that the null graph with no vertices and no
edges is not connected.

Problem 1B. Suppose G is a simple graph on 10 vertices that is
not connected. Prove that G has at most 36 edges. Can equality
occur?

The length of the shortest walk from a to b, if such walks exist, is
called the distance d(a, b) between these vertices. Such a shortest
walk is necessarily a simple path.

Example 1.1. A well known graph has the mathematicians of the
world as vertices. Two vertices are adjacent if and only if they
have published a joint paper. The distance in this graph from
some mathematician to the vertex P. Erdős is known as his or her
Erdős-number.

Figure 1.5

A polygon is the ‘graph of’ a simple closed path, but more pre-
cisely it can be defined as a finite connected graph that is regular
of degree 2. There is, up to isomorphism, exactly one polygon Pn
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with n vertices (often called the n-gon) for each positive integer n.
The sequence of polygons is shown in Fig. 1.5.

A connected graph that contains no simple closed paths, i.e. that
has no polygons as subgraphs, is called a tree.

Problem 1C. Show that a connected graph on n vertices is a tree
if and only if it has n− 1 edges.

Problem 1D. The complete bipartite graph Kn,m has n + m ver-
tices a1, . . . , an and b1, . . . , bm, and as edges all mn pairs {ai, bj}.
Show that K3,3 is not planar.

No introduction to graph theory can omit the problem of the
bridges of Königsberg (formerly a city in Prussia). The river Pregel
flowed through this city and split into two parts. In the river was
the island Kneiphof. There were seven bridges connecting different
parts of the city as shown in the diagram of Fig. 1.6.

Figure 1.6

In a paper written in 1736 by L. Euler (considered the first paper
on graph theory) the author claims that the following question was
considered difficult: Is it possible to make a walk through the city,
returning to the starting point and crossing each bridge exactly
once? This paper has led to the following definition. A closed path
through a graph using every edge once is called an Eulerian circuit
and a graph that has such a path is called an Eulerian graph.

Theorem 1.2. A finite graph G with no isolated vertices (but pos-
sibly with multiple edges) is Eulerian if and only if it is connected
and every vertex has even degree.
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Proof: That G must be connected is obvious. Since the path
enters a vertex through some edge and leaves by another edge, it
is clear that all degrees must be even. To show that the conditions
are sufficient, we start in a vertex x and begin making a path. We
keep going, never using the same edge twice, until we cannot go
further. Since every vertex has even degree, this can only happen
when we return to x and all edges from x have been used. If
there are unused edges, then we consider the subgraph formed by
these edges. We use the same procedure on a component of this
subgraph, producing a second closed path. If we start this second
path in a point occurring in the first path, then the two paths can
be combined to a longer closed path from x to x. Therefore the
longest of these paths uses all the edges. �

The problem of the bridges of Königsberg is described by the
graph in Fig. 1.6. No vertex has even degree, so there is no Eulerian
circuit.

One can consider a similar problem for digraphs. The necessary
and sufficient condition for a directed Eulerian circuit is that the
graph is connected and that each vertex has the same ‘in-degree’
as ‘out-degree’.

Example 1.2. A puzzle with the name Instant Insanity concerns
four cubes with faces colored red, blue, green, and yellow, in such a
way that each cube has at least one face of each color. The problem
is to make a stack of these cubes so that all four colors appear on
each of the four sides of the stack. In Fig. 1.7 we describe four
possible cubes in flattened form.

R

R Y G B

R

cube 1

R

R Y B G

Y

cube 2

G

B B R Y

G

cube 3

B

G Y R G

Y

cube 4

Figure 1.7

It is not a very good idea to try all possibilities. A systematic
approach is as follows. The essential information about the cubes
is given by the four graphs in Fig. 1.8.
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Figure 1.8

An edge indicates that the two adjacent colors occur on opposite
faces of the cube. We obtain a graph G by superposition of the
four graphs and number the edges according to their origin. It is
not difficult to see that we need to find in G two subgraphs that
are regular of degree 2, with edges numbered 1, 2, 3, 4 and such that
they have no edge in common. One of the subgraphs tells us which
pairs of colors to align on the left side and right side of the stack.
The other graph describes the colors on front and back. Of course
it is easy to rotate the cubes in such a way that the colors are where
we wish them to be. The point of the example is that it takes only
a minute to find two subgraphs as described above. In this example
the solution is unique.

We mention a concept that seems similar to Eulerian circuits but
that is in reality quite different. A Hamiltonian circuit in a graph
G is a simple closed path that passes through each vertex exactly
once (rather than each edge). So a graph admits a Hamiltonian
circuit if and only if it has a polygon as a spanning subgraph. In
the mid-19th century, Sir William Rowan Hamilton tried to popu-
larize the exercise of finding such a closed path in the graph of the
dodecahedron (Fig. 1.9).

Figure 1.9
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The graph in Fig. 1.4 is called the Petersen graph (cf. Chapter 21)
and one of the reasons it is famous is that it is not ‘Hamiltonian’;
it contains n-gons only for n = 5, 6, 8, 9, and not when n = 7 or
n = 10.

By Theorem 1.2, it is easy to decide whether a graph admits an
Eulerian circuit. A computer can easily be programmed to check
whether the degrees of a graph are even and whether the graph is
connected, and even to produce an Eulerian circuit when one exists.
In contrast to this, the problem of deciding whether an arbitrary
graph admits a Hamiltonian circuit is likely ‘intractable’. To be
more precise, it has been proved to be NP-complete—see Garey
and Johnson (1979).

Problem 1E. Let A1, . . . , An be n distinct subsets of the n-set
N := {1, . . . , n}. Show that there is an element x ∈ N such that
the sets Ai\{x}, 1 ≤ i ≤ n, are all distinct. To do this, form a graph
G on the vertices Ai with an edge with ‘color’ x between Ai and Aj

if and only if the symmetric difference of the sets Ai and Aj is {x}.
Consider the colors occurring on the edges of a polygon. Show that
one can delete edges from G in such a way that no polygons are
left and the number of different colors remains the same. Then use
1C. (This idea is due to J. A. Bondy (1972).)

Problem 1F. The girth of a graph is the length of the smallest
polygon in the graph. Let G be a graph with girth 5 for which all
vertices have degree ≥ d. Show that G has at least d2 + 1 vertices.
Can equality hold?

Problem 1G. Show that a finite simple graph has at least two
vertices with the same degree.

Problem 1H. A graph on the vertex set {1, 2, . . . , n} is often de-
scribed by a matrix A of size n, where aij and aji are equal to
the number of edges with ends i and j. What is the combinatorial
interpretation of the entries of the matrix A2?

Problem 1I. Let Q := {1, 2, . . . , q}. Let G be a graph with the
elements of Qn as vertices and an edge between (a1, a2, . . . , an) and
(b1, b2, . . . , bn) if and only if ai 
= bi for exactly one value of i. Show
that G is Hamiltonian.
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Problem 1J. Let G be a simple graph on n vertices (n > 3) with
no vertex of degree n− 1. Suppose that for any two vertices of G,
there is a unique vertex joined to both of them.

(i) If x and y are not adjacent, prove that they have the same
degree.

(ii) Now show that G is a regular graph.

Notes.
Paul Erdős (1913–1996) (cf. Example 1.1) was probably the most

prolific mathematician of the 20th century with well over 1400 pa-
pers having been published. His contributions to combinatorics,
number theory, set theory, etc., include many important results.
He collaborated with many mathematicians all over the world, all
of them proud to have Erdős-number 1, among them the authors
of this book; see J. W. Grossman (1997).

Leonhard Euler (1707–1783) was a Swiss mathematician who
spent most of his life in St. Petersburg. He was probably the most
productive mathematician of all times. Even after becoming blind
in 1766, his work continued at the same pace. The celebration in
1986 of the 250th birthday of graph theory was based on Euler’s
paper on the Königsberg bridge problem. Königsberg is now the
city of Kaliningrad in Russia.

For an elementary introduction to graph theory, we recommend
R. J. Wilson (1979), and J. J. Watkins and R. J. Wilson (1990).

Sir William Rowan Hamilton (1805–1865) was an Irish mathe-
matician. He was considered a genius. He knew 13 languages at
the age of 12 and was appointed professor of astronomy at Trinity
College Dublin at the age of 22 (before completing his degree). His
most important work was in mathematical physics.
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