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Vectors and Linear Spaces

Vectors provide a mathematical formulation for the notion of direction, thus
making direction a part of our mathematical language for describing the physi-
cal world. This leads to useful applications in physics and engineering, notably
in connection with forces, velocities of motion, and electrical fields. Vectors
help us to visualize physical quantities by providing a geometrical interpreta-
tion. They also simplify computations by bringing algebra to bear on geometry.

1.1 Scalars and vectors

In geometry and physics and their engineering applications we use two kinds
of quantities, scalars and vectors. A scalar is a quantity that is determined
by its magnitude, measured in units on a suitable scale. ! For instance, mass,
temperature and voltage are scalars.

A vector is a quantity that is determined by its direction as well as its mag-
nitude; thus it is a directed quantity or a directed line-segment. For instance,
force, velocity and magnetic intensity are vectors.

We denote vectors by boldface letters a, b, r, etc. [or indicate them by arrows,
a, E, 7, etc., especially in dimension 3]. A vector can be depicted by an arrow,
a line-segment with a distinguished end point. The two end points are called
the initial point (tail) and the terminal point (tip):

1. length (of the line-segment OA)
A 2. direction
— attitude (of the line OA)
— orientation (from O to A)

0

The length of a vector a is denoted by |a|. Two vectors are equal if and only

1 In this chapter scalars are real numbers (elements of R).
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2 Vectors and Linear Spaces
if they have the same length and the same direction. Thus,
a=b <= |a=|b|] and attb.

Two vectors have the same direction, if they are parallel as lines (the same
attitude) and similarly aimed (the same orientation). The zero vector has
length zero, and its direction is unspecified. A unit vector u has length one,
|u] = 1. A vector a and its opposite —a are of equal length and parallel, but
have opposite orientations.

1.2 Vector addition and subtraction

Given two vectors a and b, translate the initial point of b to the terminal
point of a (without rotating b). Then the sum a+b is a vector drawn from the
initial point of a to the terminal point of b. Vector addition can be visualized
by the triangle formed by vectors a,b and a+b.

b b

]

a+b a a

Vector addition b

Vector addition is commutative, a+b = b+a, as can be seen by inspection of

the parallelogram with a and b as sides. It is also associative, (a+b) +c¢c =

a+(b+c), and such that two opposite vectors cancel each other, a+(—a) = 0.
Instead of a-+ ( b) we sunply write the dlfference as a—b. Note the order

n BA OA OB when a = OA and b= OB

-b b A

0 b B

Vector subtraction

Remark. To qualify as vectors, quantities must have more than just direction
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1.8 Multiplication by numbers (scalars) 3

and magnitude — they must also satisfy certain rules of combination. For in-
stance, a rotation can be characterized by a direction a, the axis of rotation,
and a magnitude « = |a|, the angle of rotation, but rotations are not vectors
because their composition fails to satisfy the commutative rule of vector addi-
tion, a+b = b+ a. The lack of commutativity of the composition of rotations
can be verified by turning a box around two of its horizontal axes by 90°:

I <90°

L
90° C,/

The terminal attitude of the box depends on the order of operations. The axis
of the composite rotation is not even horizontal, so that neither a+b nor b+a
can represent the composite rotation. We conclude that rotation angles are not
vectors — they are a different kind of directed quantities. 1

1.3 Multiplication by numbers (scalars)

Instead of a-+a we write 2a, etc., and agree that {(—1)a = —a, the opposite of
a. This suggests the following definition for multiplication of vectors a by real
numbers A € R: the vector Aa has length |Aa| = |A||]a| and direction given by
(for a #£ 0)

Aaftta if A>0,

datia if A<

Numbers multiplying vectors are called scalars. Multiplication by scalars, or
scalar multiplication, satisfies distributivity, AMa +b) = da+ Ab, (A + p)a =
Aa + pa, associativity, (Ap)a = A(pa), and the unit property, la = a, for all
real numbers A, p and vectors a, b.

1.4 Bases and coordinates

In the plane any two non-parallel vectors e, e; form a basts so that an arbitrary
vector in the plane can be uniquely expressed as a linear combination a =
are; + azes. The numbers a1, ay are called coordinates or components of the
vector a with respect to the basis {e1,e2}.

When a basis has been chosen, vectors can be expressed in terms of the
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4 Vectors and Linear Spaces
coordinates alone, for instance,
e; =(1,0), ex=(0,1), a=(as,as).

If we single out a distinguished point, the origin O, we can use vectors to label

=,
the points A by a = OA. In the coordinate system fixed by O and {ej, ez}
we can denote points and vectors in a similar manner,

point A = (a,az), vector a = (a1, as),

since all the vectors have a common initial point O.
In coordinate form vector addition and multiplication by scalars are just
coordinate-wise operations:

(a1, a2) + (b1,b2) = (a1 + b1, az + b3),
/\(al, az) = ()\(11, )\CLQ).

Conversely, we may start from the set R x R = {(z,y) | z,y € R}, and
equip it with component-wise addition and multiplication by scalars. This
construction introduces a real linear structure on the set R? = R x R making
it a 2-dimensional real linear space R?. The real linear structure allows us to
view the set R? intuitively as a plane, the vector plane R?. The two unit points
on the axes give the standard basis

81:(1,0), 82:(0,1)

of the 2-dimensional linear space R2.

In our ordinary space a basis is formed by three non-zero vectors e, e, es
which are not in the same plane. An arbitrary vector a can be uniquely
represented as a linear combination of the basis vectors:

a = aje; + azes + aszes.

The numbers aj, a9, az are coordinates ? in the basis {e, es,es}. Conversely,
coordinate-wise addition and scalar multiplication make the set

RxRxR={(z,y,2) | z,y,z € R}

a 3-dimensional real linear space or vector space R3. In a coordinate system
fixed by the origin O and a standard basis {e;,es,e3} a point P = (z,y,z2)
and its position vector

E—
OP = zey + ye; + zes

have the same coordinates. 3

2 Some authors speak about components of vectors and coordinates of points.
3 Since a vector beginning at the origin is completely determined by its endpoints, we will
sometimes refer to the point r rather than to the endpoint of the vector r.
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1.5 Linear spaces and linear functions 5

1.5 Linear spaces and linear functions

Above we introduced vectors by visualizing them without specifying the grounds
of our study. In an axiomatic approach, one starts with a set whose elements
satisfy certain characteristic rules. Vectors then become elements of a math-
ematical object called a linear space or a vector space V. In a linear space
vectors can be added to each other but not multiplied by each other. Instead,
vectors are multiplied by numbers, in this context called scalars. *

Formally, we begin with aset V and the field of real numbers R. We associate
with each pair of elements a,b € V' a unique element in V, called the sum and
denoted by a+b, and to each a € V and each real number A € R we assoclate
a unique element in V| called the scalar multiple and denoted by Aa. The set
V is called a linear space V over R if the usual rules of addition are satisfied
for all a,b,ceV

a+b=b+a commutativity
(a+b)+c=a+(b+¢) assoclativity
a+0=a zero-vector 0
a+(—a)=0 opposite vector —a

and if the scalar multiplication satisfies

Aa +b) = Aa+ b } distributivity
(A+pla=Aa+pa

(Ap)a = A(ua) associativity
la=a unit property

for all A,z € R and a,b € V. The elements of V are called vectors, and the
linear space V is also called a vector space. The above axioms of a linear space
set up a real linear structure on V.

A subset U of a linear space V is called a linear subspace of V if it is closed
under the operations of a linear space:

a+belU for a,beU,
AaeU for AeR, aeU.

For instance, R? is a subspace of R3.
A function L : U — V between two linear spaces U and V is said to be
linear if for any a, b€ U and A € R,

L(a+b)=L{a)+ L(b) and
L(\a) = AL(a).

4 Vectors are not scalars, and scalars are not vectors. Vectors belong to a linear space V,
and scalars belong to a field F. In this chapter F = R.
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6 Vectors and Linear Spaces

Linear functions preserve the linear structure. A linear function V — V is
called a linear transformation or an endomorphism. An invertible linear func-
tion U — V is a linear isomorphism, denoted by U ~ V. 5

The set of linear functions U — V 1is itself a linear space. A composition
of linear functions is also a linear function. The set of linear transformations
V — V is a ring denoted by End(V). Since the endomorphism ring End(V)
is also a linear space over R, it is an associative algebra over R, denoted by
Endm(V) 6

1.6 Linear independence; dimension

A vector b € V is said to be a linear combination of vectors ay,ag,...,ax if
1t can be written as a sum of multiples of the vectors aj, as, ..., ag, that is,

b= Aja; + Xag+ .-+ Arap where Aj, Ao, ..., Az €R.

A set of vectors {ay, as,...,a;} issaid to be linearly independent if none of the
vectors can be written as a linear combination of the other vectors. In other
words, a set of vectors {aj,az,...,ar} is linearly independent if Ay = Ay =
...= Xx = 0 is the only set of real numbers satisfying

A1ag + Azag + - -+ Agag = 0.
In a linear combination

b= Aa; + das+ -+ Aeay

of linearly independent vectors aj,as,...,a; the numbers Aj, Ag, ..., Ax are
unique; we call them the coordinates of b.
Linear combinations of {a;,a,,...,ax} C V form a subspace of V; we say

that this subspace is spanned by {ai,as,...,ar}. A linearly independent set
{aj1,as,...,a,} C V which spans V is said to be a basis of V. All the bases
for V have the same number of elements called the dimension of V.

QUADRATIC STRUCTURES

Concepts such as distance or angle are not inherent in the concept of a linear
structure alone. For instance, it is meaningless to say that two lines in the
linear space R? meet each other at right angles, or that there is a basis of

5 Finite-dimensional real linear spaces are isomorphic if they are of the same dimension.

6 A ring R is a set with the usual addition and an associative multiplication R x R =+ R
which is distributive with respect to the addition. An algebra A is a linear space with a
bilinear product A X A — A.
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1.7 Scalar product 7

equally long vectors e;, e, in R2. The linear structure allows comparison of
lengths of parallel vectors, but it does not enable comparison of lengths of non-
parallel vectors. For this, an extra structure is needed, namely the metric or
quadratic structure.

The quadratic structure on a linear space R™ brings along an algebra which
makes it possible to calculate with geometric objects. In the rest of this chapter

we shall study such a geometric algebra associated with the Euclidean plane
R2,

1.7 Scalar product

We will associate with two vectors a real number, the scalar product a-b € R of
a,b € R?. This scalar valued product of a = a1e; + ases and b = bieq + baes
is defined as

in coordinates a-b=aib + azb,

geometrically a-b =|a||blcos¢
where ¢ [0 < ¢ < 180°] is the angle between a and b. The geometrical

construction depends on the prior introduction of lengths and angles. Instead,
the coordinate approach can be used to define the length

lal =va-a,
which equals |a| = y/a? + a2, and the angle given by
a-b
|a||b]

Two vectors a and b are said to be orthogonal, if a-b = 0. A vector of
length one, |a| = 1, is called a unit vector. For instance, the standard basis
vectors e; = (1,0), ex = (0,1) are orthogonal unit vectors, and so form an
orthonormal basis for R2.

cos p =

The scalar product can be characterized by its properties:
(a+b)-c=a-c+b-¢c
(Aa) -b = A(a-Db)
a-b=b-a symmetric
a-a>0 for a#0 positive definite.

} linear in the first factor

Symmetry and linearity with respect to the first factor together imply bilin-
earity, that is, linearity with respect to both factors. The real linear space R?

endowed with a bilinear, symmetric and positive definite product is called a
Euclidean plane R2.
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8 Vectors and Linear Spaces

All Euclidean planes are isometric 7 to the one with the metric/norm

r = ze; +yey — |r| = /z? + 2.

In the rest of this chapter we assume this metric structure on our vector plane
R2,
Remark. The quadratic form r = ze; + yes — |r|?> = 22 + y? enables us to

compare lengths of non-parallel line-segments. The linear structure by itself
allows only comparison of parallel line-segments. i

1.8 The Clifford product of vectors; the bivector

It would be useful to have a multiplication of vectors satisfying the same axioms
as the multiplication of real numbers — distributivity, associativity and commu-
tativity — and require that the norm is preserved in multiplication, |ab| = |a||b]|.
Since this is impossible in dimensions n > 3, we will settle for distributivity and
associativity, but drop commutativity. However, we will attach a geometrical
meaning to the lack of commutativity.

Take two orthogonal unit vectors e; and e, in the vector plane R?. The
length of the vector r = ze; + yey is |r| = /2?2 + y?. If the vector r is
multiplied by itself, rr = r?, & a natural choice is to require that the product
equals the square of the length of r,

r? = |r|%
In coordinate form, we introduce a product for vectors in such a way that
(zey + yes)? = z? + ¢2.
Use the distributive rule without assuming commutativity to obtain
rzef + yze% + zylejes + ezey) = z? 4+ 42

This is satisfied if the orthogonal unit vectors e;, ez obey the multiplication

rules
2 2
e =e;=1 . e|=lez[=1
! 2 which correspond to lex] = fez
€ej€ey == —eqe; (3] 1 €2
Use associativity to calculate the square (eje;)? = —e?e? = —1. Since the

square of the product eje; is negative, it follows that ejey is neither a scalar

7 An isometry of quadratic forms is a linear function f : V — V'’ such that Q'(f(a)) = Q(a)
forall ae V.

8 The scalar product a - b is not the same as the Clifford product ab. Instead, the two
products are related by a-b = %(ab + ba).
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1.9 The Clifford algebra Ce; 9

nor a vector. The product is a new kind of unit, called a bivector, represent-
ing the oriented plane area of the square with sides e; and e;. Write for short
€12 = ej€ej.

T T e
ez — [

We define the Clifford product of two vectors a = aje; + ases and b = bje; +
byes to be ab = ayby +azby+(a1by —azb;)ers, asum of a scalar and a bivector.

1.9 The Clifford algebra C¢;

The four elements

1 scalar
el, € vectors
el bivector

form a basis for the Clifford algebra Cly; ° of the vector plane R?, that is,
an arbitrary element

u = ug + uje; + uzes + upzerz in Céy

1s a linear combination of a scalar up, a vector uje; + uses and a bivector

10
U12€12.
Example. Compute eje;; = ejeje; = es, ejse) = ejese; = —ere; = —es,
eje;; = ezejey = —ejes = —e; and ejse; = ejel = e;. Note in particular
that e anticommutes with both e; and e,. 1

The Clifford algebra C¢; is a 4-dimensional real linear space with basis elements

9 These algebras were invented by William Kingdon Clifford (1845-1879). The first an-
nouncement of the result was issued in a talk in 1876, which was published posthumously
in 1882. The first publication of the invention came out in another paper in 1878.

10 The Clifford algebra C£, of R™ contains 0-vectors (or scalars), 1-vectors (or just vec-
tors), 2-vectors, ..., n-vectors. The aggregates of k-vectors give the linear space C{, a
multivector structure C4, = RGR" & /\2 R*"®...6 A"R™
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10 Vectors and Linear Spaces
1, e, ez, e12 which have the multiplication table

e € e12

el 1 el e
€9 —e12 l —e;
€12 —es e -1

1.10 Exterior product = bivector part of the Clifford product
Extracting the scalar and bivector parts of the Clifford product we have as
products of two vectors a = aje; + asey; and b = bye; + baey

a-b = aib; + azbs, the scalar product ‘a dot b’,

aAb = (ajby — azbi)ess, the exterior product ‘a wedge b’.
The bivector a A b represents the oriented plane segment of the parallelogram

with sides a and b. The area of this parallelogram is |a1bs — a2b;|, and we will
take the magnitude of the bivector aAb to be this area |aAb| = |aiby — azbi].

y

{ Area = |aiby — asb;|
L —

! T

The parallelogram can be regarded as a kind of geometrical product of its
sides:
a

a

The bivectors a Ab and b A a have the same magnitude but opposite senses
of rotation. This can be expressed simply by writing

aAb=-bAa.
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