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1

Plane curves

1.0 Introduction

Sir Christopher Wren

Went to dine with some men.
‘If anyone calls,

Say I’'m designing St Paul’s!’

St Paul’s Cathedral was designed following the Great Fire of London
in 1666. Six years earlier Wren, a mathematician as well as architect,
was one of the founder members of the Royal Society. At that time one
of the men that he might well have been dining with was the great
Dutch Scientist, Christiaan Huygens (nratus 1629, denatus 1695, as a
late picture of him has it! (Figure 1.1)). At the time we are speaking of
Newton (natus 1642) and Leibniz (natus 1646) were still teenagers, and
the Calculus had yet to be invented. Indeed the first elementary calculus
textbook was published only in 1696, the year after Huygens’ death.
This purported to be written by an aristocratic friend of the Bernoulli
family, the Marquis de 1’Hopital, and was entitled Analyse des infiniment
petits, Pour lintelligence des lignes courbes. Central to this first work
on differential geometry are the ideas developed by Huygens and his
associates thirty-five or more years previously. Curiously, de 1’Hopital
did not put his name to the first edition of the work, it being added in
ink in many copies (Figure 1.2). The work is in fact a fairly direct
translation from the original Latin of Jean Bernoulli, which came to
light many years later, neither the translator nor the writer of the
unsigned preface being de I’Hopital! For an account of this ancient
scandal see Truesdell (1958).

Our aim here is to give a fresh account of these ideas which remain
the basis of the whole subject.

Consider as a first example the parabola in the real plane with
equation y = x2. An engineer wishing to cut this curve accurately out of
some sheet of material has to use a cutting tool, necessarily of finite
size, whose centre has to be programmed to follow some curve offset
the right distance from the parabola to be cut. Hasty thinking might
suggest that this offset is another parabola, but this is not so — compare
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Figure 1.1

Figures 1.3 and 1.4. If one examines offsets at greater and greater
distances from the original curve (on the ‘inner’ side) one discovers that
before long these are no longer regular curves but acquire sharp points
or cusps, where the direction of the curve reverses. Moreover these
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cusps lie along a new curve which itself sports a cusp, pointing towards
the lowest point of the original parabola — see Figure 1.5.

It is a pleasant thought to think of the parabola in another way as the
shoreline of a bay in which one has gone out for a swim, swimming out
normally, that is at right angles, to the shore — Figure 1.6. One’s first
intuition probably is that, no matter how far one swims, one’s starting
point * remains locally the nearest point of the shore. We say ‘locally’
here because if one goes far enough then clearly some point on the
farther shore may well be nearer. But our local intuition is wrong, as
Figures 1.7 and 1.8 illustrate. These display the same new cuspidal
curve that we saw before, its tangents all being normal to the parabola.

Figure 1.3 Figure 1.4

VAYAVAVAYAVAV
TAANATT
hasads
VATATATAY

Figure 1.5
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Figure 1.6

A
Figure 1.7

Figure 1.8
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Initially one can draw only one normal to the shore from one’s position
* in the bay, namely the path along which one has just swum, but after
crossing the curve of cusps two new normals can be drawn, the three
shore points *, 4 and B then being successively a local minimum at x,
a local maximum at 4 and a local minimum at B, of the distance from
one’s position in the bay to the shoreline — Figure 1.7. As one swims
on, the points 4 and B move round the shore in opposite directions, and
as one reaches the point of tangency of the normal with the curve of
cusps A comes right round to coincide with *. At any more distant point
* is a local maximum of distance — Figure 1.8!

The curve of cusps that falsifies both these intuitions is known as the
evolute or focal curve of the original curve. In Figure 1.9 it is exhibited
as the envelope of the family of the family of normals to the parabola.
The offsets are also said to be the parallels or equidistants to the
parabola.

It was Huygens who made the remarkable discovery that one can
recover the original parabola from its evolute by unwinding an
inextensible string laid partially along the evolute, or equivalently by
rolling the tangent line to the evolute along the evolute. A bob on the
string, or point of the rolling line, then describes part either of the
parabola itself or, according to the position of the bob, one of the
offsets to the parabola. Indeed all the offsets can be obtained in this
way if one makes appropriate conventions about the unwinding process,

Figure 1.9
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especially at a cusp of the evolute. These mutually parallel curves are
known as the involutes or evolvents of the evolute.

There is nothing special about the parabola in all this. Indeed a
favourite curve of Huygens, and of Wren too, is the curve which
features as the solution to the following take-home problem (Figure
1.10) faced by several thousand Merseyside twelve-year olds in the
Spring of 1982 (Giblin and Porteous, 1990).

The curve is the cycloid, consisting of a series of arches supported on
a series of cusps (Figure 1.11). As we shall verify later, this curve has
the remarkable property that its evolute is a congruent cycloid, whose
cusps this time point away from and not towards the original curve. If
we turn all this upside down (Figure 1.12) and arrange for a pendulum
of suitable length to be swung from one of the jaws of the evolute
cycloid one obtains the Huygens cycloidal pendulum, whose period,
remarkably, turns out to be independent of the amplitude.

Arc Light

There was a young glow worm called Glim,
Who went for a ride on the rim

Of a wheel that went round

As it rolled on the ground.
Please draw me the arc traced by him!

Figure 1.10

Figure 1.12
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Yet a third way of regarding the evolute is as the locus of centres of
curvature of the original curve. This is illustrated in Figure 1.13 where
the circle with centre at the point of tangency of a normal to the
original curve with the evolute, and passing through the base of the
normal, is seen to hug the curve so closely there that it is known as the
osculating circle, or circle of curvature of the curve at that point. In
general, as in this example, it shares a tangent line with the original
curve, but crosses the curve there. An exception to this occurs at the
lowest point of the parabola, when the centre of the osculating circle
lies at the cusp of the evolute and the circle lies entirely above the
parabola. At this point the radius of the osculating circle, the radius of
curvature of the curve, has a local minimum — indeed in this example
an absolute minimum. In fact cusps on the evolute correspond to critical
points of the radius of curvature, the cusps on the evolute pointing
towards the curve at local minima and away from the curve at local
maxima.

The reciprocal of the radius of curvature is known simply as the
curvature of the curve. At a point of inflection of the curve the
curvature is zero and the radius of curvature infinite, the role of
osculating circle being then played by the inflectional tangent. We shall
prove that the evolute of a regular plane curve does not have any points
of inflection. Of course, as de ’Hopital (or was it Jean Bernoulli?) first
remarked, there is nothing to stop one swinging a pendulum from a
curve with an inflection. The resulting family of non-regular involutes
(see Figure 1.21) has an intimate relationship with the group of

Figure 1.13
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symmetries of an icosahedron — a deep and mysterious fact only
recently noted by the Russian school of singularity theorists under the
leadership of V.I. Arnol’d (Arnol’d, 1983, 1990b).

As we are going to be concerned in what follows with applications of
the calculus to geometry we ought logically to start with reviewing the
calculus. Since almost all that is required for the study of curves should
already be familiar to the reader we defer this review to Chapter 4,
preceded in Chapter 2 with a review of some basic frequently used facts
of linear and projective geometry. For the moment it is enough to
remark that the standard n-dimensional real vector space equipped with
the standard Euclidean scalar product will be denoted by R”, the product
being denoted by a dot above the line -. The length of a vector v € R"
is |[v]=v(v-v). A map f:R">— R” is said to be smooth if
everywhere sufficiently many' of its derivatives exist and are continuous,
the (non-standard) forked tail on the arrow indicating that the domain of
definition is an open subset of R” but not necessarily the whole of R”.

1.1 Regular plane curves and their evolutes

Curves in the plane may be presented in many different ways, for
example as the zero sets of functions R? — R, locally at least as the
graphs of functions R>— R, or parametrically as the images of
maps R — R?. For example the circle of radius 1 with centre the
origin, the unit circle, is the zero set of the function R’ — R;
(x, ) —»x*+3y*—1, and also the image of the map R — RZ
0 — (cos 0, sin 8). It is not globally the graph of a function from either
axis to the other, but locally it is. For simplicity we begin by
concentrating almost entirely on curves presented parametrically, with
domains open intervals of R. The image space will be an explicit copy
of R? but we occasionally will allow ourselves the luxury of choosing a
fresh origin for this space, perhaps at some special point of interest of
the curve, and also choosing fresh mutually orthogonal axes through this
new origin. Such a change of view will, however, preserve the metric of
the plane, the distance between points remaining unaltered despite the
change of frame of reference.
A smooth parametric curve in R? is a smooth map

r:R— R% 1 r(o),

T This usage of the word ‘smooth’ is slovenly but convenient. If one prefers it, take
‘smooth’ to mean ‘infinitely differentiable’, that is C>°.
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with domain an open interval of R, that is an open connected subset of
R. It is regular (or immersive) at t if its first derivative ri(f) is non-
zero (we defy convention by using subscripts instead of ds or dots or
dashes to denote differentiation with respect to the parameter). At a
regular point ¢ the vector ri(t), which may be regarded as the velocity
of the curve r at time ¢, generates the tangent vector line to r at t. The
tangent line to r at t is then the line

u — r(t) + ur(1).

A smooth curve may be straight! But this puts strong conditions on
the higher derivatives of the curve. For suppose that the image of the
curve r : ¢+ r(¢) is the line in R?> with equation ax + by = k, or part
of that line. Then, for every ¢t € R, ¢-r(z) = k, where ¢ = (a, b), and
for every i = 1 we have ¢-r;(¢) = 0, implying that each of the derived
vectors is a multiple of the first non-zero one.

It is, of course, exceptional for any of the higher derivatives r;(¢) of a
regular smooth curve r at a point ¢ to be a multiple of r;(z). We say
that a smooth curve r is linear at ¢ if it is regular there and its
acceleration ry(t) is a multiple of r(¢). It will be said to be Aj-linear
at ¢ if it is regular there and r;(#) is a multiple of r((?) for 1 <j < &,
but r;.1(¢) is not a multiple of r;(f). According to this definition r is
not linear at an A;-linear point, but just regular there. An A,-linear
point is an ordinary inflection of r and an As-linear point an ordinary
undulation of r.

Example 1.1 The curve ¢~ (¢, t*) (Figure 1.14) has an ordinary
inflection at ¢=0, while the curve ¢+ (¢, t*) (Figure 1.15) has an
ordinary undulation at ¢ = 0. U

The somewhat odd term ‘undulation’ derives from thinking of the curve
t+— (t, t*) as being the curve given by the value ¢ = 0 in the family of
curves ¢+ (t, et> + t*), such a curve having no inflection for & >0, but
acquiring two and a consequent wiggle when & becomes negative.

These examples are typical:

Proposition 1.2 By suitably choosing a new origin and new mutually
orthogonal axes in R* the parametric equations of a smooth curve r in
the neighbourhood of an ordinary inflection at t =0 may be taken to
be of the form

r(f)=(at+...,bt> +...), where a0 and b # 0,
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Figure 1.14

Figure 1.15

and in the neighbourhood of an ordinary undulation to be of the form

r())=(at+...,bt* +...), where a# 0 and b # 0. O

Corollary 1.3 The tangent line to a regular curve v at an ordinary
inflection crosses the curve, but at an ordinary undulation this is not
s0. O

In the above examples the curves are actually graphs of functions. More
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generally consider the curve r given by r(¢) = (¢, f(¢)), where
f:R— R; t— f(2) is a smooth function. Then we have

ri() = (1, fi(1),
r2(1) = (0, f2(1)),
r3(1) = (0, f3(2)),
ry(1) = (0, fa(1)),

and so on. Then r(¢) is a multiple of r(¢) & fi(?) = 0.

Proposition 1.4 For a regular curve r that is the graph of a smooth
function f, v is Ap-linear at t if and only if ri(#) =0 for 2 <i <k, and
ris1(f) # 0. O

Non-regular points of smooth curves also must be considered, such a
point being one where the velocity of the curve is zero. Such a point is
commonly called a cusp of the curve. In particular a smooth curve r is
said to have an ordinary, or 3/2, cusp at t if ri(¢) =0 but ry(¢) # 0,
with r3(¢) linearly independent of r,(#) and to have an ordinary kink, or
4/3, cusp at t if ri(f)=0 and ry(£) =0, but r3(z) #0, with ry(?)
linearly independent of r;(f). More generally, r is said to have an
(n+1)/n cusp at t if ri(t) =0 for 1 <i<n but r,(¢) # 0, with r,1(?)
linearly independent of r (7).

Example 1.5 The curve ¢+ (¢, £3) (Figure 1.16) has an ordinary cusp

Figure 1.16
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at t = 0, while the curve ¢ — (#°, t*) (Figure 1.17) has an ordinary kink
at t = 0. O

Proposition 1.6 By suitably choosing a new origin and orthogonal axes
in R? the parametric equations of a smooth curve r in the neighbour-
hood of an ordinary cusp at t = 0 may be taken to be of the form

r(1)=(at> +..., bt +...), where a# 0 and b # 0.

Moreover at a cusp the vector ry(0) points ‘in the opposite direction’ to
the cusp, lying between its two ‘cheeks’ (Figure 1.18).

Figure 1.17

Figure 1.18
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Proof Choose axes with origin at the cusp and with ry(0) = (24, 0),
where a # 0. Since also r(0) = (0, 0) and r;(0) = (0, 0) it follows from
Taylor’s Theorem applied to each component that r(f)= (at® +
..., b’ +.. ). Then r3(0) = (c, 6b), for some c. Since we know that
r; is not a multiple of rp, b # 0.

Suppose that a>0. Then r,(0) points along the x-axis in the right-
hand or positive direction. Now the cusp lies entirely in the right-hand
half-plane for small ¢. For the x-component of r(f) is at®>f(t), where,
since f(0) =1, f(£)>0 for small non-zero ¢. Moreover, away from
t=0

ri()=QRat+...,3b* +..)
= 2a+...,3bt+..),

which is a multiple of 2a+...,3bt+ ...), the latter tending to
(2a, 0) from opposite sides as ¢ tends to 0 from either side. In particular

the limit tangent direction is along the x-axis. That is r,(0) points ‘in
the opposite direction’ to the cusp, lying between its two ‘cheeks’. (I

We shall verify later in Example 4.20 that a smooth curve is essentially
non-regular at an ordinary cusp; that is it cannot be made regular there
by ‘reparametrisation’ of the curve.

A regular parametric curve may intersect itself; that is two or more
distinct values of the parameter may have the same image point in R2.
The common image point is said to be a singularity of the curve, but
not a point of non-regularity of the curve.

Example 1.7 The curve r: R — R? : t+ (> — 1, t(> — 1)) has a dou-
ble point at the origin, for r(—1)=r(1)=(0,0), but ri(z) =
(2t, 31> — 1), so that ri(—1) = (-2, 2) and r;(1) = (2, 2), both non-zero
— Figure 1.19. (Il

1.2 Curvature

In studying the curvature of a regular plane curve r we study at each
point ¢ how closely the curve approximates there to a parametrised
circle. Now the circle with centre ¢ and radius p consists of all r of R?
such that (r — ¢) - (r — ¢) = p?, or equivalently such that

1 1 2
C'r—5r-r=sc-c—p°),
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Figure 1.19

the right-hand side of this equation being constant. Accordingly for any
parametrisation ¢ — r(¢) of this circle all the derivatives of the function

V(e): t— ¢ r(t) —ir(r) - x(r)
are everywhere zero, namely
Vieh =(—r)-r =0,
V(e =(—r)r;—r -1 =0,
V(e)=(c—r):r3 —3r;:1, =0.

Now suppose that r is a regular parametric curve that is not
everywhere circular. Clearly V(c);(f) = 0 whenever the vector ¢ —r is
orthogonal to the tangent vector ri(f), that is whenever the point ¢
happens to lie on the normal to r at ¢, the line through r(#) orthogonal
to the tangent line there. It may be that r is linear at ¢, that is that r,(¢)
is linearly dependent on r;(#). When this is not so, as will generally be
the case, there will be a unique point ¢ # r(#) on the normal line such
that also V'(c)(¢) = 0.

This point, which we denote by e(?), is called the centre of curvature
or focal point of r at ¢, the curve e : ¢ — e(f) being called the evolute
or focal curve of r. The distance p(z) of e(f) from r(¢) is called the
radius of curvature of r at ¢ and its reciprocal (f)=1/p(f) the
curvature of r at t.
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Example 1.8 Let r be the parabola ¢+ (t, t*). Then we have
r(1) = (1, %),
ri() = (1, 20),
r,(7) = (0, 2).

So the equation for e(#) becomes

[1 2t]e(t): [ (t, 1) (1, 21) }

0 2 (1, %)+ (0,2) + (1, 20)- (1, 20)
that is
1 [2 —ZtH t+28 }
e(f) ==
210 1 262+ 14 4¢2

1] -8 0 —48
= - 2 = 1 + 2 .
2 |1+6¢ 3 3t

Now the curve ¢ +— (—4£3, 3¢%) clearly has an ordinary cusp at 7 = 0, at
the origin in R?. So the curve e has an ordinary cusp at ¢ = 0, at (0, %)
in R? (Figure 1.9). O

The curvature of a regular curve r may be defined directly by assigning
to each ¢ either of the unit normal vectors n(f7) to r at ¢. The choice
does not matter, except that it should be made continuously along the
curve. For definiteness we shall generally tacitly choose n so that one
turns through +%n in turning from ri(#) to n(¢). (But this is not so
straightforward for a curve with non-regular points. See Exercise 1.27 —
the cardioid (Figure 1.25).)

In this way we have associated to the regular curve r a smooth
circular curve n, the image of n being a subset of the unit circle, the
circle with centre 0 and radius 1. As one travels along the curve r in
time the unit vector n(#) swings to and fro, like a pointer on a dial
(Figure 1.20).

From the definition of m it follows that n-r; = 0 everywhere, the
vectors n(¢) and r;(f) being linearly independent for each ¢, any vector
orthogonal to each necessarily being the zero vector, a remark that will
be relevant again and again in what follows. Moreover, since n-n = 1
everywhere it follows that n-n; = 0 (cancelling a 2). So, for all ¢, the
vectors ny(¢) and ry(¢) are linearly dependent, both being orthogonal to
n(t). With ri(7) # 0 it follows that n;(#) is a (possibly zero) multiple of

ri(?).
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Figure 1.20

For the circle with centre ¢ and radius p we have r 4 pn = ¢, from
which it follows that r; 4+ pn; = 0, that is that xr; + n; = 0, where
x = p~'. This suggests that for a regular curve r the curvature of r at t,
K(?), should be defined by the equation

n, (1) = —x()ri(2),

the actual sign of the curvature depending on the choice of normal. That

is up to sign the curvature of a curve is the ratio of the velocity of the

end of the normal vector on the dial to one’s velocity along the curve.
Suppose that x is so defined. Then we have the following proposition:

Proposition 1.9 A regular curve r is linear at a point t if and only if
Kk =0 at t. Equivalently, ik # 0 at t if and only if v is not linear at t (is
Ay-linear at t).

Proof Since r(f) #0 it is clear that k = 0 if and only if n; = 0. Now
n-ry=0. Son-r, +n;-r; =0, from which it follows that if n; =0
then n-r, =0 and therefore that r is linear at 7. Conversely if r is
linear at ¢ then n; - r; = 0. But also n; - n = 0. Thus n; = 0. ]

One can extend the last proposition.

Proposition 1.10 A regular curve r is Ap-linear (k = 2) at a point t if
and only if k;=0 at t, for 0<i<k—2, but k;_1(1)#0. In
particular v has an ordinary inflection (is A,-linear) at t if and only if
K =0 but k1 # 0 at t, and has an ordinary undulation (is As-linear) at
tif and only if Kk =11 =0 but 1; # 0 at t. O

Note that the curvature of a regular curve changes sign as one passes
through an ordinary inflection of the curve.
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To relate the two definitions of curvature suppose that at ¢ r(¢) # 0,
with p(#) = 1/x(#). Then r((¢) + p(£)n;(#) = 0. By an earlier remark this
is equivalent to the pair of equations

(r1(8) + p(Ony (1)) - 11(2) = 0 and (r,(2) + p(Ony (1)) - n(z) = 0,

the second of these being true for all ¢ since r;-n =0 and n; -n = 0.
As to the first, since n-r; =0, n;-r; = —n-r, as before, so that the
equation takes the form

p(On(t) - ra(t) —ri(1) -1 (1) = 0,

in accordance with our earlier definition, with p(#)n(¢) = e(t) — r(¢). Of
course p may now take either sign, the actual sign of p at any point ¢
depending on the choice of the unit normal vector n(?).

We shall say that a smooth curve r is circular at a point ¢ if it is
regular and not linear at ¢ and if also not only V(e);(#) = V(e)(t) =0
but also V3(e)(r) =0, where V(c)=c-r—3r-r and Vi(e), for any
positive integer k, is a convenient shorthand notation for V(c); with ¢
after the differentiation put equal to e. It has an ordinary vertex at t if
also V4(e)(t) # 0.

Several equations relate the derivatives of a regular curve r to the
derivatives of e, of p and of n. Apart from n-r; =0 and n-n; =0 we
have

(e—r)-r; =0 )]

(e—r)r=r;-n

defining e,
e-r =0 3)
obtained by differentiating (1) and using (2),
e -1+ V3(e) =0, “)
obtained by differentiating (2),
r +pn; =0 (5
and
e; =pin (6)

obtained by differentiating the equation e = r 4+ pn and using (5).
We employ these in the proof of the following proposition listing
some elementary properties of the evolute of a regular plane curve.
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Proposition 1.11 Let r be a regular curve in the plane with evolute e.
Then

(a) for each t at which the evolute e is regular the tangent line to e at t
coincides with the normal line to r at t;

(b) the curve e has no linear points — in particular no ordinary point
of inflection or undulation;

(c) ifel(t) =0 but ey(t) # 0 then e has an ordinary cusp at t;

(d) the curve e is regular at t if and only if the curve r is non-circular
at t,

(e) the curve e has an ordinary cusp at t if and only if the curve r has
an ordinary vertex at t;

(f) the curve r has an ordinary vertex at t if and only if the radius of
curvature p has an ordinary critical point at t, the cusp on e
pointing towards or away from the vertex according as (the absolute
value of ) p has a local minimum or maximum at t.

Proof By equation (3) in the preamble to this proposition e; -r; = 0.
Thus for each regular point ¢ of e not only does e(#) lie on the normal
line to r at 7 but also the tangent to e is normal to the tangent to r; that
is the tangent line to e at ¢ coincides with the normal to r at ¢, which is
assertion (a). That is the solution set of the equation for the normal to r
at #, when put in the form

‘¢ = particular solution + kernel’,
is
c = e(?) + Aey(¢), for all A € R.
On differentiating the equation e; - r; = 0 we get
e-ri+e -r,=0.

Now, for e(#) to be defined, the vector r,(#) is linearly independent of
ri(7), so that if e;(¢) # 0 then e (#)-ry(¢) # 0, from which it follows
that e;(#) - ri(7) # 0. But e(?) - r;(?) = 0. It follows that e,(¢) is linearly
independent of e;(#), which is assertion (b).

On differentiating the same equation a second time we get

e3-r;+2¢er,+e -r3=0.

So if e;(#) = 0 but e(¢) # 0 then, since e(¢) - ri(z) = 0, we must have
e)(7)-1ra(f) #0 and so also e3(7)-ri(¢) # 0. But then e;(#) is linearly
independent of e,(#), which is assertion (c).
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Next consider equation (4) of the preamble, namely
e -1y + V3(e) =0.

Now at a point ¢ where r is not circular V3(e)(¢) # 0, implying that
e (7)-ry(f) # 0 and hence that e;(7) # 0. Conversely, if e;(¢) # 0 then,
since e (¢)-ri(f) =0, e (¢)-ry(f) # 0, so that V3(e)(f) # 0. This estab-
lishes assertion (d).

Differentiating (4) (where V3(e) = (e —r)-r3 — 3r; - 1p) gives

e Iy +2e 13+ V4(e) =0.

Now at an ordinary vertex V3(e) =0 but Vs(e) # 0, implying that at
such a point e;-r, =0 but e;-r, + 2e; -r3 # 0. Since also, by (3),
e;-r; =0 it follows that e; = 0 there. But then e, -r, # 0, implying
that e; # 0 there and so, by assertion (c), that e has an ordinary cusp.

Conversely, at a point where e has an ordinary cusp e; = 0, implying
that V3(e) = 0 but e, # 0, implying that e, -r, # 0 and therefore that
V4(e) # 0, so that r has an ordinary vertex there. Thus ordinary vertices
of r and ordinary cusps of e correspond. This is assertion (e).

To prove the correspondence of each of these with ordinary critical
points of p we note first that we may at any particular point assume that
p is positive, by choosing the circular curve n appropriately near that
point. Now consider equation (6) of the preamble, namely e; = pin.
Differentiating this we obtain e, = ppn+ pin;. Clearly e¢; =0 if and
only if p; =0, with e; # 0 also if and only if p, # 0. Finally, when
p1 =0, it follows by Proposition 1.6 from the equation e, = p,n that
the cusp on e points towards or away from the vertex of r according as
the radius of curvature p has a local minimum or maximum there. This
completes the proof of (f). Ul

Clearly the ordinary critical points of p are also the critical points of p?.
In fact earlier on when we went for a swim in the bay we were
concerned with knowing at all times the points of the shore-line that
were nearest to us. We develop this line of thought in Exercise 1.22.
Equally clearly the ordinary critical points of p are also the ordinary
critical points of x, provided that x # 0.
The following proposition complements the one we have just proved.

Proposition 1.12 An ordinary undulation of v is a point where the
curvature has an ordinary critical point and where also the curvature is
zero. (I





