Rock Magnetism is a comprehensive treatment of fine particle magnetism and the magnetic properties of rocks. Starting from atomic magnetism and magnetostatic principles, the authors explain why domains and micromagnetic structures form in ferrimagnetic crystals and how these lead to magnetic memory in the form of thermal, chemical and other remanent magnetizations.

The phenomenal stability of these magnetizations, recording millions of years of plate tectonic motions, is explained using thermal activation theory, in which changes in magnetic domains and domain walls are blocked below a critical temperature or above a critical grain size. One chapter of the book is devoted to practical texts of domain state and paleomagnetic stability; another deals with pseudo-single-domain magnetism, that is, particles that contain domain walls but behave like a single domain. The final four chapters place magnetism in the context of igneous, sedimentary, metamorphic, and extraterrestrial rocks.

This book will be of value to graduate students and researchers in geophysics and geology, particularly in paleomagnetism and rock magnetism, as well as physicists and electrical engineers interested in fine-particle magnetism and magnetic recording.
Rock Magnetism
Cambridge Studies in Magnetism

EDITED BY

David Edwards
Department of Mathematics,
Imperial College of Science, Technology and Medicine

TITLES IN PRINT IN THIS SERIES

K. H. Fischer & J. A. Hertz
Spin glasses

A. C. Hewson
The Kondo problem to heavy fermions

D. J. Dunlop & O. Ozdemir
Rock magnetism
Rock Magnetism
Fundamentals and frontiers

David J. Dunlop
Geophysics, Department of Physics, University of Toronto

Özden Özdemir
Geophysics, Department of Physics, University of Toronto
To those who have gone before us, the pioneers of rock magnetism, and to our students and colleagues, from whom we have learned so much.
Contents

Preface xix

Chapter 1 Magnetism in nature 1
 1.1 A brief history 1
 1.1.1 Earth magnetism 1
 1.1.2 Ferromagnetism and magnetic domains 3
 1.1.3 Rock magnetism 5
 1.2 How rock magnetism is applied 7
 1.2.1 Magnetic lineations: the seafloor record of reversals 7
 1.2.2 Other magnetic anomalies 8
 1.2.3 Records of geomagnetic field variation 9
 1.2.4 Paleointensity determination 11
 1.2.5 Paleomagnetism and plate motions 12
 1.2.6 Biomagnetism 14
 1.2.7 Environmental magnetism 14
 1.3 Plan of the book 15

Chapter 2 Fundamentals of magnetism 16
 2.1 Introduction 16
 2.2 Magnetic moments of dipoles and current loops 17
 2.3 Magnetic moments of atoms and ions 20
 2.4 Diamagnetism and paramagnetism 22
 2.5 Ferromagnetism 25
 2.6 Exchange coupling and exchange energy 28
Contents

2.7 Ferrimagnetism and antiferromagnetism 31
 2.7.1 Magnetic sublattices 31
 2.7.2 Ferrimagnetism 32
 2.7.3 Antiferromagnetism 35

2.8 Magnetocrystalline anisotropy and magnetostriiction 36
 2.8.1 Macroscopic description of magnetocrystalline anisotropy 36
 2.8.2 Microscopic view of magnetocrystalline anisotropy 38
 2.8.3 Temperature dependence of magnetocrystalline anisotropy 40
 2.8.4 Magnetostriiction and magnetoelastic anisotropy 42

Chapter 3 Terrestrial magnetic minerals 45
 3.1 Introduction 45
 3.2 Magnetite 48
 3.2.1 Crystal structure and magnetic sublattices 48
 3.2.2 Magnetocrystalline anisotropy 50
 3.2.3 Magnetostriiction 54
 3.3 Magnhemite 56
 3.3.1 Structure and saturation magnetization 56
 3.3.2 Inversion and Curie temperatures 59
 3.3.3 Magnetocrystalline anisotropy and magnetostriiction 60
 3.4 Magnetite–maghemite solid-solution series 60
 3.5 Titanomagnetites 61
 3.6 Titanomaghemites 66
 3.7 Hematite 69
 3.8 Titanohematites 73
 3.9 Iron oxyhydroxides 74
 3.10 Iron sulphides 76
 3.11 Other magnetic minerals 79
 3.12 Magnetism in silicates 80
 3.13 Biogenic magnetic minerals 80

Chapter 4 Magnetostatic fields and energies 83
 4.1 Introduction 83
 4.2 Self-demagnetization and the internal demagnetizing field 84
 4.2.1 The parallel-plate capacitor: an electrostatic analog 84
 4.2.2 Rectangular prism of magnetic material 85
 4.2.3 Uniformly magnetized sphere 88
 4.2.4 Uniformly magnetized spheroid and shape anisotropy 89
Chapter 5 Elementary domain structures and hysteresis 103

5.1 Introduction 103
5.2 Simple domain structures and their energies 106
5.2.1 Alternative domain states of a particle 106
5.2.2 Demagnetizing energy of lamellar domain structures 107
5.3 Width and energy of domain walls 113
5.3.1 180° Bloch walls 113
5.3.2 70.5° and 109.5° Bloch walls 118
5.4 Width and energy of domains 122
5.4.1 Equilibrium number and width of lamellar domains 122
5.4.2 The effect of closure domains 123
5.4.3 Wall energy in magnetite estimated from Néel spikes 125
5.4.4 Non-equilibrium domain structures 128
5.5 The single-domain range 129
5.5.1 Critical single-domain size 129
5.5.2 Superparamagnetic threshold 132
5.6 Magnetic hysteresis of multidomain grains 133
5.6.1 Wall displacement, nucleation, and domain rotation 133
5.6.2 Susceptibility, remanence and coercivity of MD grains 134
5.7 Magnetic hysteresis of single-domain grains 137
5.7.1 Susceptibility, remanence and coercivity of SD grains 137
5.7.2 Superparamagnetic magnetization 140
5.8 Domain wall magnetization 142

Chapter 6 Domain observations 144

6.1 Introduction 144
6.2 Bitter-pattern observations on pyrrhotite 145
6.3 Bitter-pattern observations on magnetite 148
xii

Contents

6.4 Bitter-pattern observations on titanomagnetite 154
6.5 Bitter-pattern observations on hematite 157
6.6 High-temperature domain observations 159
6.6.1 Pyrrhotite 159
6.6.2 Magnetite 159
6.6.3 Titanomagnetite 161
6.7 Electron microscope observations 162
6.7.1 SEM observations 162
6.7.2 TEM observations 164
6.8 MOKE observations 166
6.9 Magnetic force microscopy 169

Chapter 7 Micromagnetic calculations 171
7.1 Introduction 171
7.2 Constrained calculations 173
7.3 One-dimensional micromagnetic calculations 174
7.4 Non-equilibrium or LEM states 176
7.5 Two- and three-dimensional micromagnetic calculations 178
7.5.1 Methodology 178
7.5.2 Three-dimensional LEM states 179
7.5.3 Two-dimensional LEM states 182
7.5.4 Domain-wall structure 183
7.6 Modelling hysteresis 184
7.7 Modelling grain size changes 186
7.8 Modelling temperature changes 190
7.9 Domain structure changes 192
7.9.1 Single-domain reversals 192
7.9.2 Transdomain transitions 195
7.10 Transdomain TRM 197

Chapter 8 Single-domain thermoremanent magnetization 201
8.1 Introduction 201
8.2 Some experimental properties of TRM 203
8.3 Coherent rotation without thermal activation 206
8.4 Magnetization relaxation due to thermal fluctuations 210
8.4.1 A simple model of single-domain TRM 210
8.4.2 Thermal relaxation theory 212
Contents

8.5 Relaxation times for identical SD grains 214
8.6 Blocking temperature and TRM of identical SD grains 217
8.7 Effect of thermal fluctuations on observed coercivity 220
8.8 Grain distributions and laws governing partial TRM's 223
8.9 Theoretical basis of paleofield intensity determination 224
8.10 Néel diagrams and the blocking-temperature spectrum 226
8.11 AF demagnetization and the coercivity spectrum 229
8.12 Measuring and using the grain distribution, f(V,H_Ko) 232

Chapter 9 Multidomain thermoremanent magnetization 234
9.1 Introduction 234
9.2 Wall displacement and hysteresis in a 2-domain grain 235
9.2.1 Wall pinning and total energy 235
9.2.2 Susceptibility and microscopic coercive force 236
9.3 A simple model of multidomain TRM 238
9.4 The Néel theory of TRM in 2D grains 239
9.4.1 TRM in the absence of thermal fluctuations 239
9.4.2 TRM in the presence of thermal fluctuations 244
9.5 Thermal demagnetization of total and partial TRM 247
9.6 Acquisition of partial TRM and paleointensity determination 252
9.7 AF demagnetization and the microcoercivity spectrum 256
9.8 Domain nucleation and TRM 256
9.9 Nucleation failure and TRM 259

Chapter 10 Viscous and thermoviscous magnetization 262
10.1 Introduction 262
10.2 Experimental properties of viscous magnetization 264
10.2.1 Size effects in magnetic viscosity 264
10.2.2 Temperature dependence of magnetic viscosity and susceptibility 266
10.2.3 Magnetic viscosity of TM60 and oceanic basalts 268
10.2.4 Initial states and multidomain viscous magnetization 270
10.3 Theory of single-domain VRM 272
10.3.1 Exact theory of viscous magnetization 272
10.3.2 Blocking theory of VRM 273
10.3.3 Thermal demagnetization of VRM 275
10.3.4 AF demagnetization of VRM 275
10.4 Theory of multidomain VRM 276
Contents

10.5 Viscous noise problems 277
10.6 Thermoviscous remagnetization 278
10.6.1 Thermal demagnetization of thermoviscous overprints 278
10.6.2 AF and low-temperature demagnetization of thermoviscous overprints 284
10.7 Cooling rate dependence of TRM 286
10.8 VRM as a dating method 287
10.9 Granulometry using magnetic viscosity 287

Chapter 11 Isothermal magnetization and demagnetization 288

11.1 Introduction 288
11.2 Single-domain coercivity spectrum and AF demagnetization 289
11.3 Acquisition and ‘DC demagnetization’ of IRM 291
11.3.1 Lightning and drilling-induced IRM’s 292
11.3.2 Laboratory acquisition and demagnetization of IRM 294
11.4 Anhysteretic remanence and other AF-related remanences 296
11.4.1 Anhysteretic remanent magnetization (ARM) 296
11.4.2 Gyromagnetic remanent magnetization (GRM) 300
11.5 AF demagnetization of SIRM of multidomain grains 301
11.5.1 A simple theory 302
11.5.2 Exponential AF demagnetization curves 304
11.6 The Lowrie–Fuller test 306
11.7 Grain interactions and the Wohlfarth relations 310
11.8 The Preisach diagram 312
11.9 Hysteresis and magnetic granulometry 316
11.9.1 Information from hysteresis loops 316
11.9.2 M_{av}/M_a and H_{ex}/H_c for ideal MD grains 317
11.9.3 M_{av}/M_a and H_{ex}/H_c for SD grains 320
11.9.4 Correlation plot of M_{av}/M_a versus H_{ex}/H_c 321
11.9.5 Hysteresis of mixtures 323
11.9.6 Hysteresis as a function of temperature 324

Chapter 12 Pseudo-single-domain remanence 328

12.1 Introduction 328
12.2 Lines of evidence for pseudo-single-domain behaviour 329
12.3 Grain-size dependence of magnetic properties 332
12.3.1 TRM and ARM 332
Contents

12.3.2 Hysteresis parameters 332
12.4 Low-temperature demagnetization and memory 335
12.4.1 Low-temperature transition in magnetite 335
12.4.2 AF demagnetization of low-temperature memory 338
12.5 Thermal demagnetization of TRM and partial TRM 342
12.6 Pseudo-single-domain models 346
12.6.1 Moments related to dislocations 346
12.6.2 Surface and volume moments 348
12.6.3 Moments due to residual wall displacements 350
12.7 Domain-wall moments 352
12.8 Metastable SD grains 354
12.8.1 The observational evidence 354
12.8.2 The Haag-Hofstetter theory 357
12.9 Testing the models 358
12.9.1 Testing AF demagnetization behaviour 358
12.9.2 Tests of TRM acquisition 359
12.9.3 Testing predicted grain size dependences 362
12.9.4 Testing the temperature dependence of D_0 366

Chapter 13 Crystallization remanent magnetization 367
13.1 Introduction 367
13.2 Single-phase or grain-growth CRM 368
13.2.1 Superparamagnetism 368
13.2.2 CRM acquisition by grain growth 370
13.2.3 Examples of grain-growth or single-phase CRM 372
13.3 CRM during low-temperature oxidation 373
13.3.1 Low-temperature oxidation by oxygen addition 374
13.3.2 Low-temperature oxidation by iron removal 375
13.3.3 Low-temperature oxidation on the seafloor and magnetic stripes 376
13.4 CRM with a change of lattice 376
13.4.1 Change of crystal structure and phase coupling 376
13.4.2 Oxidation of magnetite to hematite 377
13.4.3 Reduction of hematite to magnetite 380
13.4.4 Inversion of maghemite to hematite 380
13.4.5 Oxysolution of titanomagnetite 381
13.4.6 Lepidocrocite dehydration and maghemite inversion 384
13.4.7 Partial oxidation of pyrrhotite to magnetite 386
13.5 Chemicoviscous remanent magnetization (CVRM) 387
Chapter 14 Magnatism of igneous rocks and baked materials 391
14.1 The oceanic lithosphere and linear magnetic anomalies 391
14.1.1 The Vine and Matthews' model 391
14.1.2 The nature of the magnetic anomaly source 393
14.2 Submarine basalts 394
14.2.1 Primary homogeneous titanomagnetite 394
14.2.2 Structure and cation distribution of titanomagnetite 395
14.2.3 Identification and magnetic properties of titanomagnetite 396
14.2.4 Low-temperature oxidation of titanomagnetite 397
14.2.5 Properties of titanomaghemite 398
14.2.6 Inversion of titanomaghemite 398
14.2.7 CRM of titanomaghemite 399
14.2.8 Intensity and stability of CRM due to maghemization 400
14.2.9 Viscous remagnetization of submarine basalts 402
14.2.10 Summary 402
14.3 Oceanic intrusive and plutonic rocks 403
14.4 Subaerial basalts and andesites 404
14.4.1 High-temperature oxidation of titanomagnetite 407
14.4.2 Thermochemical remanent magnetization (TCRM) 409
14.4.3 Effective grain size of oxidized titanomagnetite grains 410
14.5 Subaerial felsic volcanics and pyroclastics 412
14.5.1 Titanomagnetite in felsic volcanic rocks 412
14.5.2 Titanohematite 412
14.5.3 Self-reversal mechanisms 413
14.5.4 Self-reversal of TRM in titanohematite 415
14.6 Continental intrusive and plutonic rocks 417
14.6.1 Introduction 417
14.6.2 Continental mafic dikes and sills 418
14.6.3 Continental plutonic rocks 419
14.6.4 Pyrrhotite 422
14.7 Bricks, pottery and other baked materials 423

Chapter 15 Magnatism of sediments and sedimentary rocks 425
15.1 Introduction 425
15.2 Detrital and post-depositional remanent magnetizations 426
15.2.1 Theory of detrital remanent magnetization (DRM) 426
15.2.2 Inclination and other errors in DRM 428
15.2.3 Effect of thermal fluctuations on DRM 431
Contents

15.2.4 Post-depositional remanent magnetization (PDRM) 432
15.2.5 Paleointensity determination using sediments 435
15.3 Oceanic and continental sediments and sedimentary rocks 437
15.3.1 Deep-sea sediments 437
15.3.2 Fresh-water and marginal-sea sediments 439
15.3.3 Soils and loess 442
15.3.4 Sedimentary rocks 444
15.3.5 Chemical remagnetization 446
15.4 Magnetic properties of hematite 448
15.4.1 Antiferromagnetism of hematite 448
15.4.2 Parasitic ferromagnetism of hematite 449
15.4.3 Low-temperature memory 450
15.4.4 Coercivity of hematite 451
15.5 Red sedimentary rocks 452
15.5.1 CRM of hematite pigment 452
15.5.2 Grain growth CRM 453
15.5.3 Hard VRM in red beds 454
15.5.4 The best method for cleaning red beds 456
15.5.5 The reliability of red bed results 458

Chapter 16 Magnetism of metamorphic rocks 461

16.1 Metamorphic regimes 461
16.1.1 Contact metamorphism 461
16.1.2 Hydrothermal alteration during low-grade metamorphism 463
16.1.3 Medium-grade and high-grade regional metamorphism 464
16.1.4 Stress and deformation 464
16.2 Chemical remagnetization during metamorphism 466
16.2.1 Low-grade metamorphism of basaltic rocks 466
16.2.2 Moderate- and high-grade metamorphism 469
16.3 Thermoviscous remagnetization during metamorphism 470
16.3.1 Metamorphic blocking temperature 471
16.3.2 Thermoviscous overprinting viewed graphically 471
16.3.3 Survival of primary NRM in thermal metamorphism 474
16.3.4 Prediction of thermoviscous effects 475
16.3.5 Experimental findings 476
16.3.6 Blocking temperatures in continuous cooling 480
16.3.7 Relative ages of thermally overprinted NRM components 480
16.3.8 Thermal overprinting of radiometric dates and absolute ages of NRM components 481
Contents

16.4 Stress, deformation and anisotropy effects 484
16.4.1 Anisotropy of petrofabric and its effect on TRM 484
16.4.2 Reversible piezomagnetic effects 488
16.4.3 Effects of hydrostatic pressure 490
16.4.4 Uniaxial stress and piezoremanent effects: single-domain theory 492
16.4.5 Piezoremanent effects: experimental results 494
16.4.6 Overprinting by combined stress and temperature 497
16.4.7 Shock metamorphism and shock remanence 499
16.4.8 Summary of stress effects 499
16.5 The reliability of paleomagnetic results from metamorphic rocks 501

Chapter 17 Magnetism of extraterrestrial rocks 503
17.1 Introduction 503
17.2 Magnetic properties of iron and of lunar rocks 504
17.2.1 Lunar rock types 504
17.2.2 Magnetic properties of iron and iron–nickel 505
17.2.3 Domain structure, hysteresis, and magnetic viscosity of lunar rocks 507
17.3 Lunar paleomagnetism 509
17.3.1 The NRM of lunar rocks 509
17.3.2 Lunar paleofield intensity 513
17.4 Paleomagnetism of meteorites 516
17.4.1 Origin and types of meteorites 516
17.4.2 The NRM of meteorites 517
17.4.3 Anisotropic and spontaneous remanence in iron meteorites 518
17.4.4 Overprinting of NRM in achondrites 520
17.4.5 NRM of ordinary chondrites 520
17.4.6 Paleomagnetism of carbonaceous chondrites and their chondrules 522
17.5 Paleofields in the early solar system 524

References 527
Index 565
Preface

The magnetic compass was one of mankind’s first high-technology devices. Possession of the compass gave the Islamic world an early edge in navigation and led to the rapid eastward spread, by sea, of their trade, religion and civilization. But man was a comparative latecomer in magnetically aided navigation. Birds, fish, insects, and even bacteria had evolved efficient compasses millions of years earlier.

Magnetic memory, whether of a compass needle, a lava flow, or a computer diskette, is a remarkable physical phenomenon. The magnetic moment is permanent. It requires no expenditure of energy to sustain. Yet it can be partly or completely overprinted with a new signal. Nowhere is this more strikingly demonstrated than in rocks. A single hand sample can record generations of past magnetic events. This family tree can be decoded in the laboratory by stripping away successive layers of the magnetic signal.

Paleomagnetism is the science of reading and interpreting the magnetic signal of rocks. Rock magnetism is more concerned with the writing or recording process. The principles are no different from those of fine-particle magnetism as applied in permanent magnet and magnetic recording technology. But the physical parameters are rather different. Weak magnetic fields are involved, on the order of the present geomagnetic field (0.3–0.6 G or 30–60 μT), much less than the switching fields of the magnetic particles. Temperatures may be high: thermoremanent magnetization of igneous rocks is acquired during cooling from the melt. Times are long, typically millions of years.

Rock magnetism and paleomagnetism trace their origins to the mid-nineteenth century, but they really came into prominence in the 1950’s and
60’s because of two daring questions that shook and ultimately revolutionized earth science: Does the earth’s magnetic field reverse itself? And do the continents drift? Because rocks record in their magnetizations the polarity and direction of past geomagnetic fields, paleomagnetism was able to answer both questions.

Rocks of the same age from around the globe always recorded the same geomagnetic polarity. Their ancient compasses pointed north (normal polarity) during certain time intervals and south at other times. Most strikingly, strips of seafloor on either side of mid-ocean ridges (the birthplace of new seafloor) were unmistakably striped magnetically: either normal or reverse in response to the prevailing geomagnetic polarity as they formed. The earth’s field does indeed reverse.

The same internal compasses showed that continents or subcontinents (now recognized as sections of lithospheric plates, containing ocean floor as well as continent) had rotated away from present-day north and had changed latitude during geological history. But prior to 175 Ma ago, their compass bearings coincided. They were originally assembled in a single supercontinent.

These findings shook earth science to its foundations and led to its rebuilding around a new guiding principle, plate tectonics. The revolution was not quite as straightforward as we have implied. The multiple generations of magnetization in rocks clouded the issue until methods were developed to strip away all but the most ancient. The stability of this ancestral magnetization came under scrutiny. It seemed to many inconceivable that rocks could preserve an unchanging magnetic memory for 175 Ma when the best products of human technology could be rather easily remagnetized by extraneous fields or stresses.

Such is the exciting history of rock magnetism. In this book, we will show how rocks manage to achieve a fidelity of magnetic memory that is beyond human experience. After developing the principles of ferromagnetism in Chapters 1–5, we will see in Chapter 6 how ferromagnetic domains appear under the microscope and in Chapter 7 what new micromagnetic structures are currently being predicted in grains too small to observe optically. Chapters 8, 9 and 10 reveal how the joint influences of temperature or time and magnetic fields permit the writing of a magnetic signal that cannot be erased by subsequent geomagnetic field changes. These are the fundamentals.

Chapters 11, 12 and 13 deal with some of the frontiers in understanding rock magnetic recording. As well as developing laboratory parameters and techniques that can predict stability on geological time scales (Chapter 11), we will look at how rather large particles can achieve stable memory that rivals that of submicroscopic particles (the pseudo-single-domain effect: Chapter 12) and how chemical changes in minerals degrade or enhance magnetic memory (Chapter 13).

Paleomagnetists sometimes complain that the ‘rock’ is frequently left out of ‘rock magnetism’. Rock magnetic research looks too much like magnetic materi-
Preface

als research. We have tried to answer that criticism in Chapters 14–17 by looking at magnetic minerals and their magnetic signals in the real world of igneous, sedimentary, metamorphic, and extraterrestrial rocks. This is a whole subject in itself and no one person can claim to be expert in all aspects, the present authors included. We have tried to convey the flavour of current thinking and research, rather than serving up an overwhelming banquet.

What background do you need to appreciate this book? A grounding in electricity and magnetism at junior undergraduate level is a help. Those with more geological background may wish to skip over the mathematical details. The key results can stand without them, and we have tried to maintain the story line uninterrupted wherever possible. Similarly a knowledge of basic earth science is helpful, but those with a physical science or engineering background should not turn away because they can’t tell a hyperbyssal rock from a descending plate. This knowledge too is usually peripheral to the main message of the book.

We enjoyed writing this book and hope you will enjoy reading it. It would certainly never have been completed without a lot of help from our friends. We would especially like to mention those who taught us and passed on so much of their knowledge: Subir Banerjee, Ken Creer, Zdenek Hauptmann, Ted Irving, Takesi Nagata, Bill O’Reilly, Minoru and Mituko Ozima, Frank Stacey, David Strangway, Emile Thellier and Gordon West. With our colleagues Susan Halgedahl, Ron Merrill, Bruce Moskowitz, Michel Prévot, Valera Scherbakov, Wyn Williams and Song Xu, we have passed countless hours of pleasurable discussion. Among our former students, we want to mention in particular Ken Buchan, Randy Enkin, Franz Heider and Andrew Newell: their work has had a central influence on the ideas in the book. Sherman Grommé, Ted Irving, Ed Larsson, Michel Prévot and Naoko Sugiura kindly read and commented on early versions of some of the chapters.

We are grateful to Jennifer Wisniewski, Carolyn Moon and Li Guo for patiently shepherding the manuscript through its many incarnations. Thanks to Khader Khan and Raul Cunha, different generations of figures were skillfully drawn and transformed through successive changes in technology. The photography was done with dedication and skill by Alison Dias, Steve Jauzems and Judith Kostilek. Unlike some authors’ families, ours did not eagerly await the appearance of each new chapter, but they did heave a collective sigh of relief when the last page was written and life returned to normal.

Mississauga, Canada
April 1996