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Introduction

In 1948, in the introduction to his classic paper, “A mathematical theory of
communication,” Claude Shannon!*" wrote:

“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

To solve that problem he created, in the pages that followed, a completely new
branch of applied mathematics, which is today called information theory and/
or coding theory. This book’s object is the presentation of the main results of
this theory as they stand 30 years later.

In this introductory chapter we illustrate the central ideas of information
theory by means of a specific pair of mathematical models, the binary
symmetric source and the binary symmetric channel.

The binary symmetric source (the source, for short) is an object which
emits one of two possible symbols, which we take to be “0” and “1,” at a rate
of R symbols per unit of time. We shall call these symbols bits, an abbrevia-
tion of binary digits. The bits emitted by the source are random, and a “0” is
as likely to be emitted as a “1.” We imagine that the source rate R is
continuously variable, that is, R can assume any nonnegative value.

The binary symmetric channel (the BSC? for short) is an object through
which it is possible to transmit one bit per unit of time. However, the channel
is not completely reliable: there is a fixed probability p (called the raw bit
error probability®), 0 < p < %, that the output bit will not be the same as the
input bit.

We now imagine two individuals, the sender and the receiver. The sender
must try to convey to the receiver as accurately as possible the source output,

* Notes, denoted by superior numerals, appear at the end of most chapters.
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2 Introduction

and the only communication link allowed between the two is the BSC
described above. (However, we will allow the sender and receiver to get
together before the source is turned on, so that each will know the nature of
the data-processing strategies the other will be using.) We assume that both
the sender and receiver have access to unlimited amounts of computing power,
storage capacity, government funds, and other resources.

We now ask, For a given source rate R, how accurately can the sender
communicate with the receiver over the BSC? We shall eventually give a very
precise general answer to this question, but let’s begin by considering some
special cases.

Suppose R = 1/3. This means that the channel can transmit bits three times
as fast as the source produces them, so the source output can be encoded
before transmission by repeating each bit three times. For example, if the
source’s first five bits were 10100, the encoded stream would be
111000111000000. The receiver will get three versions of each source bit, but
because of the channel “noise” these versions may not all be the same. If the
channel garbled the second, fifth, sixth, twelfth, and thirteenth transmitted
bits, the receiver would receive 101011111001100. A little thought should
convince you that in this situation the receiver’s best strategy for decoding a
given source bit is to take the majority vote of the three versions of it. In our
example he would decode the received message as 11100, and would make an
error in the second bit. In general, a source bit will be received in error if
either two or three of its three copies are garbled by the channel. Thus, if P,
denotes the bit error probability,

P, = P {2 channel errors} + P {3 channel errors}

=3p*(1—p) +p

=3p* —2p°. (0.1)

Since p < %, this is less than the raw bit error probability p; our simple
coding scheme has improved the channel’s reliability, and for very small p the
relative improvement is dramatic.

It is now easy to see that even higher reliability can be achieved by
repeating each bit more times. Thus, if R = 1/(2n + 1) for some integer #,
we could repeat each bit 2z + 1 times before transmission (see Prob. 0.2) and
use majority-vote decoding as before. It is simple to obtain a formula for the
resulting bit error probability P(f”“):
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2n+1
pemtl — Z P {k channel errors out of 2n + 1 transmitted bits}
k=n+1
2n+1 2n+1
_ Z ( >pk(1 _ p)2n+lfk
k=n+1 k
2n+1 n+1 . .
= o p"" 4+ terms of higher degree in p. (0.2)
n

If n > 1, this approaches 0 much more rapidly as p — 0 than the special case
n = 1 considered above.* So in this rather weak sense the longer repetition
schemes are more powerful than the shorter ones. However, we would like to
make the stronger assertion that, for a fixed BSC with a fixed raw error
probability p<i, PZ"*D — 0 as n — oo, that is, by means of these repeti-
tion schemes the channel can be made as reliable as desired. It is possible but
not easy to do this by studying formula (0.2) for P@"+D. We shall use another
approach and invoke the weak law of large numbers,* which implies that, if
N bits are transmitted over the channel, then for any € >0

lim P{
N—oo

In other words, for large N, the fraction of bits received in error is unlikely to

differ substantially from p. Thus we can make the following estimate of
P(anJrl):

(0.3)

number of channel errors
N —p|>ep=0.

P(ez"“) = P{fraction of transmitted bits received in error

n+1 1 1
= = -+
2n+1 2 4n+2

< P{fraction >1}
< P{|fraction — p| >3 — p},

and so by (0.3) P21 does approach 0 as n — oo. We have thus reached the
conclusion that if R is very small, it is possible to make the overall error
probability very small as well, even though the channel itself is quite noisy.
This is of course not particularly surprising.

* Discussed in Appendix A.
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4 Introduction

So much, temporarily, for rates less than 1. What about rates larger than 1?
How accurately can we communicate under those circumstances?

If R>1, we could, for example, merely transmit the fraction 1/R of the
source bits and require the receiver to guess the rest of the bits, say by flipping
an unbiased coin. For this not-very-bright scheme it is easy to calculate that
the resulting bit error probability would be

R—-1_1

X p——X=

Pe
R 2

"R
=1-(3-p)/R (0.4)

Another, less uninspired method which works for some values of R > 1 will
be illustrated for R = 3. If R = 3 there is time to transmit only one third of
the bits emitted by the source over the channel. So the sender divides the
source bits into blocks of three and transmits only the majority-vote of the
three. For example if the source emits 101110101000101, the sender will
transmit 11101 over the channel. The receiver merely triples each received
bit. In the present case if the channel garbled the second transmitted bit he
would receive 10101, which he would expand to 111000111000111, thereby
making five bit errors. In general, the resulting bit error probability turns out
to be

Po=3X(1=p)+3Xp
=1+ p/2. (0.5)

Notice that this is less than 1+ p/3, which is what our primitive “coin-
flipping” strategy gives for R = 3. The generalization of this strategy to other
integral values of R is left as an exercise (see Prob. 0.4).

The schemes we have considered so far have been trivial, though perhaps
not completely uninteresting. Let us now give an example which is much less
trivial and in fact was unknown before 1948.

We assume now that R = 4/7, so that for every four bits emitted by the
source there is just time to send three extra bits over the channel. We choose
these extra bits very carefully: if the four source bits are denoted by xy, x1, X2,
x3, then the extra or redundant or parity-check bits, labeled x4, x5, x¢, are
determined by the equations

X4 =x1+x+x3 (mod2),
X5 = X9+ x, +x3 (mod?2), (0.6)

X¢ = Xo + x1 +x3 (mod?2).

© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org/9780521000956
www.cambridge.org

Cambridge University Press

978-0-521-00095-6 — The Theory of Information and Coding: 2nd Edition
Robert McEliece

Excerpt

More Information

Introduction 5

Thus, for example, if (xg, x1, X2, x3) = (0110), then (x4, x5, x6) = (011), and
the complete seven-bit codeword which would be sent over the channel is
0110011.

To describe how the receiver makes his estimate of the four source bits
from a garbled seven-bit codeword, that is, to describe his decoding algorithm,
let us rewrite the parity-check equations (0.6) in the following way:

X1 +x +x3+ x4 =0,
X0 + X + X3 + X5 =0,
Xo + X1 + x3 + x¢ = 0. (0.7)

(In (0.7) it is to be understood that the arithmetic is modulo 2.) Stated in a
slightly different way, if the binary matrix H is defined by

01 1 11 00
H=|1 011 0 1 0],
1 101 0 0 1

we see that each of the 16 possible codewords x = (xq, X1, X2, X3, X4, X5, X¢)
satisfies the matrix-vector equation

0
Hx'={0|. (0.8)
0

(In (0.8) the superscript 7' means “transpose.”)
It turns out to be fruitful to imagine that the BSC adds (mod 2) either a 0 or
a 1 to each transmitted bit, O if the bit is not received in error and 1 if it is.

Thus if x=(xp, x1, ..., xs) 1is transmitted, the received vector is
y = (xo + 29, X1 + 21, --., X¢ + 2z¢), Where z; = 1 if the channel caused an
error in the ith coordinate and z; = 0 if not. Thus, if z = (2, ..., z¢) denotes

the error pattern, theny = x + z.
The receiver, who knows only y but wants to know x, now does a very
clever thing: he computes the following vector s = (sg, 51, $2):

s’ = Hy"
= Hx+ z)T
= Hx" + Hz"
= HzT  (see (0.8)). (0.9)

Here s is called the syndrome® of y; a 0 component in the syndrome indicates
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6 Introduction

that the corresponding parity-check equation is satisfied by y, a 1 indicates
that it is not. According to (0.9), the syndrome does not depend on which
codeword was sent, but only on the error pattern z. However, since x =y + z,
if the receiver can find z he will know x as well, and so he focuses on the
problem of finding z. The equation s” = Hz” shows that s” is the (binary)
sum of those columns of H corresponding to 1’s in z, that is, corresponding to
the bits of the codeword that were garbled by the channel:

0 1 0
sT=z| 1| 4+2 |0+ - +2]|0]. (0.10)
1 1 1

The receiver’s task, once he has computed s, is to “solve” the equation
s’ = Hz" for z. Unfortunately, this is only three equations in seven un-
knowns, and for any s there will always be 16 possibilities for z. This is
clearly progress, since there were a priori 128 possibilities for z, but how can
the receiver choose among the remaining 16? For example, suppose
y = (0111001) was received. Then s = (101), and the 16 candidate z’s turn

out to be:
01 00 0 0O 0 01 0 01 1
1 1.0 0 01 1 0 001 010
0 00 01 01 01 1 1 0 0 1
01 1 01 10 1 01 00 0 O
01 0 1 1 11 1 001 0 0 1
1 0 001 10 1 111 0 10
1 1.1 0 1 0 1 0 01 11 00
1 101 1 00 1 01 1 1 1 1

Faced with this set of possible error patterns, it is fairly obvious what to do:
since the raw bit error probability p is <%, the fewer 1’s (errors) in an error
pattern, the more likely it is to have been the actual error pattern. In the
current example, we’re lucky: there is a unique error pattern (0100000) of
least weight, the weight being the number of 1’s. So in this case the receiver’s
best estimate of z (based both on the syndrome and on the channel statistics)
is z=(0100000); the estimate of the transmitted codeword is
x =y +z=(0011001); and finally, the estimate of the four source bits is
(0011).

Of course we weren’t really lucky in the above example, since we can show
that for any syndrome s there will always be a unique solution to Hz” = s” of
weight 0 or 1. To see this, notice that if s = (000), then z = (0000000) is the
desired solution. But if s # (000), then s” must occur as one of the columns
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of H;if s” = the ith column of H, then the error pattern z, which has one 1 in
the ith position and 0’s elsewhere, is the unique minimum-weight solution to
Hz! =sT.

We can now formally describe a decoding algorithm for this scheme, which
is called the (7, 4) Hamming code. Given the received vector y, the receiver
executes the following steps:

1. Compute the syndrome s” = Hy”.

2. If s =0, setz = 0; go to 4.

3. Locate the unique column of H which is equal to s; call it column i; set
z = all 0’s except for a single 1 in the ith coordinate.

4. Set x =y + z. (This is the decoder’s estimate of the transmitted code-
word.)

5. Output (Xy, X1, X3, X3), the first four components of x. (This is the
decoder’s estimate of the original source bits.)

It is of course possible that the vector Z produced by this algorithm will not be
equal to the actual error pattern z. However, if the channel causes at most one
error, that is, if the weight of z is 0 or 1, then it follows from the above
discussion that Z = z. Thus the Hamming code is a single-error-correcting
code. In fact it is easy to see that the above decoding algorithm will fail to
correctly identify the original codeword x iff the channel causes two or more
errors. Thus, if Py denotes the block error probability P{x # x},

,
7 _
Pr=>) (k)p"(l -pt
k=2
=21p* — 70p° + etc.

Of course the block error probability Pr doesn’t tell the whole story, for even
if X # x, some of the components of X may nevertheless be right. If we denote
the bit error probability P{%; # x;} by P, it is possible to show that, for all

0<i=<6,
PO =9p(1 = p)’ +19p°(1 = p)* + 16p*(1 — p)’
+12p°(1 = p)* +7p°0 — p) + p’
= 9p* —26p> + etc. 0.11)

Comparing this to (0.1), we see that for BSC’s with very small raw error
probabilities the Hamming code performs at rate 4/7 = 0.571 about as well
as the crude repetition scheme at rate 1/3 = 0.333.
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8 Introduction

We could also use the (7, 4) Hamming code to communicate at R = 7/4 by
reversing the roles of sender and receiver. Here the sender would partition the
sequence of source bits into blocks of seven, reduce each block of seven to
only four via the above decoding algorithm (which in this context would
become an “encoding algorithm™), and transmit these four bits over the
channel. The receiver would decode the four received bits by adding three
extra bits, computed by the parity-check rules (0.6). For this scheme the
resulting bit error probabilit P(ei) = P{x; # x;} is not independent of i, but
the average P, = (Z?ZOP(;)K /7 is given by

1 53 59 7
P.=-(1-p) +5g (- py’p+301-p’p’ +og(1- »r’ +§p4

8

1 39

=—4+— tC. 12
8+28p+ec (0.12)

For a noiseless (p = 0) BSC, this is much superior, for example, to the “coin-
flipping” technique for R = 7/4, which from (0.4) gives P, = 13—4 = .214.

Let us summarize what we know so far by specializing to a particular BSC,
say p = .1, and for each of the communication schemes discussed so far
placing a point on the (x, y) plane, with x = R, the rate, and y = P,, the
overall bit error probability, as shown in Fig. 0.1. Given sufficient patience
and ingenuity, we could continue inventing ad hoc schemes and putting points
on Fig. 0.1. Our eventual goal would be, of course, to learn which points are
achievable and which are not. Incredibly, this goal has already been reached
by Shannon. But before giving Shannon’s result, let us formalize somewhat
the concept of a rate R coding scheme with associated bit error probability P,.

As suggested by Fig. 0.2, an (n, k) code is a scheme in which the source
sequence is partitioned into blocks of & bits, and in which each k-bit source u
block is mapped (“encoded”) into an z-bit codeword x, which is transmitted
over the channel and received, possibly garbled, as y. The decoder maps the »n-
bit noisy codeword y into a k-bit block v, which is an estimate of the original
source sequence u. The rate of this communication system is R = k/n; the
bit error probability is defined as

1<
f7§: (@)
Pe_ki:1 Fe
where
PO = P {v; # u}, i=1,2,...,k

(You should be able to see immediately how each of the schemes described so
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Figure 0.1 Some achievable (R, P,) pairs for a BSC with p = .1.
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Figure 0.2 An (n, k) code for the binary symmetric source and BSC.

far, with the possible exception of the “coin-flipping” strategy for R = 1, fits
this description; see Prob. 0.5.) We say that a point (x, y) in Fig. 0.1 is
“achievable™ if there exists such an (n, k) code with k/n = x, P, < y. Not to
prolong the suspense, Fig. 0.3 shows the set of achievable points for our
special BSC (p = .1). Of course the crucial thing to know about Fig. 0.3 is
the description of the boundary between the achievable and nonachievable
regions. In order to give the description, we need to introduce the important
binary entropy function:

© in this web service Cambridge University Press www.cambridge.org



www.cambridge.org/9780521000956
www.cambridge.org

Cambridge University Press
978-0-521-00095-6 — The Theory of Information and Coding: 2nd Edition

Robert McEliece
Excerpt
More Information

10 Introduction
.5 T . I

* T
(APPROACHING
Po= .5 ASYMPTOTICALLY) |

T -3~ ACHIEVABLE REGION J

|MPOSS|BLE REGION

LN

R———>

{

Figure 0.3 The achievable (R, P,) pairs for a binary symmetric source and a BSC
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Figure 0.4 The binary entropy function.

Hy(x) = —xlogy x — (1 — x)logy(1 — x), 0<x<l,
H>(0) = Hy(1) = 0. (0.13)

A graph of y = Hj(x) is shown in Fig. 0.4. (Some important properties of
H,(x) are described in Prob. 0.10.) We can now describe the boundary
between the achievable and nonachieveable regions in Fig. 0.3. The curved
part of the boundary is the set of points (R, P,) satisfying

1 — Hy(.1)

== 0< P <L 0.14
1 — Hy(P,)’ 2 ©.19)

The remainder of the boundary is a segment of the R axis, from R =0 to
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