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1

Introduction

Like most fundamental concepts in physics, magnetic reconnection owes its
appeal to its ability to unify a wide range of phenomena within a single
universal principle. Virtually all plasmas, whether in the laboratory, the solar
system, or the most distant reaches of the universe, generate magnetic fields.
The existence of these fields in the presence of plasma flows inevitably leads
to the process of magnetic reconnection. As we shall discuss in more detail
later on, reconnection is essentially a topological restructuring of a magnetic
field caused by a change in the connectivity of its field lines. This change
allows the release of stored magnetic energy, which in many situations is the
dominant source of free energy in a plasma. Of course, many other processes
besides reconnection occur in plasmas, but reconnection is probably the
most important one for explaining large-scale, dynamic releases of magnetic
energy.

Figures 1.1–1.4 illustrate the rich variety of plasma environments where
reconnection occurs or is thought to occur. The evidence of reconnection
in laboratory fusion machines such as the tokamak [Fig. 1.1(a)] and the
reversed-field pinch [Fig. 1.1(c)] is so strong that there is no longer any
controversy about whether reconnection occurs, but only controversy about
the way in which it occurs (§9.1). However, as one considers environments
which are further away from the Earth, the evidence for reconnection
becomes more circumstantial. Most researchers who study the terrestrial
aurorae [Fig. 1.2(a)] believe that they are directly or indirectly the result
of reconnection in the Earth’s magnetosphere, but the evidence for sim-
ilar phenomena in other planetary magnetospheres [Fig. 1.2(b)] is much
smaller (§10.6). It has also been argued that reconnection lies at the root
of phenomena called disconnection events which occur in comet tails
[Fig. 1.2(c)].

1
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(a)

(c)

(b)

(d)

Fig. 1.1. Laboratory Plasmas. (a) Drawing of the Joint European Torus (JET)
located in England. The scale is given by the figure at lower right (courtesy of
JET Joint Undertaking). (b) Plasma injection gun of the Swarthmore Sphero-
mak (courtesy of M.R. Brown). (c) Reversed-field-pinch device at the University of
Wisconsin (courtesy of R. Dexter, S. Prager, and C. Sprott). (d) Interior photograph
of the MRX reconnection experiment at the Princeton Plasma Physics Laboratory
taken during operation. In the region at the top, between the two dark toroidal
coils, a magnetic X-line is outlined by a bright emission, which comes primarily
from the Hα Balmer line of hydrogen (courtesy of M. Yamada).

Even though the Sun is a rather distant object compared with the au-
rora, some of the best evidence for reconnection is to be found there. Re-
connection provides an elegant, and so far the only, explanation for the
motion of chromospheric ribbons and flare loops during solar flares [Fig.
1.3(b)]. At the same time, it also accounts for the enormous energy release in
solar flares. The ejection of magnetic flux from the Sun during coronal
mass ejections and prominence eruptions [Fig. 1.3(a)] necessarily requires
reconnection; otherwise, the magnetic flux in interplanetary space would
build up indefinitely (§11.4.1). Reconnection has also been proposed as a
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Fig. 1.2. Planets and Comets. (a) Aurora Australis photographed over Antarctica
by the space shuttle Discovery (NASA). (b) The Jovian aurora as observed by the
Wide-Field Planetary Camera 2 on the Hubble Space Telescope. Auroral ovals are
visible at both poles in the ultraviolet image, which was taken 15 min after the
visible image (courtesy of John T. Clarke). (c) Disconnection of the plasma tail of
comet Halley during its 1986 appearance. The image is a 3-min exposure taken by
the Michigan Schmidt Telescope at the Cerro Tololo Inter-American Observatory
(produced by Jet Propulsion Laboratory/NASA).

mechanism for the heating of solar and stellar coronae to extremely high tem-
peratures [>106 K; Fig. 1.3(c)]. Even more fundamental is the role played
by reconnection in the generation of solar, stellar, and planetary magnetic
fields. The generation of magnetic fields in astrophysics and space physics is
based almost exclusively on the concept of a self-excited magnetic dynamo.
In a dynamo, complex motions of a plasma with a weak seed magnetic
field can generate a stronger large-scale magnetic field. Magnetic reconnec-
tion is an essential part of this generation process, so, in this sense, the very
existence of all magnetic phenomena on the Sun such as prominences, flares,
the corona, and sunspots (Fig. 1.3) requires reconnection (Cowling, 1965).

The role of reconnection in plasma environments beyond the solar sys-
tem remains both speculative and controversial. Because of the great dis-
tances involved, observations provide very few facts with which to constrain
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Fig. 1.3. The Sun. (a) Hα photograph of the extremely large prominence eruption
(known as “Grandaddy”) which occurred on 4 June 1946 (courtesy of the High
Altitude Observatory). (b) X-ray image of the west limb of the Sun in Fe IX/X
lines obtained by TRACE (Transition Region and Coronal Explorer) on 24 April
1998. On the limb is a system of “post”-flare loops, while in the centre foreground is
an X-ray bright “point.” Both features are thought to be produced by reconnection
(courtesy of A. Title and L. Golub). (c) Solar corona photographed from Baja
California, Mexico during the total eclipse on 11 July 1991 (courtesy of S. Albers).
(d) Sunspots (courtesy of the National Solar Observatory at Sacramento Peak, New
Mexico).

theories. One of the main reasons that reconnection is often invoked in astro-
physical phenomena such as stellar flares [Fig. 1.4(a)] or galactic magneto-
tails is that these phenomena may be analogues of the same processes
occurring in the solar corona and the Earth’s magnetosphere. However,
reconnection has also been invoked to account for viscous dissipation in
accretion disks [Fig. 1.4(b)], for which no counterpart exists in the solar
system. It may even be involved in the formation of chondritic inclusions
in certain types of meteorite [Fig. 1.4(c)]. The most popular theory for the
formation of these inclusions is that they were formed by reconnection in the
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Fig. 1.4. Astrophysics. (a) Light-curve in the UV carbon IV line obtained by the
Hubble Space Telescope of an impulsive flare on AB Doradus (Vilhu et al., 1998).
The inset shows a Doppler image of AB Doradus constructed from photospheric
spectral lines over a period of several hours on a different date. The dark areas are
strongly magnetized regions which are the stellar equivalent of sunspots (courtesy of
A.C. Cameron). (b) Hubble Space Telescope image of the accretion disk around the
protostellar object called HH-30, which is 450 light years away in the constellation
Taurus. The disk is seen edge on, and the light from the forming star illuminates
both the top and bottom surfaces of the disk. The star itself is hidden behind the
densest parts of the disk (courtesy of C. Burrows). (c) Part of the Allende meteorite,
which struck the region of Chihuahua, Mexico, on 8 February 1969. It contains
chondritic inclusions that are thought to have been created by nebular flares in the
accretion disk which surrounded the Sun during its formation (courtesy of E.A.
King).
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accretion disk which existed during the early phase of the formation of the
solar system. According to this theory, the reconnection of magnetic fields
in the dust-filled disk produced solar nebular flares, which welded the dust
into the inclusions found in many carbonaceous meteorites.

The occurrence of magnetic reconnection in a wide variety of plasma en-
vironments makes it a topic in which researchers from many different dis-
ciplines contribute to the understanding of a fundamental plasma process.
From a theoretical perspective, reconnection is especially challenging be-
cause it involves nonlinear, non-ideal processes in an inherently complex
magnetic topology.

1.1 The Origins of Reconnection Theory

Interest in magnetic reconnection has continually grown since it was first
proposed in the 1940s. The reasons for this growth are varied, but the most
important is the realisation that reconnection is necessary for the efficient re-
lease of energy stored in planetary, solar, stellar, and astrophysical magnetic
fields.

In MHD theory, processes which convert magnetic energy into other forms
can be distinguished as ideal or non-ideal. Ideal processes, such as the ideal
kink instability, convert magnetic energy into kinetic energy without mag-
netic dissipation, while non-ideal processes, such as magnetic reconnection,
can convert magnetic energy into kinetic energy and heat. Because they lack
dissipation, ideal processes cannot generate heat (i.e., raise the entropy).
Yet, in practice, they typically generate compressive waves which steepen
nonlinearly to form shock waves no matter how small the dissipation is.
The dissipation in such shocks is thus an important non-ideal process which
converts motions of an ideal process into heat.

In space physics the distinction between ideal and non-ideal processes is
important because simple estimates imply that magnetic dissipation acts on
a time-scale which is many orders of magnitude slower than the observed
time-scales of dynamic phenomena. For example, solar flares release stored
magnetic energy in the corona within a period of 100 s. By comparison, the
time-scale for magnetic dissipation based on a global scale-length of 105 km
is of the order of 106 yr. Typically, phenomena like the solar flare and the
substorm require a significant fraction of the stored magnetic energy to be
converted within a few Alfvén time-scales. Such rapid time-scales are easily
achieved in ideal MHD processes but not in non-ideal ones. Although ideal
MHD processes can release energy quickly, they rarely release a significant
amount because of the topological constraints which exist in the absence
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of dissipation. In contrast, magnetic reconnection is not topologically con-
strained, and therefore it can release a much greater amount of magnetic
energy (Kivelson and Russell, 1995).

One of the principal goals of reconnection theory is to explain how recon-
nection can occur on short enough time-scales (although very recently there
has been a shift in emphasis to explore the three-dimensional aspects, as de-
scribed in Chapter 8). Historically, two approaches have been adopted. The
first, based on the kinetic theory of plasmas, has been to find an anomalous
resistivity mechanism which will allow rapid dissipation. The second ap-
proach, based on MHD (the main focus of this book), has been to find
a geometrical configuration which greatly reduces the effective dissipation
scale-length. These two approaches are often combined in analyzing specific
phenomena.

For example, the ion-tearing mode, which is a wave-particle theory of
reconnection, has been proposed as a mechanism for the onset of reconnec-
tion in the geomagnetic tail at the start of an auroral substorm (§10.5).
However, in order for the ion-tearing mode to occur, it is first necessary
that the current sheet in the tail become very much thinner than normal.
Usually, the width of the current sheet is of the order of 7000 km (approx-
imately an Earth radius), but the ion-tearing mode becomes effective only
when the width is of the order of 200 km (approximately an ion-gyro ra-
dius). Recent observations that such thinning of the current sheet actually
occurs at substorm onset has motivated researchers to develop MHD models
to explain how conditions in the solar wind upstream of the Earth initiate
the thinning in the tail (§10.5).

The process of magnetic reconnection has its origins in suggestions by R.G.
Giovanelli (1946) and F. Hoyle (1949) that magnetic X-type null points can
serve as locations for plasma heating and acceleration in solar flares and
auroral substorms. Their interest in X-points may have been due to the fact
that a magnetic field tends to inhibit particle acceleration unless the electric
field has a component parallel to the magnetic field. Early researchers usually
assumed that electrons quickly short out any parallel electric field, so mag-
netic null regions (or points) were thought to offer the best locations for par-
ticle acceleration. Magnetic null points occur naturally when there are two
or more sources of magnetic field, such as the Sun and the Earth, for exam-
ple. If an electric field exists in the vicinity of such a null point, then charged
particles there will undergo acceleration until they travel into a region where
the magnetic field is no longer negligible. This view of acceleration is now
somewhat outdated, because many mechanisms have since been proposed
for particle acceleration which do not require a null point (see Lyons and
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Williams, 1984, or Tandberg-Hanssen and Emslie, 1988, for example). These
mechanisms use electric and magnetic fields which are nonuniform in space
and sometimes in time (see Chapter 13).

Cowling (1953) pointed out that, if a solar flare is due to ohmic dissipation,
a current sheet only a few metres thick is needed to power it. Then J.W.
Dungey (1953), who was a student of Hoyle, showed that such a current sheet
can indeed form by the collapse of the magnetic field near an X-type neutral
point, and he was the first to suggest that “lines of force can be broken
and rejoined.” He considered the self-consistent behaviour of both field and
particles at an X-point (see §1.3.1). This is a quite different approach from
simply considering the motion of charged particles in a given set of electric
and magnetic fields. Moving charged particles are themselves a source of
electric and magnetic fields, and in a plasma these self-fields must be taken
into account by combining Maxwell’s equations with Newton’s equations of
motion. To analyze the effect of such fields, Dungey used the MHD equa-
tions for a plasma with negligible gas pressure, and he found that small
perturbations in the vicinity of the null point lead to the explosive forma-
tion of a current sheet (§2.1). Near the null point, plasma motions induced
by a small current perturbation cause the current to grow, and this current
further enhances the plasma motions resulting in a positive feedback.

After Dungey’s pioneering work on the formation of current sheets, P.A.
Sweet (1958a,b) and E.N. Parker (1957) were the first to develop a simple
MHD model for how steady-state reconnection might work in a current sheet
formed at a null point (§4.2). At the 1956 symposium in Stockholm, Sweet
(1958a) stressed that conditions far from an X-point, as well as plasma pres-
sure, may play important roles in forming a current sheet. As a model for so-
lar flares, he considered a magnetic field with an X-point produced by sources
in the photosphere. If the sources approach one another and the magnetic
field remains frozen to the plasma, a narrow “colliding layer” (Sweet’s term)
forms around the null point. The field flattens, and magnetohydrostatic equi-
librium implies that the plasma pressure inside the layer, or current sheet,
is the same as the external magnetic pressure. Plasma is squeezed out of the
ends of the sheet by this excess pressure, just as a fluid would be squeezed
out between approaching plates. Parker, while listening to Sweet’s talk, re-
alised how to model the process in terms of MHD and so eagerly went back
to his room on the evening of Sweet’s talk and worked out the details. Parker
derived scaling laws for the process and coined the words “reconnection of
field lines” and “merging of magnetic fields” (Parker, 1957). Later Parker
(1963) also coined the phrase “annihilation of magnetic fields” and gave an
in-depth development of the mechanism. He modelled the internal structure
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across the current sheet and, in passing, made the challenging comment
that “it would be instructive if the exact equations could be integrated on
a machine,” a challenge that took nearly thirty years to be accomplished
reasonably and which still needs a full treatment. In the same paper, he also
included compressibility and other effects for enhancing reconnection, such
as ambipolar diffusion and fluid instabilities. He then applied this quanti-
tative model to solar flares, but he found that the rate at which magnetic
energy is converted to kinetic energy and heat is far too slow (by a factor
of at least a hundred) to account for flares. A conversion rate several orders
of magnitude greater was needed to explain the energy release in solar flares,
and thus the Sweet–Parker model is often referred to as a model for slow
reconnection. Ever since Sweet and Parker presented their model, the search
has continued for a reconnection process which would be fast enough to work
for solar flares.

As we mentioned previously, there have been two separate approaches in
the search for a theory of fast reconnection – one based on showing that the
plasma resistivity is sufficiently high, the other based on showing that the
dissipation scale is sufficiently small. In calculating the reconnection rate,
Sweet and Parker assumed that Spitzer’s (1962) formula for the resistivity
can be applied to the corona. However, there is good reason to suspect
that Spitzer’s formula is not valid for the type of plasma that is produced
in the corona during a flare, since it assumes that there are many more
collisions between particles than is appropriate for the solar corona or many
other space and astrophysical plasmas. Thus, Sweet and Parker’s mechanism
might be fast enough only when combined with an anomalous resistivity.

The length of the current sheet in Sweet and Parker’s model is approx-
imately the same as the global scale-length of the flaring region. However,
Petschek (1964) developed an alternative model with a current sheet whose
length is many orders of magnitude smaller than the one assumed by Sweet
and Parker (§4.3). Because of this much smaller current sheet, Petschek’s
model predicts a reconnection rate which is close to the rate needed in solar
flares, even if Spitzer resistivity is assumed. Thus, Petschek’s model was the
first model of fast reconnection to be proposed. Since then, a new generation
of more general almost-uniform (§5.1) and non-uniform (§5.2) models has
been developed.

One of the most important developments in the theory of reconnection
occurred at about the same time when Furth, Killeen, and Rosenbluth
published their classic paper on the tearing mode (Furth et al., 1963). In this
paper they analyzed the stability of a simple, static current sheet and found
that a sheet whose length is at least 2π times greater than its width will
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spontaneously reconnect to form magnetic islands (see Chapter 6). Thus,
although in some applications reconnection occurs as a steady or quasi-
steady process (i.e., modulated on a time-scale longer than the reconnection
time), in other applications the reconnection is inherently time-dependent
with impulsive and bursty releases of energy.

1.2 Magnetohydrodynamic Equations

Since derivations of the magnetohydrodynamic (MHD) equations are readily
available elsewhere (e.g., Roberts, 1967; Priest, 1982), we give here only a
short summary of them. The limitations of the MHD equations, especially re-
garding their use in collisionless plasmas, are discussed briefly in Section 1.7.
MKS units are adopted, but their relationship to cgs units is summarised
in Appendix 2, so that, for example, magnetic fields are measured in tesla,
where 1 tesla = 104 gauss. The shorthand (G) for gauss is used, but the
usual shorthand (T) for tesla is not used here in order to avoid possible
confusion with the symbol (T ) for temperature.

1.2.1 Basic Equations

The MHD equations embody the following conservation principles derived
from the equations of fluid mechanics and electromagnetism.

Mass conservation:

dρ

dt
≡ ∂ρ

∂t
+ v · ∇ρ = −ρ∇ · v, (1.1)

where ρ is the mass density, v is the bulk flow velocity, t is the time, and
d/dt is the convective derivative, which represents the time rate of change
following a plasma element as it moves.

Momentum conservation:

ρ
dv
dt

= −∇p+ j×B +∇ · S + Fg, (1.2)

where p is the plasma pressure, j is the current density, B is the magnetic
induction, S is the viscous stress tensor, and Fg is an external force such
as gravity. The induction (B) is usually referred to as the “magnetic field,”
although technically the magnetic field is H = B/µ, where µ is the magnetic
permeability of free space (4π × 10−7 H m−1).
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In very weak magnetic fields the stress-tensor components are

Sij = ρ

(
ζ − 2ν

3

)
∇ · v δij + ρν

(
∂vi
∂xj

+
∂vj
∂xi

)
, (1.3)

where ν and ζ are the coefficients of kinematic shear and bulk viscosity,
respectively. The divergence of this expression (when the dynamic viscosity
ρν and bulk viscosity ρζ are assumed uniform) gives the viscous force

∇ · S = ρν∇2v + ρ(ζ + ν/3)∇(∇ · v). (1.4)

Substituting this form into Eq. (1.2) and ignoring gravity and the mag-
netic field gives the standard form of the Navier–Stokes equations for a
viscous fluid. In plasmas with non-negligible magnetic fields, however, the
stress tensor is considerably more complex (e.g., Braginsky, 1965; Hollweg,
1986).

Internal energy conservation:

ρ
de

dt
+ p∇ · v = ∇·(κ · ∇T) + (η

e
· j) · j +Qν −Qr, (1.5)

where

e =
p

(γ − 1)ρ

is the internal energy per unit mass, κ is the thermal conductivity tensor, T
is the temperature, η

e
is the electrical resistivity tensor, Qν is the heating

by viscous dissipation, Qr is the radiative energy loss, and γ is the ratio of
specific heats. In terms of the stress tensor (S), Qν is

Qν = v · (∇ · S)−∇ · (S · v). (1.6)

In many astrophysical and solar applications, the plasma is optically thin
and so the radiative loss term in Eq. (1.5) can be expressed as

Qr = ρ2Q(T ),

whereQ(T ) is a function describing the temperature variation of the radiative
loss (Fig. 11.9).

Faraday’s equation:

∇×E = −∂B
∂t
, (1.7)

where E is the electric field.



12 Introduction

In MHD the usual displacement term (ε0 ∂E/∂t, where ε0 is the permittivity
of free space) in Maxwell’s equations is negligible and so the current is related
to the field (B) simply by

Ampère’s law:

∇×B = µ j. (1.8)

Because the divergence of the curl is zero, Eq. (1.8) immediately gives us
the result that ∇ · j = 0, so that the electric current lines have no monopolar
sources: they form closed paths unless they are ergodic or go off to infinity.
Also, substitution of Eq. (1.8) for j in Eq. (1.2) enables the j×B force term
to be replaced by −∇[B2/(2µ)] + (B · ∇)B/µ. This form shows that the
magnetic force in Eq. (1.2) can be divided into a magnetic pressure force
−∇[B2/(2µ)] and a magnetic tension force (B · ∇)B/µ.

Gauss’s law:

∇ ·B = 0. (1.9)

Ohm’s law:

E′ = E + v ×B = η
e
· j. (1.10)

In many applications it is sufficient to write the electrical resistivity tensor
as η

e
= ηe δij , where ηe (the scalar electrical resistivity) is the inverse of the

electrical conductivity (σ) so that

E′ = E + v ×B =
j
σ
. (1.10a)

Here E′ = E + v ×B gives the Lorentz transformation from the electric field
(E) in a laboratory frame of reference to the electric field (E′) in a frame
moving with the plasma. It is important to note that Ohm’s Law states that
it is the electric field (E′) in the moving frame (rather than in the laboratory
frame) that is proportional to the current.

Equation of state:

p = R ρ T = nkB T, (1.11)

where R is the universal gas constant (8300 m2 s−2 deg−1), n is the total
number of particles per unit volume, and kB is Boltzmann’s constant. The
density can be written in terms of n as

ρ = nm,
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where m is the mean particle mass, so that kB/R = m. For a hydrogen
plasma with electron number density ne, the pressure becomes

p = 2nekB T

and the plasma density may be written

ρ ≈ nemp,

where mp is the proton mass.
The above system of time-dependent equations constitutes a set of 16

coupled equations for 15 unknowns (v,B, j,E, ρ, p, and T ). Thus, it may
seem that the system is over-determined. However, Gauss’s law, Eq. (1.9),
for the divergence of the magnetic field is a relatively weak constraint which
has the status only of an initial condition. Taking the divergence of Faraday’s
equation, Eq. (1.7), and recalling that the divergence of the curl is always
zero, we find that ∂(∇ ·B)/∂t = 0, so that, if ∇ ·B is zero initially, it
will remain zero for all time. Therefore, given a divergence-free initial state,
Gauss’s law follows from Faraday’s equation. It is interesting to note that
the steady-state version of these equations has a different mathematical
structure, with ∇ ·B = 0 becoming a genuine equation. Instead, Faraday’s
equation (1.7) essentially represents only two rather than three equations,
since the three equations ∇×E = 0 may be replaced by the three equations
E = −∇Φ together with the introduction of an extra (sixteenth) variable Φ.

1.2.2 Other Useful Forms

Other useful forms can be obtained by combining the above equations.
For example, the variables E, j, and T in the above system can easily be
eliminated by substitution. Consequently, the eight remaining unknowns
(B,v, p, and ρ) are usually thought of as the primary variables of MHD.
For example, Faraday’s equation can be combined with Ampère’s law and
Ohm’s law to obtain the

Induction equation:

∂B
∂t

= ∇× (v ×B)−∇× (η∇×B),

where η = (µσ)−1 = ηe/µ is the magnetic diffusivity. If η is uniform, then

∂B
∂t

= ∇× (v ×B) + η∇2B. (1.12)



14 Introduction

This is the basic equation for magnetic behaviour in MHD, and it deter-
mines B once v is known. In the electromagnetic theory of fixed conductors,
the electric current and electric field are primary variables with the cur-
rent driven by electric fields. In such a fixed system the magnetic field is a
secondary variable derived from the currents. However, in MHD the basic
physics is quite different, since the plasma velocity (v) and magnetic field
(B) are the primary variables, determined by the induction equation and
the equation of motion, while the resulting current density (j) and electric
field (E) are secondary and may be deduced from Eqs. (1.8) and (1.10a) if
required (Parker, 1996).

For a collisional plasma with a strong magnetic field but a relatively weak
electric field, the magnetic diffusivity is approximately given by Spitzer’s
formula (Spitzer, 1962; Schmidt, 1966), namely

η⊥ =
c2e2m

1/2
e

3(2π)3/2ε0
ln Λ (kBTe)−3/2 = 1.05× 108 T−3/2

e ln Λ m2 s−1, (1.13)

where me is the electron mass, Te the electron temperature, and ln Λ is the
coulomb logarithm (Holt and Haskell, 1965), given approximately by

ln Λ =

{
16.3 + 3

2 lnT − 1
2 lnn, T < 4.2× 105 K,

22.8 + lnT − 1
2 lnn, T > 4.2× 105 K.

(1.14)

For the final expression in Eq. (1.13) we have assumed a hydrogen plasma.
The ⊥ subscript indicates that Eq. (1.13) is the resistivity in a direction
perpendicular to the magnetic field. If the current flows along the field, or if
the plasma is unmagnetized, the parallel magnetic diffusivity is η‖ ≈ η⊥/2.

Since the collisional theory used to calculate Eq. (1.13) is a first-order
expansion in powers of 1/ ln Λ, the theory is only accurate when ln ΛÀ 1. In
laboratory plasmas, ln Λ is typically about 10, in the solar corona it is about
20, and in the magnetosphere it is about 30. Thus, transport coefficients such
as Eq. (1.13) are only accurate to a few percent. The requirement that the
electric field be weak means that the electric field must be less than the
Dreicer field (ED) for runaway electrons [see Eq. (1.66)], while the condition
that the magnetic field be strong means that the electron gyro-radius must
be much smaller than the mean-free path (λmfp) for electron-ion collisions.

If V0, L0 are typical velocity and length-scales, the ratio of the first to the
second term on the right-hand side of Eq. (1.12) is, in order of magnitude,
the magnetic Reynolds number

Rm =
L0V0

η
.
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Thus, for example, in the solar corona above an active region, where T ≈
106 K, η ≈ 1 m2 s−1, L0 ≈ 105 m, V0 ≈ 104 m s−1, we find Rm ≈ 109, and so
the second term on the right of Eq. (1.12) is completely negligible. In turn,
Eq. (1.10a) reduces to E = −v ×B to a very high degree of approximation.
This is the case in almost all of the solar atmosphere, indeed in almost all
of the plasma universe. The only exception is in regions (such as current
sheets) where the length-scale is extremely small – so small that Rm

<∼ 1
and the second terms on the right-hand sides of Eqs. (1.10a) and (1.12)
become important.

If Rm ¿ 1, the induction equation reduces to

∂B
∂t

= η∇2B, (1.15)

and so B is governed by a diffusion equation, which implies that field
variations (irregularities) on a scale L0 diffuse away on a time-scale of

τd =
L2

0

η
, (1.16)

which is obtained simply by equating the orders of magnitude of both sides
of Eq. (1.15). The corresponding magnetic diffusion speed at which they slip
through the plasma is

vd =
L0

τd
=

η

L0
. (1.17)

With η ≈ 1 m2 s−1 and L0 = 108 m, the decay-time for a sunspot is 30,000 yr,
so that the process whereby sunspots disappear in a few weeks cannot just be
diffusion. Note that the corresponding viscous diffusion speed, which arises
from the equation of motion when viscous forces are included, is vD = ν/L0.

The main reason for variations in Rm from one phenomenon to another
is variations in the appropriate length-scale (L0). If Rm À 1, the induction
equation becomes

∂B
∂t

= ∇× (v ×B).

Although the electric field and current density are usually ignored during
the process of solving the MHD equations, valuable insight can often be
gained by determining the electric field and current density afterwards. In
this regard, it is often helpful to introduce the concepts of the electric scalar
potential (Φ) and magnetic vector potential (A). Defining A from B =
∇×A (to within a gauge), one then writes Faraday’s equation and Ampère’s


