INDEX

Note: TSC refers to ‘tuberoius sclerosis complex’. Page numbers in italics refer to figures and tables.

N-acetyl-aspartate (NAA)/creatinine ratio 119
actin-binding proteins, ezrin-radixin-moesin family 30, 267, 284–285
actin cytoskeleton 246
adenoma sebaceum
congenital 3, 4, 7, 11
facial 3, 4
see also facial angiofibromas
adrenocorticotropic hormone (ACTH)
cardiac rhabdomyomas 204
infantile spasms 54, 56, 204
agression 40
ameloblasts 164
amylloid bodies 264, 266
anaplastic gangliogioma in Eker rat model 274
aneurysms
arterial 210–211
cerebral vascular 120, 121
angiofibromas
genital multiple 160
see also adenoma sebaceum; facial angiofibromas
angioleiomyomas 160
angiomylipoma 11
loss of heterozygosity 161
see also hepatic angiomylipoma; renal angiomylipoma
animal models xi, 247–252
see also Eker rat model
antiepileptic drugs
autism impact 101–102, 104
effectiveness 39
interactions 55
mode of action 54, 55
response 38
see also named drugs
anxiety disorders 102–103
aortic aneurysms 211
apparent diffusion coefficient (ADC) maps
111, 114–115
apexia, constructive 40
arterial embolization 185–186
ascertainment, truncated 80
ash-leaf skin lesions 12, 149, 150
see also hypomelanotic macules
astrocyte-like cells 266, 267
astrocytes 281
astroglia 5
astrogliosis 264, 266
atrial tachycardia 201
atrioventricular block, second-degree 203
attentional deficit 17, 40
hyperactivity rate 86
attentional deficit hyperactivity disorder 40, 41
cortical tubers 32
autism xii, 17, 40, 91–106
antiepileptic drug effects 101–102, 104
anxiety disorders 102–103
caudate nucleus 129–130
cortical tubers 32, 41, 94, 95, 96–97, 129
cerebellar 96
temporal lobe 94, 95, 96
deep cerebellar nuclei 130–132
dentate nucleus 131
eye infarct 4, 91
epidemiology 91–94
epilepsy association 299
epileptic pathways 98, 99, 100
GABA relationship 101–102
genetic component 91, 102–103
-glucose metabolism in brain 129
imaging 129
infantile spasms 41, 100
inheritance 91
-intellectual ability 98
learning disability 93, 97–98
parental involvement in therapy 104
pathogenesis 94, 128–129
PET 129–132
prevalence 91, 92
-production 26
risk factors in TSC 100
sex differences 91, 93, 128
sleep disorders 42
sodium valproate 104
-surgery outcome 70, 105
susceptibility gene 41, 102, 103, 299
treatment 104–105
TSC association 41, 91–106
INDEX

incidence 196–199, 204
intramural lesions 200–201
location 198–199
loss of heterozygosity 161
mortality 199–200
multiple 198
natural history 204
prognosis 199
Purkinje-like cells 203
regression 204, 205, 206
sex differences 197
surgical excision 200, 210
treatment 210
tumour cells 206, 207, 208
cardiac tumours 4
multiple 199
cardiomegaly 199
caries, dental 165
caudate nucleus in autism 129–130
CDK1 286
cell growth 296, 297
cell migration arrest 35
cell proliferation 296
abnormalities 26
regulation 297
cell–cell communication loss 285
cellular differentiation abnormalities 26
cellular lineage disorders xi
central nervous system (CNS) 1
ongoing evaluation 17
cerebellar nuclei, deep in autism 130–132
cerebellum
cortical tubers and autism 96
Purkinje cells 131–132
cerebral cortex
area of abnormality 66
cytararchitecture around cortical tubers 280–281
disorganization 36
focal dysplasia 13, 110, 281, 289
functional maturation 49
serotonin pathway 66
white matter lesions
bands 30, 32, 35, 119
MRI 119–120
radial migration lines 30, 31
wedge-shaped lesions 119–120

cerebral dysfunction prediction 7

cerebral hemisphere, circumvolumes 26, 29
cerebral lesions 264, 265, 266–267
Eker rat model 274–275
cerebral neocortex formation 109
cerebral stroke 203–204
cerebrovascular occlusive disease 120
Childhood Autism Rating Scale 96
children
cardiac rhabdomyoma 197, 199

tubulin 41
vigabatrin effects 101–102, 104
Autism Behavior Checklist (ABC) 93
Autism Diagnostic Interview (ADI) 93
autistic behaviour 4
autistic spectrum disorder 299
epileptiform EEGs 98
social communication impairment 87

behavioural dysfunction 17
autistic behaviour 4
screening 16
subependymal giant cell astrocytomas 105
behavioural phenotypes 40–41
neurobiology 299
benzodiazepines, infantile spasms 57
bladder carcinoma 245
Bourneville, Désiré-Magloire 1, 2, 3, 7, 26, 29
Bourneville disease 5

brain
lesions in animal models 251
metabolism 73
rumours 177

brain imaging 30, 31, 32, 33, 34–35
glucose metabolism in autism 129
Brissaud E 3, 29
bystander effect 289

café-au-lait spots 159
callosotomy 70, 71
Cambridge Automated Neuropsychological Test Battery (CANTAB) 83, 84–85
candle-gutting 6, 266
capture-recapture analysis 23
carbamazepine 202–203
cardiac arrhythmias 16, 18, 199

cardiac rhabdomyomas 201–203, 210

cardiac rhabdomyomas 3, 12, 14, 15, 196–210

ACTH therapy effects 204

carbamazepine therapy for epilepsy 202–203

cardiac rhythm abnormalities 201–203, 210

cerebral stroke 203–204
clinical manifestations 199–204
diagnosis 206–210
diagnostic importance 208

echocardiography 16, 18
electrocardiogram-gated MRI 208, 209
follow-up 204

hamartin immunoreactivity 271
histopathology 204, 206
TUBEROUS SCLEROSIS COMPLEX

hepatic hamartomas 215
cin nODULES 143
chromosome 9q34 7, 26
loss of heterozygosity
bladder carcinoma 245
renal angiomyolipoma 184
renal cell carcinoma 192
TSC linkage 228–229
chromosome 16p13.3 7, 8, 26–27
autism susceptibility gene 41, 102, 103, 299
loss of heterozygosity
lymphangioleiomyomatosis 219
renal angiomyolipoma 184
renal cell carcinoma 192
translocation breakpoint 231
TSC linkage 228–229
ciliary poliosis 177
clinical spectrum of TSC 21
clonidine 41
cognitive deficit see cognitive impairment
cognitive development
predictors 40
surgery outcome 71
cognitive function
dentate nucleus 131
prediction with 18-FDG PET 126
cognitive impairment xii, 82–83, 84, 85–86
cortical tuber number 81
neuropsychological test battery use 83, 84, 85–86
normal intelligence 98
screening 16
surgery outcome 70
TSC genes and neuronal maturation 299
see also Intellectual impairment; learning disability
colorectal polyps 223
computed tomography (CT) 110
chest 18
cortical tubers in autism 96
cranial 6
lymphangioleiomyomatosis 220
ongoing evaluation 17
renal 192
confetti-like lesions 137, 157–158
connexin 26 284
constructive apraxia 40
contiguous gene deletion syndrome 242, 243
corpus callosotomy 70
cortical tubers 1, 3, 29, 30, 33, 36
autism 41, 94, 95, 96–97, 129
brain dysfunction 39
cellular heterogeneity 289
cerebellar and autism 96
developmental pathogenesis 287–290
diagnostic 12
Eker rat model 274
epilepsy 124–128
epileptogenesis 290–291
epileptogenic areas 6, 52–53
epileptogenicity 40, 49
AMT PET 126, 127–128
fetal detection 280, 287
formation 30
giant cells 53
histologic abnormalities 35, 37
imaging 9
learning disability 81, 129
localization 94, 95, 96–97
loss of heterozygosity 161
magnetic resonance spectroscopy 119
morphology 264, 265, 266
MRI 30, 31, 32, 111, 113–115, 118–119
in autism 96
NAA/creatinine ratio 119
neurological phenotypes xii
neuropathology 280–284
number 264
cognitive/intellectual impairment 81
infantile spasms 82
learning disability 39
parasagittal frontal 40
PET 124–128, 290
seizures
initiation 290–291, 298
onset congruence 63
size 264
surgical removal 39
symptoms 32
temporal lobe and autism association 94, 95, 96
tuberin immunoreactivity 285
white matter abnormalities 35
see also giant cells, abnormal cranioromy 67
Crichtley M 2, 4
cutaneous adenoma 2
cutaneous horn 160
cystoadenomas 160
denaturing gradient gel electrophoresis
(DGGE) 237
denaturing high performance liquid chromatography (DHLPC) 237, 238–239
dentate nucleus in autism 131
2-deoxy-2-[18F] fluoro-D-glucose see positron emission tomography (PET), 18-FDG
dermabrasion for facial angiofibroma 144
diagnostic criteria for TSC 11–23
evaluation 14, 16–20
family impact 20–21
newly diagnosed patients 14, 16–17
<table>
<thead>
<tr>
<th>INDEX</th>
<th>305</th>
</tr>
</thead>
<tbody>
<tr>
<td>ongoing 17–19</td>
<td>cortical tubers 124–128</td>
</tr>
<tr>
<td>surveillance 17</td>
<td>early rational treatment 299–301</td>
</tr>
<tr>
<td>molecular 19–20</td>
<td>EEG 16</td>
</tr>
<tr>
<td>primary/secondary 12</td>
<td>intellectual development 81</td>
</tr>
<tr>
<td>see also skin lesions, diagnostic</td>
<td>learning disability 39–40</td>
</tr>
<tr>
<td>diet, ketogenic 72–73</td>
<td>Lennox–Gastaut syndrome differential diagnosis 38</td>
</tr>
<tr>
<td>digitals 210</td>
<td>onset 37, 46</td>
</tr>
<tr>
<td>diuretics 210</td>
<td>outcome prediction 21</td>
</tr>
<tr>
<td>drop attacks 60, 62</td>
<td>partial 35</td>
</tr>
<tr>
<td>callosotomy 70</td>
<td>leviracetam 59</td>
</tr>
<tr>
<td>Drosophila homolog gigas 230, 251, 252, 268</td>
<td>PET 124–128</td>
</tr>
<tr>
<td>Drosophila studies 286</td>
<td>prognosis 38</td>
</tr>
<tr>
<td>drugs</td>
<td>refractory 298–299</td>
</tr>
<tr>
<td>polytherapy 54, 299–300</td>
<td>sleep disorders 42</td>
</tr>
<tr>
<td>see also named pharmaceuticals</td>
<td>surgery 300</td>
</tr>
<tr>
<td>drusen 172, 176</td>
<td>AMT PET use 126–128</td>
</tr>
<tr>
<td>dyscalculia 40</td>
<td>TSC2 mutation 27</td>
</tr>
<tr>
<td>dysplasia xii</td>
<td>see also seizures</td>
</tr>
<tr>
<td>fibromuscular 210</td>
<td>epileptic spasms see infantile spasms</td>
</tr>
<tr>
<td>see also cerebral cortex, focal dysplasia; neurons, dysplastic</td>
<td>epileptiform activity</td>
</tr>
<tr>
<td>dyspraxia 40</td>
<td>non-REM sleep 47</td>
</tr>
<tr>
<td></td>
<td>REM sleep 48</td>
</tr>
<tr>
<td></td>
<td>epileptogenesis 52–54</td>
</tr>
<tr>
<td></td>
<td>cortical tubers 290–291</td>
</tr>
<tr>
<td></td>
<td>epileptogenic areas and cortical tubers 6, 52–53</td>
</tr>
<tr>
<td></td>
<td>epileptogenic foci 7, 35</td>
</tr>
<tr>
<td></td>
<td>localization 299</td>
</tr>
<tr>
<td></td>
<td>seizure phenotype 37</td>
</tr>
<tr>
<td></td>
<td>epileptogenicity</td>
</tr>
<tr>
<td></td>
<td>cortical tubers 40, 49</td>
</tr>
<tr>
<td></td>
<td>AMT PET 126, 127–128</td>
</tr>
<tr>
<td></td>
<td>selective 66</td>
</tr>
<tr>
<td></td>
<td>equivalent current dipole (ECD) 64</td>
</tr>
<tr>
<td></td>
<td>estrogens in lymphangioleiomyomatosis 221</td>
</tr>
<tr>
<td></td>
<td>expression of TSC 11</td>
</tr>
<tr>
<td></td>
<td>eye</td>
</tr>
<tr>
<td></td>
<td>enucleation 177</td>
</tr>
<tr>
<td></td>
<td>mobility abnormalities 177–178</td>
</tr>
<tr>
<td></td>
<td>eyelid angiofibroma 177</td>
</tr>
<tr>
<td></td>
<td>ezrin 246</td>
</tr>
<tr>
<td></td>
<td>ezrin–radixin–moesin (ERM) family 30, 267, 284–285</td>
</tr>
<tr>
<td>[18F] fluoro-D-glucose see positron emission tomography (PET), 18-FDG</td>
<td></td>
</tr>
<tr>
<td>facial angiofibromas 15, 16, 136, 137–144</td>
<td></td>
</tr>
<tr>
<td>age of appearance 139</td>
<td></td>
</tr>
<tr>
<td>clinical description 139, 140–143</td>
<td></td>
</tr>
<tr>
<td>diagnostic significance 141, 144</td>
<td></td>
</tr>
<tr>
<td>differential diagnosis 144</td>
<td></td>
</tr>
<tr>
<td>eyelid 177</td>
<td></td>
</tr>
<tr>
<td>growth 163</td>
<td></td>
</tr>
<tr>
<td>histopathology 139, 141</td>
<td></td>
</tr>
<tr>
<td>hypomelanotic macules preceding 14</td>
<td></td>
</tr>
</tbody>
</table>
incidence 138–139
multiple endocrine neoplasia association 144
neuronal markers 161
pathology 161
treatment 19, 144
unilateral 162
familial cases 7
family
clusters 22
evaluation of members 19–20
impact of diagnosis 20–21
fibrate 60
fetal hydrops 199
fetal tissue, hamartin/tuberin expression 6
fetus
cardiac rhabdomyoma detection 209–210
cortical tuber detection 280, 287
MRI 121, 122
fibromuscular dysplasia 210
fibrous plaque, forehead see forehead fibrous plaque
flumazenil 298
fluoxetine in autism 104
foramen of Monro
subependymal giant cell astrocytomas 34, 110, 117, 267
subependymal nodules 34, 117, 267
forehead fibrous plaque 137, 142, 145–146
diagnostic significance 145–146
frontal lobe
involvement and intellectual impairment 81
resection 71
GABA
activity enhancement 59
autism relationship 101–102
imaging of changes in epileptic zone 298
vesicular transporter 290, 291
GABA, receptors 37, 53, 290, 291
plasticity changes 53
topiramate effect 59
GABAergic receptors 290–291
GABAergic synaptic activity decrease 37
GAD65 290, 291
ganglioglioma, anaplastic 274
GAP 27, 235
activity 30
tuberin activity 246–247, 267–268, 285
GAP3 27, 232
gelsolin 250
gene carriers 11
gene manipulation techniques 300
gene typing 16–17
genetic counselling 19, 20, 21
hypomelanotic macules 152

TUBEROUS SCLEROSIS COMPLEX

...
<table>
<thead>
<tr>
<th>INDEX</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drosophila ortholog</td>
<td>230</td>
</tr>
<tr>
<td>dysfunction</td>
<td>290</td>
</tr>
<tr>
<td>early neural development</td>
<td>96–97</td>
</tr>
<tr>
<td>expression</td>
<td>30, 245, 284</td>
</tr>
<tr>
<td>ezrin–radixin–moesin family interactions</td>
<td>284–285</td>
</tr>
<tr>
<td>immunohistochemical analysis</td>
<td>245</td>
</tr>
<tr>
<td>immunohistochemical localization</td>
<td>268, 270</td>
</tr>
<tr>
<td>interacting molecules</td>
<td>297</td>
</tr>
<tr>
<td>loss in TSC1-associated TSC</td>
<td>285</td>
</tr>
<tr>
<td>loss of heterozygosity</td>
<td>161</td>
</tr>
<tr>
<td>phosphorylation</td>
<td>296–297</td>
</tr>
<tr>
<td>sequence analysis</td>
<td>229</td>
</tr>
<tr>
<td>structure</td>
<td>27</td>
</tr>
<tr>
<td>subcellular localization</td>
<td>246</td>
</tr>
<tr>
<td>tuberin interaction</td>
<td>27, 30, 97, 246, 247, 268, 284</td>
</tr>
<tr>
<td>hamartin/tuberin complex</td>
<td>286</td>
</tr>
<tr>
<td>hamartoblastoma</td>
<td>5, 109</td>
</tr>
<tr>
<td>hamartomas xii</td>
<td>5, 11, 109</td>
</tr>
<tr>
<td>benign</td>
<td>163</td>
</tr>
<tr>
<td>clonality</td>
<td>244</td>
</tr>
<tr>
<td>development</td>
<td>30</td>
</tr>
<tr>
<td>diagnostic</td>
<td>12</td>
</tr>
<tr>
<td>haemangiomatous</td>
<td>221</td>
</tr>
<tr>
<td>loss of heterozygosity</td>
<td>244–245</td>
</tr>
<tr>
<td>mutations</td>
<td>7–8</td>
</tr>
<tr>
<td>optic disc</td>
<td>176</td>
</tr>
<tr>
<td>somatic mutations</td>
<td>244</td>
</tr>
<tr>
<td>subcortical</td>
<td>274, 286</td>
</tr>
<tr>
<td>subependymal</td>
<td>12, 274, 286</td>
</tr>
<tr>
<td>see also cardiac rhabdomyomas; hepatic hamartomas; renal angiomyolipoma; retinal hamartomas; subependymal nodules (SENs)</td>
<td></td>
</tr>
<tr>
<td>haploinsufficiency</td>
<td>288</td>
</tr>
<tr>
<td>head movements, repetitive</td>
<td>40</td>
</tr>
<tr>
<td>heart</td>
<td>18</td>
</tr>
<tr>
<td>see also cardiac entries</td>
<td></td>
</tr>
<tr>
<td>heart block, complete</td>
<td>201</td>
</tr>
<tr>
<td>heart failure, congestive</td>
<td>199, 200, 202</td>
</tr>
<tr>
<td>treatment</td>
<td>210</td>
</tr>
<tr>
<td>hepatic angiomyolipoma</td>
<td>215, 216, 217</td>
</tr>
<tr>
<td>hepatic haemangiomas in Tsc1 and Tsc2 knockout mice</td>
<td>250</td>
</tr>
<tr>
<td>hepatic hamartomas</td>
<td>215–218</td>
</tr>
<tr>
<td>clinical manifestations</td>
<td>215–216</td>
</tr>
<tr>
<td>histopathology</td>
<td>217</td>
</tr>
<tr>
<td>incidence</td>
<td>215</td>
</tr>
<tr>
<td>hepatocellular carcinoma</td>
<td>185</td>
</tr>
<tr>
<td>heredity</td>
<td>7</td>
</tr>
<tr>
<td>heterotopias</td>
<td>28, 30, 281</td>
</tr>
<tr>
<td>morphology</td>
<td>264, 266</td>
</tr>
<tr>
<td>subcortical white matter</td>
<td>5, 28, 30</td>
</tr>
<tr>
<td>mutations</td>
<td>109</td>
</tr>
<tr>
<td>hippocampus, atrophy</td>
<td>71</td>
</tr>
<tr>
<td>histiocytoid cells</td>
<td>222</td>
</tr>
<tr>
<td>HMB-45 staining</td>
<td>185, 217</td>
</tr>
<tr>
<td>human androgen receptor gene (HUMARA) allele</td>
<td>217</td>
</tr>
<tr>
<td>neurodevelopmental</td>
<td>40</td>
</tr>
<tr>
<td>rate</td>
<td>86</td>
</tr>
<tr>
<td>see also attentional deficit hyperactivity disorder</td>
<td></td>
</tr>
<tr>
<td>hyperkinesia/hyperkinetic syndrome</td>
<td>86</td>
</tr>
<tr>
<td>hypertension</td>
<td>188–189</td>
</tr>
<tr>
<td>hypomelanosis of Ito</td>
<td>153</td>
</tr>
<tr>
<td>hypomelanotic macules</td>
<td>12, 13, 14, 15, 16</td>
</tr>
<tr>
<td>age at presentation</td>
<td>151</td>
</tr>
<tr>
<td>clinical description</td>
<td>149, 150, 151, 155</td>
</tr>
<tr>
<td>diagnostic</td>
<td>14, 136, 137, 148–149, 150, 151–154</td>
</tr>
<tr>
<td>differential diagnosis</td>
<td>151, 152–154</td>
</tr>
<tr>
<td>histopathology</td>
<td>151</td>
</tr>
<tr>
<td>incidence</td>
<td>148–149</td>
</tr>
<tr>
<td>infantile spasm onset</td>
<td>46</td>
</tr>
<tr>
<td>hypopigmentation, confetti-like lesions</td>
<td>137, 157–158</td>
</tr>
<tr>
<td>hypsarrhythmia</td>
<td>50</td>
</tr>
<tr>
<td>incidence</td>
<td>37</td>
</tr>
<tr>
<td>vigabatrin efficacy</td>
<td>58</td>
</tr>
<tr>
<td>imaging</td>
<td></td>
</tr>
<tr>
<td>developments</td>
<td>6–7, 298</td>
</tr>
<tr>
<td>functional</td>
<td>298</td>
</tr>
<tr>
<td>therapeutic effect assessment</td>
<td>298</td>
</tr>
<tr>
<td>infantile spasms</td>
<td>5, 12, 46</td>
</tr>
<tr>
<td>ACTH therapy</td>
<td>204</td>
</tr>
<tr>
<td>adrenocorticotropic hormone</td>
<td>54, 56</td>
</tr>
<tr>
<td>autism</td>
<td>41, 100</td>
</tr>
<tr>
<td>cortical tuber number</td>
<td>82</td>
</tr>
<tr>
<td>early detection</td>
<td>298</td>
</tr>
<tr>
<td>extensor</td>
<td>46</td>
</tr>
<tr>
<td>flexor</td>
<td>46</td>
</tr>
<tr>
<td>focal</td>
<td>49</td>
</tr>
<tr>
<td>incidence</td>
<td>37</td>
</tr>
<tr>
<td>interictal EEG findings</td>
<td>47</td>
</tr>
<tr>
<td>learning disability</td>
<td>82</td>
</tr>
<tr>
<td>mixed</td>
<td>46</td>
</tr>
<tr>
<td>partial seizures</td>
<td>66</td>
</tr>
<tr>
<td>prevention</td>
<td>300</td>
</tr>
<tr>
<td>seizure development</td>
<td>50</td>
</tr>
<tr>
<td>steroids</td>
<td>54, 56</td>
</tr>
<tr>
<td>surgery</td>
<td>105</td>
</tr>
<tr>
<td>TSC2 mutation</td>
<td>27</td>
</tr>
<tr>
<td>vigabatrin</td>
<td>6, 39</td>
</tr>
<tr>
<td>efficacy</td>
<td>53, 56–58, 82</td>
</tr>
<tr>
<td>infants, cardiac rhabdomyoma</td>
<td>199–200, 203, 208–209</td>
</tr>
<tr>
<td>inheritance</td>
<td></td>
</tr>
<tr>
<td>autism</td>
<td>91</td>
</tr>
<tr>
<td>dominant</td>
<td>7, 11, 228</td>
</tr>
</tbody>
</table>
inhibiting factors 300
injury, self-induced 40
insulin, signal transduction 297
insulin-like growth factor-mediated signalling
modulation by hamartin/tuberin
complex 286
insulin receptor-mediated signalling
modulation by hamartin/tuberin
complex 286
intellectual ability
autism 98
bimodal distribution 79–80
development with epilepsy 81
progressive deterioration 40
intellectual impairment 81
patterns 78–80
prevalence 77
TSC1 mutations 103, 240
TSC2 mutations 81, 103, 240
see also cognitive impairment; learning
disability
intermediate filament proteins 267
intra-dimensional/extra-dimensional (ID/ED)
see shifting 83, 85–86
intracranial calcifications 4, 6, 12
intracranial pressure, increased 35
papilledema 177
intraventricular tubers 12
iomezenil 290
IQ distribution 79, 80
ketogenic diet 72–73
ketosis, brain metabolism 73
kidneys
ongoing evaluation 18
malignant 3, 4
see also renal entries
Knudsen’s two-hit hypothesis 161, 244, 271,
286–287
giant cell formation 282
tuber, SEN and SEGA formation 287,
288, 289
Koening’s tumour see periventricular fibroma
kyurenine pathway metabolites 128, 130
Lagos JC 2, 4
lamotrigine 54, 59
language impairment 86–87
laser therapy 19
facial angiofibroma 144
forehead fibrous plaque 146
ungual fibromas 148
learning disability 3, 11, 17, 39–40
autism 41, 93, 97–98
bimodal distribution 79–80
cortical tubers 32, 81, 129
epilepsy 39–40
frequency 23
infantile spasms 82
interictal EEG 62
outcome prediction 21
patterns 78–79
prevalence 77, 82
production 26
seizures 39–40, 82
sex differences 79, 80
sleep disorders 42
subependymal giant cell astrocytomas 105
subependymal nodules 81
see also cognitive impairment; intellectual
impairment
Lennox–Gastaut syndrome 35, 37
differential diagnosis 38
fibelamate 60
prevention 300
sleep EEG pattern 52
topiramate 59
levetiracetam 59–60
linkage studies 228–229
lip fibromas 163
lipomas 160
loss of heterozygosity 161, 184, 244
abnormal giant cells 274
analysis 245
Eker rat model 249
lymphangioliomyomatosis 219
renal cell carcinoma 192
TSC1 or TSC2 287
Tsc2 mouse model 251
tuber, SEN and SEGA formation
287–288
lungs 18, 218–221
cystic changes 220
interstitial disease 218
transplantation 221
TSC gene mutations 242–243
lymph node lesions 224
lymphangioliomyomatosis 218–221
age at onset 218
associated conditions 218–219
clinical manifestations 218–219
diagnosis 219–220
histopathology 219
incidence 218
prognosis 218
sporadic 219
subclinical 243
treatment 221
TSC2 gene mutations 242–243
lymphangioliomyomatosis 13, 18
magnetic resonance angiography (MRA) 120,
121
INDEX

magnetic resonance imaging (MRI) 6, 110–122
brain 30, 31, 32, 33, 34–35
cerebral dysfunction prediction 7
cortical tubers 30, 31, 32, 111, 113–115, 118–119
in autism 96
cranial 19
electrocardiogram-gated 208, 209
extracranial localization 300
fetal 121, 122
FLAIR sequence 34, 35
AMT PET fusion image 127
cortical tubers 110–111, 112–115, 119, 125–126
hepatic hamartomas 216
intellectual impairment 81
magnetization transfer (MT) sequences 110–111, 113, 114
mapping 63
multiplanar images 64
multiple abnormalities 66
newly diagnosed patients 14
ongoing evaluation 17
spin-echo sequences 32, 34, 110
subcortical tubers 118–119
subependymal giant cell astrocytomas 117
subependymal nodules 111, 113, 115–116, 117
surface rendering 63
techniques 298
white matter lesions 119–120
magnetic resonance spectroscopy (MRS) 119, 298
magnetic source imaging (MSI) 64, 66, 67, 68–69, 299
magnetoencephalography 64, 65
malignancy 245
see also renal cell carcinoma
MAP2C 284
melatonin, sleep problem treatment 42
met-enkephalin 283
metastases, renal cell carcinoma 192
N-methyl-D-aspartate receptors see NMDA receptors
α-[11C]methyl-L-tryptophan see positron emission tomography (PET), AMT
microtubule-associated proteins (MAPs) 283
moesin 246
molecular diagnosis, family member evaluation 19–20
molecular genetics 228–253
molecular neurobiology 284–291
molluscum fibrosum pendulum 158–159
Moolten SE 1, 5
mosaicism 243–244
motor development, surgery outcome 71
mouth lesions 163–165
movement
bizarre 40
stereotyped 4
multi-modality imaging 7
multiple angiofibromas, genital 160
multiple endocrine neoplasia 144
mutations 8, 27
new 23
rate 7, 228
second 161
somatic 26–27, 184
see also TSC genes
N-cells 161
NAA/creatinine ratio in cortical tubers 119
nail bed
cutaneous horn 160
see also periungual fibroma; ungual fibroma
neonates, cardiac rhabdomyoma 208–209
neoplasia xii
nestr 267, 269, 284
neuroanatomies 5, 28, 97
neurobiology
behavioural phenotypes 26, 299
molecular 284–291
neuroblasts 5
migration xii
neurodevelopmental dysfunction 17
screening 16
neurofibromas 160
neurofibromatosis type I (NF-I) 159
neurofilament protein 274
neuroimaging 109–122
neuroepithelia 41
neurological deficits, focal 35
neurological dysfunction 26–42
severity 14
neuron-specific enolase 283
neuronal migration abnormalities 26
neurons xii, 5
abnormal 36
abnormal differentiation/proliferation 110
defective myelination 118–119
dysplastic 281, 282, 283, 288
excitatory role 290, 291
heterotopic 109, 281
hypeexcitability 290
migration 289
neuronal precursor cells 288
precursor cells 289
seizure onset 290
maturation 299
migration 109, 289
abnormal 110
non-radial routes 288
neuropathology of TSC lesions 264–275, 279–284
neuropeptide Y 283
neuropsychological test battery 83, 84, 85–86
neurotransmitter-producing enzymes 53
neurotransmitter receptors 53
neuromacromucins 151, 153
neuromacromucins 151, 153
NMDA receptors 53, 128, 284
cortical tubers 290, 291
subunit 1 53
occipital lobes
MRI lesions 35
resection of left superior 71
odontoïblasts 164
odontogenic tumours 165
Olmsted County Epidemiological Project 22–23
ophthalmic examination 16, 18
ophthalmological manifestations of TSC 170–178
optic disc hamartoma 176
optic nerve atrophy 177
oral fibroma 163–164
oral tumours 165
outcome prediction 21
oxcarbazepine 60
pancreatic hamartomas 222–223, 224
papilledema 176, 177
pathology of TSC 5–6, 28, 29, 30, 297–299
perungual fibroma 12, 137, 146–148
loss of heterozygosity 161
see also ungual fibroma
perivascular epithelioid cells 184, 217
Perusini G 2, 5
phakomatoses 4
phenotype
abnormal giant cells 283
modifier genes 297
neurological in cortical tubers xii
seizures 37
of TSC 4–5, 11, 21
behavioural 40–41, 299
neurobehavioural 26
piedralism 151, 153
pityriasis alba 153–154
PKD1 gene
contiguous gene deletion syndrome 242, 243
mutations 187, 188, 211, 231, 232
pneumonecephalography 6
poly cystic kidney disease 186, 210–211
autosomal dominant 230–231, 232, 242
contiguous deletions of TSC2 and PKD1 242
polymerase chain reaction (PCR) 237
population-based studies 21–23
positron emission tomography (PET) 7, 124–132, 298
AMT 126–128, 290
autism 129–139
FDG PET combination 127
MRI FLAIR fusion image 127
autism 129–132
cortical tubers 124–128, 290
epilepsy 124–128
18-FDG 64, 66, 105
AMT PET combination 127
autism 129, 130–131
cortical tubers 125–126
flumazenil 298
glucose metabolism in brain 129
seizures 35, 125–126
pregnancy
cardiac rhabdomyoma detection 209–210
fetal MRI 121, 122
prevalence of TSC 21, 22, 23
Pringle JJ 137–138
Pringle’s sign 137–138
progesterone metabolites 53–54
protein truncation test (PTT) 237
psychometric evaluation 79
psychopathy 4
pulmonary disease 18
Parkinson cells
cerebellum 131–132
tuberin abnormal expression 132
Parkinson-like cells 203
quinolinic acid 128, 290
Rab5 286
radioactive tracers 66
radixin 246
Rap1 232, 267–268, 285
Rayer, Pierre François 1, 2, 137, 138
renal angiography 192
renal angiomylipoma 12, 13, 15, 180–186
arterial embolization 185–186
clinical manifestations 181–182
clonality 184
diagnostic significance 184–185
differential diagnosis 185
hamartin immunoreactivity 271
hepatic hamartoma co-existence 215, 216
histopathology 183–184
incidence 180–181
malignant transformation 192
multiple 185
neuronal markers 161
renal cell carcinoma differential diagnosis 192
renal cyst differential diagnosis 188
renal ultrasound 185
treatment 185–186
tumour size 182
ultrasonography 16, 18
renal cell carcinoma 185, 189–190, 191, 192–193
clinical manifestations 189–190
differential diagnosis 192
Eker rat model 274–275
histopathology 190, 191, 192
incidence 189
malignant 185, 192
metastases 192
treatment 192–193
TSCI gene tumour suppressor function 244
renal clear cell sarcoma 189, 190–191
renal cysts 186–189, 242
clinical manifestations 187–188
differential diagnosis 188
histopathology 188
incidence 186–187
lymphangiomatous 189
treatment 188–189
renal dialysis 189
renal failure 189
renal lesions 180–193
Eker rat model 248
Tsc1 and Tsc2 knockout mice 250, 251
renal lipoma 184
renal malformations 193
renal myoma 184
renal transplantation 189
renal ultrasound 6, 16, 181, 182
ongoing evaluation 18, 19
renal angiomylipoma 185
retina 18–19
lesions 170–176
phakoma 4
pigmentary abnormalities 173–174
retinal hamartomas 12, 15, 18–19, 170–173
age at appearance 174
astrocytic 175
calculated mulberry-like 172, 174, 176
development stages 174
diagnostic significance 175–176
differential diagnosis 176
endophytic 176
branching from pigmentary changes 174
histopathology 175
incidence 170
mixed 173
multiple 126
nodular 175
non-calcified 171
treatment 176
types 170–173
retinoblastoma 176
rhabdomyomas 11
see also cardiac rhabdomyomas
Rho GTP-binding protein 30, 285
risperidone in autism 104
rocking 40
S-100 283
salt restriction 210
schizophrenia, catatonic 4
secondary bilateral synchrony (SBS) 38, 52
seizures xii, 3, 35, 37–39, 46–73
age of onset 49
atonic 50
behavioural problems 40
cortical tubers 32
onset congruence 63
development following infantile spasms 50
diagnostic criteria 11, 14, 15
drop attacks 60, 62
dysplastic neurons causing seizure onset 290
early detection 298
EEG correlation 70, 71
focal 50–51
surgical outcome 70, 71
vigabatrin 58
focal origin 26
focal resection 67, 70
frontal 37–38, 52
generalized attacks 26
generalized tonic 50
ictal EEG findings 48–49, 63
imaging correlation 70, 71
initiation in cortical tubers 290–291, 298
intellectual development 82
interictal EEG findings 47–48, 49, 50, 51, 62
intractable 37, 40
ketogenic diet 72–73
learning disability 39–40, 82
lobectomy 67, 70
medical treatment 39, 53, 54, 55, 56–60
polytherapy 54, 299–300
nocturnal 51
onset congruence with cortical tubers 63
partial 35, 37, 46
complex 50, 62, 63
infantile spasms 66
intractable 64, 68, 69
motor 50
preceded by aura 72
vagus nerve stimulation 72
vigabatrin 39, 53
pattern changes 17
phenotype 37
production 26
short time-lag estimation 62
source localization techniques 62–63
suppression of dangerous 60
surgical treatment 60–73
AMT PET with 126–128
autism 105
presurgical assessment 61–64, 65, 66, 67, 68–69
reactive 66, 70–72
tonic-clonic 50
vagus nerve stimulation 72
video-EEG monitoring 61–63, 70, 71
young children 12
see also epilepsy; infantile spasms
self-induced injury 40
serotonin 283
pathway 66
serotonin reuptake inhibitors 41
autism 104
sertraline in autism 104
sex differences
autism 91, 93, 128
cardiac rhabdomyomas 197
learning disability 79, 80
lymphangiomyomatosis 218
renal angiomyolipoma 180–181
renal cell carcinoma 190
shagreen patches 12, 136, 137, 154–157
clinical description 154, 155, 156
diagnostic significance 156
differential diagnosis 156
histopathology 154, 156
incidence 154
pathology 161
treatment 157
signal transduction pathways 296–297
skin lesions 12, 136–137
ash-leaf 12, 149, 150
diagnostic 136–158
evaluation 19
molecular basis 160–161, 162, 163
rash production with lamotrigine 59
see also facial angiofibromas;
hypomelanotic macules; ungual fibroma
sleep
disorders 40, 41–42, 51
EEG pattern 52
fragmentation 51
latency 42
non-REM 47, 48
REM 47–48, 51
sleep spindles 47, 48
social communication impairment 87
sodium valproate 57, 104
source localization techniques for seizures 62–63, 299
Southern blot analysis 237
spider cells 206, 208
spleen 221–222
angiomyolipoma 221
haemangiomatosus malformations 221
hemangiosarcoma Eker rat model 275
histiocytoid cells 222
sarcoma 222
stereotaxic lesionectomy 67, 70
steroids
infantile spasms 54, 56, 57
lymphangioleiomyomatosis 221
stimulants 41
stomatological manifestations 163–165
subcortical hamartomas, Eker rat model 274, 286
subcortical tubers, MRI 32, 118–119
subcortical white matter, heterotopias 5, 28, 30
mutations 109
subependymal giant cell astrocytomas
(SEGAs) 6, 17, 30
behavioural dysfunction 105
callosoyotomy 70
cellular heterogeneity 289
CT 110
developmental pathogenesis 287–290
early detection 34–35
foramen of Monro 110, 117, 177
giant cells 283
hamartin loss 272
learning disability 105
loss of heterozygosity 161
morphology 265, 267
MRI 30, 32, 33, 34–35, 117
mutations 109
neuroastrocites 28, 97
neuropathology 279–280, 281–283
surgery criteria 35
surveillance programme 35
tuberin
immunoreactivity 285
loss 272
subependymal hamartomas 12
Eker rat model 274, 286
subependymal nodules (SENs) 5, 6, 12, 15, 30
calcifications 12, 113, 116, 117
developmental pathogenesis 287–290
Eker rat model 283
foramen of Monro 117, 267
growth 113
imaging 6
learning disability 81
INDEX

morbidity 266–267
MRI 30–33, 111, 113, 115–116, 117
mutations 109
neuroastrocytes 28, 97
neuropathology 279–280, 281–283
subependymal zone
abnormal tissue wedges 30, 32
radial hypomyelinated tracts 32
subungual fibroma 12, 146–148
see also ungual fibroma
subventricular zone, neuroepithelial cell precursors 287
supraventricular arrhythmia 202
synaptogenesis xii
synapsin 274, 283

tarsal gland adenoma 177
teeth, enamel hypoplasia 164–165
temporal lobe
cortical tubers and autism association 94, 95, 96
resection 71
tetrahydroprogesterone 53–54
tiagabine 54
tongue fibromas 163–164
topiramate 59
trauma of Vogt 4, 7, 11, 12, 136, 141
see also epilepsy; facial angiofibromas; learning disability; seizures
trichoepitheliomas, multiple 144
tryptophan metabolism 128, 130
TSC genes
functions 296–298
mutations 228, 282
carriers 298
cellular heterogeneity in tubers and SEGAs 289
developing cortex 287
sequence analysis 232
TSC1 gene 7, 8, 26–27, 28
coding region length 239
comparison with TSC2 gene 230
expression 245, 267–268
identification 229
immunohistochemical distinction from
TSC2 gene 271
interspecies comparisons 229–230
locus 291
loss of heterozygosity 184, 219, 244–245
mosaicism 243–244
mutations 27, 81, 109
analysis 233–234, 238–239
clinical severity 240, 241
deletions 235
detection methods 237
detection rate 239
familial 239–240
hamartin loss 286
insertions 235
intellectual disability 240
intellectual impairment 81, 103
nonsense 235, 238, 243
phenotypic similarity to TSC2
mutations 272
rate 239
single base substitutions 234–235
small 236
sporadic 239–240
truncating 238
tuberin loss 286
neuronal maturation 299
polymorphisms 237
sequence analysis 229
tumour suppressor function 244–245
see also hamartin

Tsc1 knockout mice 250
TSC2 gene 7, 8, 26–27, 28
alternative splicing 233
coding region length 239
comparison with TSC1 gene 230
contiguous gene deletion syndrome 242, 243
expression 245, 267–268
genomic arrangement 231–232
identification 231
immunohistochemical distinction from
TSC1 gene 271
interspecies comparisons 223–233
locus 291
loss of heterozygosity 184, 219, 244–245
mosaicism 243–244
mutations 27, 109
analysis 233–234, 238–239
anxiety disorders 102–103
autism 102–103, 299
clinical severity 240, 241
deletions 235–236, 239
detection methods 237
detection rate 239
familial 239–240
forehead fibrous plaque 145
hamartin loss 286
insertions 235
intellectual disability 103, 240
intronic 237
lymphangioleiomyomatosis 242–243
nonsense 235, 238
phenotypic similarity to TSC1
mutations 272
point 235
Rap1 activation 285
rate 239
TUBEROUS SCLEROSIS COMPLEX

severity of TSC 80–81
small 236
sporadic 239–240
truncating 238
tuberin loss 286
neuronal maturation 299
polymorphisms 237
positional cloning 230–231
rearrangements 239
tumour suppressor function 244–245
see also tuberin
Tsc2 knockout mice 250, 251
Tsc2 mutations 248–249
Tsc2 null rat model 249
tuberin 6, 8, 231, 267–268, 270
abnormal expression in Purkinje cells 132
alteration in TSC lesions 270–272, 273, 274
amino acid substitutions 30
autism 41
CDK1 interaction 286
cell cycle control 247
cellular roles 246–247
cerebellar expression 132
distribution 268, 270
dysfunction 290
eyearly neural development 96–97
Eker rat model 275
expression 30, 245, 285–286
GAP activity 246–247
GTPase activation 246–247
hamartin interaction 27, 30, 97, 246, 247, 268, 284
immunohistochemical analysis 245
immunohistochemical localization 268, 270
immunoreactivity for abnormal giant cells 272, 273
interacting molecules 297
loss of heterozygosity 161
missense changes 30
phosphorylation 296–297
subcellular localization 246
tuberin/hamartin complex 286
tuberous sclerosis complex
earlly descriptions 1, 2, 3
forme fruste 7, 139, 208
Tuberous Sclerosis Complex Consensus Conference (1998) 13, 14
tubulin 283
tumour suppressor genes 27, 160, 161

Knudsen’s two-hit hypothesis 161, 244, 271, 282, 286–287
giant cell formation 282
tuber, SEN and SEGA formation 287, 288, 289
ultrasonography
hepatic hamartomas 215
see also renal ultrasound
ungual fibroma 12, 13, 16, 19
diagnostic 136, 137, 146–148
histopathology 147
pathology 161
treatment 148
vagus nerve stimulation 72
van der Hoeve J 2, 4
vascular anomalies 210–211
ventricular arrhythmia 202
ventricular enlargement 109
ventricular fibrillation 201
ventricular tachycardia 201
ventricular zone early progenitor cells 287
vesicular GABA transporter 290, 291
vigabatrin 6
adverse effects 39, 58–59
autism impact 101–102, 104
effectiveness 39, 51, 56–58
infantile spasms efficacy 53, 82
mode of action 54
partial seizures efficacy 53
vimentin 175, 274, 283
visual field narrowing with vigabatrin 58–59
visual loss 176–177
visuo-motor disturbance 40
vitiligo 151, 152–153
vitreous haemorrhage 176, 177
Vogt H 2, 4
see also triad of Vogt
Vogt–Koyanagi–Harada syndrome 154
von Hippel–Lindau disease 188
von Recklinghausen, Friedrich Daniel 1, 2, 3, 7
wakening, frequent 42, 51
Wechsler scales 79
West syndrome 5, 35
Wisconsin Card Sorting Test (WCST) 85
Wolff–Parkinson–White syndrome 16, 201, 202, 203, 204