Rare-Earth Doping of Advanced Materials for Photonic Applications–2011
CONTENTS

Preface ................................................................. ix

Materials Research Society Symposium Proceedings ........................ xi

ZnO, GaN, PHOSPHORS

Rare Earth Materials Challenge to National Defense:
Material Scientist’s Perspective ........................................ 3
Shiva Hullavarad, Nilima Hullavarad,
and Joclyn Cook

Electroluminescence Properties of Eu-doped
GaN-based Light-emitting Diodes Grown
by Organometallic Vapor Phase Epitaxy .................................. 9
Atsushi Nishikawa, Naoki Furukawa, Dong-gun Lee,
Kosuke Kawabata, Takanori Matsuno, Yoshikazu Terai,
and Yasufumi Fujiwara

Photoluminescence X-ray Excitation Spectra
in Eu-doped GaN Grown by Organometallic Vapor
Phase Epitaxy ............................................................ 15
S. Emura, K. Higashi, A. Itadani, H. Torigoe, Y. Kuroda,
A. Nishikawa, Y. Fujiwara, and H. Asahi

Nature and Excitation Mechanism of the Emission-dominating
Minority Eu-center in GaN Grown by Organometallic
Vapor-phase Epitaxy ...................................................... 21
Jonathan Poplawsky, Nathaniel Woodward,
Atsushi Nishikawa, Yasufumi Fujiwara,
and Volkmar Dierolf

Damage Formation in GaN Under Medium Energy Range
Implantation of Rare Earth Ions: A Combined TEM, XRD
and RBS/C Investigation .................................................. 27
B. Lacroix, S. Leclerc, P. Ruterana, A. Declémy,
S.M.C. Miranda, K. Lorenz, and E. Alves
INSULATING MATERIALS: LASERS AND PHOSPHORS

Upconversion in Rare-Earth Ion-doped NaYF₄ Crystals and Nanocolloids ........................................... 35
Darayas N. Patel, Lauren A. Hardy, Tabatha J. Smith, Eva S. Smith, and Donald M. Wright III

Preparation of Luminescent Inorganic Core/Shell-structured Nanoparticles ........................................... 41
Moritz Milde, Sofia Dembski, Sabine Rupp, Carsten Gellermann, Gerhard Sextl, Miroslaw Batentschuk, Andres Osvet, and Albrecht Winnacker

Vacuum-deposited Erbium-doped NIR Luminescent Organic Thin Films for 1.5 µm Optical Amplification Applications .......................................................... 47
Laurent Divay, Christophe Galindo, Evelyne Chastaing, Renato Bisaro, Frédéric Wyczisk, and Pierre Le Barny

Multicolor Luminescence from Ca₃Y₂(SiO₄)₃: Eu²⁺,Eu³⁺ Material ......................................................... 55
Anna Dobrowolska and Eugeniusz Zych

Efficient Near-infrared Luminescence and Energy Transfer in Nd-Bi Codoped Zeolites ............................ 61
Zhenhua Bai, Minoru Fujii, Yuki Mori, Yuji Miwa, Minoru Mizuhata, Hong-Tao Sun, and Shinji Hayashi

Red-emitting Ca₁₋ₓSrₓS:Eu³⁺ Phosphors as Light Converters for Plant-growth Applications ........................ 67
Qi Xia, Miroslaw Batentschuk, Andres Osvet, Peter Richter, Donat P. Häder, Jürgen Schneider, Lothar Wondraczek, Albrecht Winnacker, and Christoph J. Brabec

Photostimulable Fluorescent Nanoparticles for Biological Imaging ....................................................... 73
Andres Osvet, Moritz Milde, Sofia Dembski, Sabine Rupp, Carsten Gellermann, Miroslaw Batentschuk, Christoph J. Brabec, and Albrecht Winnacker

Imaging Upconversion from NaYF₄:Er:Yb Nanoparticles on Au and Ag Nanostructured Substrates ................. 79
Lanlan Zhong, QuocAnh Luu, Hari P. Paudel, Khadijeh Bayat, Mahdi Farrokh Boroughi, P. Stanley May, and Steve Smith
RARE EARTH IONS IN GROUP III - NITRIDES

* Ultraviolet Light Emitting Devices Using AlGdN. ..................... .87
  Takashi Kita, Shinya Kitayama, Tsuguo Ishihara,
  Hirokazu Izumi, Yoshitaka Chigi, Tetsuro Nishimoto,
  Hiroyuki Tanaka, and Mikihiro Kobayashi

* Theoretical Investigation of Er-O Co-Doping
  in Hexagonal GaN ........................................... .93
  Simone Sanna, Uwe Gerstmann, and Wolf Gero Schmidt

* Photoluminescence of Eu-doped GaN. ............................... .101
  K.P. O’Donnell

Site Selective Magneto-Optical Studies of Eu Ions
in Gallium Nitride ........................................... .111
  Nathaniel Woodward, Atsushi Nishikawa,
  Yasufumi Fujiwara, and Volkmar Dierolf

Author Index .................................................. .117

Subject Index .................................................. .119
PREFACE

Symposium V “Rare Earth Doping of Advanced Materials for Photonic Applications” took place during the 2011 Spring Meeting of the Materials Research Society in San Francisco, California from April 25–29, 2011. The scientists who attended the symposium came from 14 different countries around the world. The conference program had 10 invited talks, 37 oral communications, 20 posters and several short presentations from poster authors. This special symposium proceeding, also available in Online Proceedings Library (OPL) hosted on Cambridge Journals Online (CJO), contains 17 papers, including the invited talks as well as selected oral and poster contributions.

Symposium V successfully fulfilled the organizers aim to bring together researchers from a number of fields that traditionally do not interact closely with each other although their general theme of rare earth doping and using the functionality that these ions offer is common to all of them. The symposium provided to the semi-conductor, phosphors and device communities a unique opportunity to discuss the fundamental topics of common interest that underlie the emission in rare-earth-doped materials. Such a mix of different research topics, silicon photonics, phosphors, oxides, and wide band gap materials including III-nitride semiconductors, to name a few, greatly promotes a healthy and vigorous exchange of ideas.

The goal of this symposium was to highlight the status of light emission at infrared and visible wavelengths from rare-earth-doped phosphors as well as semiconductors. The symposium addressed topics from basic to application-driven research. The overlap of the different areas is very apparent in the discussion about the way rare earth ions can get excited most efficiently and how they can transfer their excitation. Progress has been reported in generating and understanding luminescence from rare earth ions sensitized by nanoclusters in different materials. The demonstration of the efficient electroluminescence in Europium-doped GaN light-emitting diodes at room-temperature has proven the practicality of using this material as a technological contender for optoelectronics. Furthermore, issues of rare earth materials applications for green technologies, sustainability and opportunities for development of multifunctional devices utilizing magnetic, electric and pressure stimuli were addressed in the symposium.

The editors would like to thank the authors of the manuscripts. MRS meetings have become one of the most important forums for rare earth doped materials and applications. The challenges in fundamental issues of generating light in ultraviolet, visible and near infrared spectral regions have a great impact not only on the rare earth ions research community but also on the general fields of photonics and optoelectronics. This volume is a useful resource to share interests within this broad research community.

Volkmar Dierolf
Yasufumi Fujiwara
Tom Gregorkiewicz
Wojciech M. Jadwisienczak

August 2011