
Cambridge University Press
978-1-316-64940-4 — Asymptotic Analysis in General Relativity
Edited by Thierry Daudé , Dietrich Häfner , Jean-Philippe Nicolas 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1

Introduction to Modern Methods for Classical

and Quantum Fields in General Relativity

Thierry Daudé, Dietrich Häfner and Jean-Philippe Nicolas

The last few decades have seen major developments in asymptotic analysis

in the framework of general relativity, with the emergence of methods that,

until recently, were not applied to curved Lorentzian geometries. This has led

notably to the proof of the stability of the Kerr–de Sitter spacetime by P. Hintz

and A. Vasy [17]. An essential feature of many recent works in the field is the

use of dispersive estimates; they are at the core of most stability results and are

also crucial for the construction of quantum states in quantum field theory,

domains that have a priori little in common. Such estimates are in general

obtained through geometric energy estimates (also referred to as vector field

methods) or via microlocal/spectral analysis. In our minds, the two approaches

should be regarded as complementary, and this is a message we hope this

volume will convey succesfully. More generally than dispersive estimates,

asymptotic analysis is concerned with establishing scattering-type results.

Another fundamental example of such results is asymptotic completeness,

which, in many cases, can be translated in terms of conformal geometry as

the well-posedness of a characteristic Cauchy problem (Goursat problem) at

null infinity. This has been used to develop alternative approaches to scattering

theory via conformal compactifications (see for instance F. G. Friedlander

[11] and L. Mason and J.-P. Nicolas [22]). The presence of symmetries in the

geometrical background can be a tremendous help in proving scattering results,

dispersive estimates in particular. What we mean by symmetry is generally the

existence of an isometry associated with the flow of a Killing vector field,

though there exists a more subtle type of symmetry, described sometimes as

hidden, corresponding to the presence of Killing spinors for instance. Recently,

the vector field method has been adapted to take such generalized symmetries

into account by L. Andersson and P. Blue in [2].

This volume compiles notes from the eight-hour mini-courses given at the

summer school on asymptotic analysis in general relativity, held at the Institut

1

www.cambridge.org/9781316649404
www.cambridge.org


Cambridge University Press
978-1-316-64940-4 — Asymptotic Analysis in General Relativity
Edited by Thierry Daudé , Dietrich Häfner , Jean-Philippe Nicolas 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press
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Fourier in Grenoble, France, from 16 June to 4 July 2014. The purpose of the

summer school was to draw an up-to-date panorama of the new techniques

that have influenced the asymptotic analysis of classical and quantum fields in

general relativity in recent years. It consisted of five mini-courses:

• “Geometry of black hole spacetimes” by Lars Andersson, Albert Einstein

Institut, Golm, Germany;

• “An introduction to quantum field theory on curved spacetimes” by Christian

Gérard, Paris 11 University, Orsay, France;

• “An introduction to conformal geometry and tractor calculus, with a view to

applications in general relativity” by Rod Gover, Auckland University, New

Zealand;

• “The bounded L2 conjecture” by Jérémie Szeftel, Paris 6 University, France;

• “A minicourse on microlocal analysis for wave propagation” by András Vasy,

Stanford University, United States of America.

Among these, only four are featured in this book. The proof of the bounded

L2 conjecture having already appeared in two different forms [20, 21], Jérémie

Szeftel preferred not to add yet another version of this result; his lecture notes

are therefore not included in the present volume.

1.1. Geometry of Black Hole Spacetimes

The notion of a black hole dates back to the 18th century with the works of

Simpson and Laplace, but it found its modern description within the framework

of general relativity. In fact the year after the publication of the general

theory of relativity by Einstein, Karl Schwarzschild [30] found an explicit

non-trivial solution of the Einstein equations that was later understood to

describe a universe containing nothing but an eternal spherical black hole.

The Kerr solution appeared in 1963 [19] and, with the singularity theorems

of Hawking and Penrose [15], black holes were eventually understood as

inevitable dynamical features of the evolution of the universe rather than mere

mathematical oddities. The way exact black hole solutions of the Einstein

equations were discovered was by imposing symmetries. First Schwarzschild

looked for spherically symmetric and static solutions in four spacetime

dimensions, which reduces the Einstein equations to a non-linear ordinary

differential equation (ODE). The Kerr solution appears when one relaxes one

of the symmetries and looks for stationary and axially symmetric solutions.

Roy Kerr obtained his solution by imposing on the metric the so-called “Kerr–

Schild” ansatz that corresponds to assuming a special algebraic property for
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the Weyl tensor, namely that it has Petrov-type D, which is similar to the

condition for a polynomial to have two double roots. This algebraic speciality

of the Weyl tensor can be understood as another type of symmetry assumption

about spacetime. This is a generalized symmetry that does not correspond

to an isometry generated by the flow of a vector field, but is related to the

existence of a Killing spinor. The Kerr family, which contains Schwarzschild’s

spacetime as the zero angular momentum case, is expected to be the unique

family of asymptotically flat and stationary (perhaps pseudo-stationary, or

locally stationary, would be more appropriate) black hole solutions of the

Einstein vacuum equations (there is a vast literature on this topic, see for

example the original paper by D. Robinson [27], his review article [28] and the

recent analytic approach by S. Alexakis, A. D. Ionescu, and S. Klainerman [1]).

Moreover it is believed to be stable (there is also an important literature on this

question, the stability of Kerr–de Sitter black holes was established recently in

[17], though the stability of the Kerr metric is still an open problem). These

two conjectures play a crucial role in physics where it is commonly assumed

that the long term dynamics of a black hole stabilizes to a Kerr solution. The

extended lecture notes by Lars Andersson, Thomas Bäckdahl, and Pieter Blue

take us through the many topics that are relevant to the questions of stability

and uniqueness of the Kerr metric, including the geometry of stationary and

dynamical black holes with a particular emphasis on the special features of

the Kerr metric, spin geometry, dispersive estimates for hyperbolic equations

and generalized symmetry operators. The type D structure is an essential focus

of the course, with the intimate links between the principal null directions,

the Killing spinor, Killing vectors and tensors, Killing–Yano tensors and

symmetry operators. All these notions are used in the final sections where

some conservation laws are derived for the Teukolsky system governing the

evolution of spin n/2 zero rest-mass fields, and a new proof of a Morawetz

estimate for Maxwell fields on the Schwarzschild metric is given.

1.2. Quantum Field Theory on Curved Spacetimes

In the 1980s, Dimock and Kay started a research program concerning scatter-

ing theory for classical and quantum fields on the Schwarzschild spacetime;

see [9]. Their work was then pushed further by Bachelot, Häfner, and others,

leading in particular to a mathematically rigorous description of the Hawking

effect on Schwarzschild and Kerr spacetimes, see e.g. [4], [14]. In the

Schwarzschild case there exists a global timelike Killing vector field in the

exterior of the black hole that can be used to define vacuum and thermal states.
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However, it is not clear how to extend these states to the whole spacetime.

From a more conceptual point of view this is also quite unsatisfactory because

the construction of vacuum states on the Minkowski spacetime uses the

full Poincaré group. In addition general spacetimes will not even be locally

stationary. On a curved spacetime, vacuum states are therefore replaced by

so-called Hadamard states. These Hadamard states were first characterized

by properties of their two-point functions, which had to have a specific

asymptotic expansion near the diagonal. In 1995 Radzikowski reformulated

the old Hadamard condition in terms of the wave front set of the two-point

function; see [26]. Since then, microlocal analysis has played an important

role in quantum field theory in curved spacetime, see e.g. the construction

of Hadamard states using pseudodifferential calculus by Gérard and Wrochna

[13]. The lectures given by Christian Gérard give an introduction to quantum

field theory on curved spacetimes and in particular to the construction of

Hadamard states.

1.3. Conformal Geometry and Conformal Tractor Calculus

Conformal compactifications were initially used in general relativity by André

Lichnerowicz for the study of the constraints. It is Roger Penrose who

started applying this technique to Lorentzian manifolds, more specifically

to asymptotically flat spacetimes, in the early 1960s (see Penrose [25]). The

purpose was to replace complicated asymptotic analysis by simple and natural

geometrical constructions. To be precise, a conformal compactification allows

one to describe infinity for a spacetime (M, g) as a finite boundary for the

manifold M equipped with a well-chosen metric ĝ that is conformally related

to g. Provided a field equation has a suitably simple transformation law under

conformal rescalings, ideally conformal invariance or at least some conformal

covariance, the asymptotic behavior of the field on (M, g) can be inferred

from the local properties at the boundary of the conformally rescaled field

on (M, ĝ). Penrose’s immediate goal was to give a simple reformulation of

the Sachs peeling property as the continuity at the conformal boundary of the

rescaled field. But he had a longer term motivation which was to construct a

conformal scattering theory for general relativity, allowing the setting of data

for the spacetime at its past null conformal boundary and to propagate the

associated solution of the Einstein equations right up to its future null confor-

mal boundary. Since its introduction, the conformal technique has been used

to prove global existence for the Einstein equations, or other non-linear hyper-

bolic equations, for sufficiently small data (see for example Y. Choquet-Bruhat
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and J. W. York [8]), to construct scattering theories for linear and non-linear test

fields, initially on static backgrounds and, in recent years, in time dependent

situations and on black hole spacetimes (see L. Mason and J.-P. Nicolas [22]

and Nicolas [24] and references therein). It has also been applied to spacetimes

with a non-zero cosmological constant. There is an important literature from

the schools of R. Mazzeo and R. Melrose and more recently numerous studies

using the tractor calculus approach by A. R. Gover and his collaborators.

Tractor calculus in its conformal version started from the notion of a local

twistor bundle on four-dimensional spin-manifolds as an associated bundle to

the Cartan conformal connection, though it in fact dates back to T. Y. Thomas’s

work [31]. The theory in its modern form first appeared in the founding paper

by T. Bailey, M. Eastwood, and Gover [6] where its origins are also thoroughly

detailed. The extended lecture notes by Sean Curry and Rod Gover give an

up-to-date presentation of the conformal tractor calculus: the first four lectures

are mainly focused on the search for invariants; the second half of the course

uses tractor calculus to study conformally compact manifolds with application

to general relativity as its main motivation.

1.4. A Minicourse in Microlocal Analysis

and Wave Propagation

One of the central questions in mathematical relativity is the stability of

the Kerr or the Kerr–de Sitter spacetime. As mentioned above, stability has

been established by Hintz and Vasy for the Kerr–de Sitter metric, and the

question remains open for the Kerr metric. The advantage of the Kerr–de Sitter

case is that the inverse of the Fourier transformed d’Alembert operator has a

meromorphic extension across the real axis in appropriate weighted spaces.

The poles of this extension are then called resonances. Resonances in general

relativity were first studied from a mathematical point of view by Bachelot

and Motet-Bachelot in [5]. Bony and Häfner gave a resonance expansion of

the local propagator for the wave equation on the Schwarzschild–de Sitter

metric [7] using the localization of resonances by Sá Barreto-Zworski [29].

Then Dyatlov, Hintz, Vasy, Wunsch, and Zworski made new progress leading

eventually to a resonance expansion for the wave equation on spacetimes which

are perturbations of the Kerr–de Sitter metric; see the work of Vasy [32]. The

whole program culminated in the proof of the non-linear stability of the Kerr–

de Sitter metric by Hintz and Vasy [17]. Many aspects come into this study.

The first is trapping. Trapping situations were studied in the 1980s for the wave

equation outside two obstacles by Ikawa who obtained local energy decay with
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loss of derivatives in this situation; see [18]. The trapping that appears on the

Kerr (or the Kerr–de Sitter) metric is r-normally hyperbolic at least for small

angular momentum. Suitable resolvent estimates for this kind of situation have

been shown by Wunsch–Zworski [33] and Dyatlov [10]. Another important

aspect is the presence of supperradiance due to the fact that there is no globally

timelike Killing field outside a Kerr–de Sitter black hole. Whereas the cut-off

resolvent can nevertheless be extended meromorphically across the real axis

using the work of Mazzeo–Melrose [23] and several different Killing fields

(see [12]), a more powerful tool to obtain suitable estimates is the Fredholm

theory for non-elliptic settings developed by Vasy [32]. Microlocal analysis

was first developed for linear problems. Nevertheless, as the work of Hintz–

Vasy shows strikingly enough, it is also well adapted to quasilinear problems.

In this context one needs to generalize some of the important theorems (such

as the propagation of singularities) to very rough metrics. This program has

been achieved by Hintz; see [16]. The last important aspect in the proof of

the non-linear stability of the Kerr–de Sitter metric is the issue of the gauge

freedom in the Einstein equations. Roughly speaking, a linearization of the

Einstein equations can create resonances whose imaginary parts have the “bad

sign,” leading to exponentially growing modes. These resonances turn out to be

“pure gauge” and can therefore be eliminated by an adequate choice of gauge;

see [17]. The lectures notes by András Vasy introduce the essential tools used

in the proof of the non-linear stability of the Kerr–de Sitter metric.
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