

Introduction to Human Neuroimaging

Developed specifically for students in the behavioral and brain sciences, this is the only textbook that provides an accessible and practical overview of the range of human neuroimaging techniques.

Methods covered include functional and structural magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, multimodal imaging, and various brain stimulation methods. Experimental design, image processing, and statistical inference are also addressed, with chapters for both basic and more advanced data analyses.

Key concepts are illustrated through research studies on the relationship between brain and behavior, and practice questions are included throughout to test knowledge and aid self-study.

Offering just the right amount of detail for understanding how major imaging techniques can be applied to answer neuroscientific questions, and the practical skills needed for future research, this is an essential text for advanced undergraduate and graduate students in psychology, neuroscience, and cognitive science programs taking introductory courses on human neuroimaging.

Hans Op de Beeck is a Professor in the Brain and Cognition Research Unit at the University of Leuven (KU Leuven), Belgium. His research in cognitive and systems neuroscience has appeared in top scientific journals (such as *Science*, *Nature Neuroscience*, *Journal of Neuroscience*, and *Psychological Science*) and has been awarded and funded by national and international organizations, including the European Research Council and the Human Frontier Science Program. He teaches on topics such as behavioral neuroscience, neuropsychology, and human brain imaging in bachelor's and master's programs of psychology and the biomedical sciences.

Chie Nakatani is a Postdoctoral Fellow in the Brain and Cognition Research Unit at the University of Leuven (KU Leuven), Belgium. She has experience with research and teaching in neuroscience, psychology, ergonomics, and space life sciences at many international institutes, including the University of Massachusetts at Amherst, USA, Leiden University, the Netherlands, and RIKEN Brain Science Institute, Japan. Her specialty is electroencephalography in combination with magnetic resonance imaging, transcranial magnetic stimulation, and eye tracking.

Cambridge Fundamentals of Neuroscience in Psychology

Developed in response to a growing need to make neuroscience accessible to students and other non-specialist readers, the *Cambridge Fundamentals of Neuroscience in Psychology* series provides brief introductions to key areas of neuroscience research across major domains of psychology. Written by experts in cognitive, social, affective, developmental, clinical, and applied neuroscience, these books will serve as ideal primers for students and other readers seeking an entry point to the challenging world of neuroscience.

Books in the Series

The Neuroscience of Expertise by Merim Bilalić
The Neuroscience of Intelligence by Richard J. Haier
Cognitive Neuroscience of Memory by Scott D. Slotnick
The Neuroscience of Adolescence by Adriana Galván
The Neuroscience of Suicidal Behavior by Kees van Heeringen
The Neuroscience of Creativity by Anna Abraham
Cognitive and Social Neuroscience of Aging by Angela Gutchess
The Neuroscience of Addiction by Francesca Filbey
The Neuroscience of Sleep and Dreams by Patrick McNamara

Introduction to Human Neuroimaging

Hans Op de Beeck

KU Leuven, Belgium

Chie Nakatani

KU Leuven, Belgium

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781316632185

DOI: 10.1017/9781316847916

© Cambridge University Press & Assessment 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2019

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data

Names: Beeck, Hans Op de, 1975- author. | Nakatani, Chie, author.

Title: Introduction to human neuroimaging / Hans Op de Beeck, Chie Nakatani.

Other titles: Cambridge fundamentals of neuroscience in psychology.

Description: Cambridge, United Kingdom; New York, NY: Cambridge University Press, 2019.

Series: Cambridge fundamentals of neuroscience in psychology

Identifiers: LCCN 2018045889| ISBN 9781107180307 (hardback) | ISBN 9781316632185 (pbk.)

Subjects: | MESH: Neuroimaging-methods

Classification: LCC RC349.D52 | NLM WL 141.5.N47 | DDC 616.8/04754-dc23

LC record available at https://lccn.loc.gov/2018045889

ISBN 978-1-107-18030-7 Hardback ISBN 978-1-316-63218-5 Paperback

Additional resources for this publication at www.cambridge.org/opdebeeck

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	List	of Figures	page x
	Prej	face	XV
1	Intro	oduction and Overview	1
	1.1	Brain Enthusiasm: The Relevance of Distinguishing Fact from Fiction	2
	1.2	The Basis of Neural Signals	4
		1.2.1 Information Transfer in Neurons	7
		1.2.2 Signal Processing	10
		1.2.3 Other Signals in the Brain: Molecular and Hemodynamic Signals	13
		1.2.4 Maps in the Brain: From the Activity of Single Neurons to	
		Signals without Single-Neuron Resolution	15
	1.3	A Short Overview of Methods in Human Neuroscience	18
		1.3.1 Techniques to Measure Brain Structure	19
		1.3.2 Techniques to Measure Hemodynamic Correlates of Neural	
		Activity	20
		1.3.3 Techniques to Measure Electrophysiological Activity	22
	Par	t I Structural Neuroimaging	29
2	The	Physics behind Magnetic Resonance Imaging (MRI)	31
	2.1	The Effect of Magnetic Fields on the Human Body	32
	2.2	From Resonance to Imaging	35
	2.3	How Do These Physical Principles Give Rise to an Image with	
		Anatomical Structure?	40
	2.4	The Hardware of a Scanner	42
	2.5	Parameters That Are Chosen by the User	45
3	Stru	ctural Imaging Methods	48
	3.1	Structural T1-Weighted MRI	49
		3.1.1 Quality Check	49
		3.1.2 Finding Structure in Anatomical Images and Normalization	50
		3.1.3 Approaches to Investigate Brain Morphometry	56
		3.1.4 Statistical Analysis and Interpretation	57
		3.1.5 Voxel-Based Lesion-Symptom Mapping	58
		3.1.6 The Relevance of Brain Structure for Behavior and Mind	58
	3.2	Diffusion Tensor Imaging (DTI)	61
		3.2.1 Data Acquisition	62
		3.2.2 Data Analysis	64

vi Contents

		3.2.3 The Relevance of Anatomical Connectivity for Behavior	
		and Mind	67
	3.3	Magnetic Resonance Spectroscopy (MRS)	68
		3.3.1 Data Acquisition	69
		3.3.2 Data Analysis	72
		3.3.3 The Relevance of Molecular Indices for Behavior and Mind	73
	Part	t II Hemodynamic Neuroimaging	77
4	Hem	odynamic Imaging Methods	79
	4.1	Hemodynamics and Its Relationship to Neural Activity	81
		4.1.1 The Hemodynamic Response Function	81
		4.1.2 The Relationship between the HRF and Different Aspects of	
		Neural Activity	84
	4.2	Functional Magnetic Resonance Imaging (fMRI)	88
		4.2.1 Blood-Oxygenation-Level Dependent fMRI	89
		4.2.2 Arterial Spin Labeling fMRI	91
		4.2.3 The Relevance of fMRI for Behavior	92
	4.3	Positron Emission Tomography (PET)	92
		4.3.1 The Physics of PET	93
		4.3.2 Using PET for Measuring Neural Activity	94
		4.3.3 Unique Contributions of PET	95
	4.4	Functional Near-Infrared Spectroscopy (fNIRS)	96
	4.5	A Comparison of Research with fMRI, PET, and fNIRS	98
5	Desi	gning a Hemodynamic Imaging Experiment	102
	5.1	Think Before You Start an Experiment	103
	5.2	Which Conditions to Include: The Subtraction Method	104
		5.2.1 The Subtraction Method	104
		5.2.2 Considerations about the Subtraction Method	106
	5.3	How to Present the Conditions: The Block Design	108
		5.3.1 The Block Design and the Hemodynamic Response Function	108
		5.3.2 The Block Design in Practice in fMRI and fNIRS	111
		5.3.3 A Few Examples of Classical Studies Using a Block Design	113
	5.4	The Event-Related Design	115
	5.5	The Baseline or Rest Condition	118
		5.5.1 The Role of a Baseline in Task-Based fMRI	118
		5.5.2 Regions Activated during a Resting Baseline	120
	5.6	Task and Stimuli in the Scanner	122
6	lma	ge Processing	127
	6.1	Software Packages	127
	6.2	Properties of the Images	130

Con	tents		vii
	6.3	Preprocessing Step 1: Slice Timing	131
	6.4	Preprocessing Step 2: Motion Correction	131
	6.5	Preprocessing Step 2: Motion Correction Preprocessing Step 3: Coregistration	135
	6.6	Preprocessing Step 4: Normalization	137
	6.7	Preprocessing Step 5: Spatial Smoothing	137
7	Basi	c Statistical Analyses	142
	7.1	Statistical Analyses: The General Linear Model	142
		7.1.1 Simple Linear Regression	142
		7.1.2 Multiple Linear Regression	143
		7.1.3 The General Linear Model Applied to fMRI Data	144
		7.1.4 Data Cleaning prior to Applying the GLM	145
		7.1.5 The Efficiency of a Design and Correlation between Predictors	146
	7.2	Determining Significance and Interpreting It	148
		7.2.1 Calculating a Simple Test Statistic: A <i>t</i> -Contrast	148
		7.2.2 Correction for Multiple Comparisons, or How to Avoid	
		Brain Activity in Dead Salmon	151
		7.2.3 Combining Data across Participants: Second-Level Whole-Brain	
		Analyses	154
		7.2.4 Region-of-Interest Analyses	155
		7.2.5 Another Statistical Caveat: Double Dipping and Circular	
		Analyses	157
		7.2.6 Statistical Inference	159
8		anced Statistical Analyses	163
	8.1	Functional Connectivity: Designs and Analyses	163
		8.1.1 Correlations in Brain Activity	164
		8.1.2 The Interpretation of Correlations in Brain Activity	165
		8.1.3 Modeling Directional Functional Connectivity	168
		8.1.4 Task-Related Modulations of Connectivity	171
	0.0	8.1.5 Resting-State fMRI (RS fMRI)	173
	8.2	Multi-voxel Pattern Analyses	176
		8.2.1 A Schematic Tutorial of MVPA	176
		8.2.2 A Specific Example of MVPA	178
		8.2.3 The Potential of MVPA to Move beyond Neophrenology	181
	0.2	8.2.4 What Do We Measure with MVPA?	183
	8.3	Functional MRI Adaptation	188
	Part	III Electrophysiological Neuroimaging	191
9	Elec	tromagnetic Field of the Brain	193
	9.1	Electrophysiological Activity of the Brain	194
		9.1.1 From Neurons to Electric Field	194

VIII			Contents
		9.1.2 Magnetic Field of the Neural Activity	197
		9.1.3 From the Field to Sensors	198
	9.2	Electromagnetic Field Signals	198
	7.2	9.2.1 Properties of the Field Signal	200
		9.2.2 Dimensions and Resolution of the Field Signal	204
	9.3	Brain Dynamics vs. Mind Dynamics	206
10	Elec	troencephalography and Magnetoencephalography	209
	10.1	Electroencephalography (EEG)	210
		10.1.1 EEG Electrodes	211
		10.1.2 EEG Amplifier	218
		10.1.3 Procedure for Data Acquisition	219
	10.2	Magnetoencephalography (MEG)	221
		10.2.1 MEG Sensors	222
		10.2.2 Magnetically Shielded Room	226
		10.2.3 Procedure for MEG Data Acquisition	227
	10.3	Comparison between EEG and MEG	228
11		c Analysis of Electrophysiological Signals	231
	11.1	Preprocessing	232
		11.1.1 Noise	232
		11.1.2 Montage	235
		11.1.3 Segmentation and Visual Inspection	236
		11.1.4 Independent Component Analysis for Preprocessing	236
		11.1.5 Filtering for Preprocessing	238
		11.1.6 Resampling	240
	11.2	Main Signal Processing	241
		11.2.1 Spectral Analysis	241
		11.2.2 Event-Related Potential Analysis	246
	11.3	Statistical Tests	249
12		anced Data Analysis	252
	12.1	Short Time Fourier Transform and Wavelet Transform	252
		12.1.1 Short Time Fourier Transform	252
		12.1.2 Wavelet Transform	255
		12.1.3 STFT or Wavelet?	258
	12.2	Phase Analysis	259
		12.2.1 Computation of the Phase	259
		12.2.2 Phase Synchrony	260
		12.2.3 Network Analysis	262
		12.2.4 Inter-trial Phase Coherence	265
	10.5	12.2.5 Trial Averaging Revisited	267
	12.3	Autoregression and Granger Causality	269

Con	Contents		ix
		12.3.1 Autoregression	269
		12.3.2 Granger Causality	271
	Part	IV Complementary Methods	275
13	Multi	i-modal Imaging	277
	13.1	The Spatial and Temporal Unfolding of Visual Category	
		Representations	278
	13.2	Simultaneous Application of EEG and fMRI	281
	13.3	M/EEG Source Localization	284
	13.4	Differentiating between Representational and Access Theories of	
		Disorders	286
	13.5	Clinical Diagnostics with Multi-modal Imaging	289
14	Caus	al Methods to Modulate Brain Activity	292
	14.1	Microstimulation and Deep Brain Stimulation	293
	14.2	Focused Ultrasound Stimulation (FUS)	297
	14.3	Transcranial Magnetic Stimulation (TMS)	298
	14.4	Transcranial Current Stimulation (TCS)	303
	Glos	sary	309
	Refe	rences	325
	Inde.	x	343

List of Figures

1.1	Illustration of a job advertisement in the future?	page 2
1.2	A few illustrations of headlines in the popular media	
	about human brain imaging.	4
Box 1.1	The use of the word "brain" in best-seller titles and in	
	the specialized academic literature.	6
1.3	Illustration of the main components of a neuron and	
	an action potential.	8
1.4	Schematic example of communication between	
	neurons through action potentials and changes in	
	the membrane potential.	8
1.5	Example of signal processing as applied to an EEG	
	measurement.	12
1.6	The energy consumption by several cellular processes	
	as derived from theoretical modeling	
	and ATP consumption measurements.	15
1.7	Clustering of neurons with similar functional	
	properties at multiple scales.	17
1.8	Graphical depiction of the spectrum of human	
	brain imaging techniques in three dimensions.	19
1.9	Invasive single-neuron recordings in human	
	patients.	24
1.10	Face-selective, event-related potential recorded	
	through EEG.	25
2.1	A schematic drawing of a proton.	33
2.2	The effect of a static and an oscillating magnetic field	
	on the phase and spin direction of protons.	34
2.3	The use of magnetic gradients to determine	
	the spatial origin of signals in three-dimensional space.	36
2.4	A schematic example of the pulse sequence related to	
	gradient-echo echo-planar imaging.	37
Box 2.1	The relationship between an amplitude spectrum and	
	an image.	39
2.5	Schematic illustration of differences between tissues in	
	T1 recovery and T2 decay.	41
2.6	Comparison of T1-weighted and T2-weighted images.	43
2.7	A photograph and a schematic illustration of the	
	hardware of an NMR scanner.	44
3.1	A comparison of three imaging modalities that are	
	frequently used for clinical diagnosis	49
3.2	Templates used for volume-based and segmentation-	
	based normalization.	53

List of Figures		xi
3.3	Inflated and flattened visualizations of the cortical surface.	55
3.4	Voxel-based lesion-symptom mapping in aphasic stroke patients for two behavioral measures: fluency	
	and auditory comprehension.	59
3.5	The relationship between gray-matter volume and sex.	60
3.6	The diffusion in three dimensions is characterized as	
2.7	an ellipsoid.	63
3.7	Illustration of various images and indices that can be computed from DTI.	66
3.8	Chemical structure of glutamate and GABA.	70
3.9	MRS frequency spectrum before and after suppressing	70
	the signal from water.	72
3.10	Orientation-specific surround suppression.	74
4.1	Hemodynamic events during and following neural	
	activity and a graphical illustration of their effect upon	
4.0	oxy- and deoxyhemoglobin.	82
4.2	The hemodynamic response at the site of neural activity.	83
4.3	Simultaneous fMRI and invasive extracellular	0.3
7.5	recordings in monkey primary visual cortex to	
	investigate the neuronal basis of fMRI.	86
4.4	A typical hemodynamic response function in a BOLD	
	fMRI experiment.	90
4.5	Illustration of the setup and measurement of positron	
	emission tomography.	93
4.6	The setup and measurement of functional near-infrared	07
4.7	spectroscopy. The measurement of certical retinetony with the three	97
4./	The measurement of cortical retinotopy with the three hemodynamic imaging methods.	99
5.1	The subtraction logic as applied in mental chronometry))
J.1	and brain imaging.	105
5.2	The expected hemodynamic signal changes related to	
	different trial sequences.	110
5.3	The localization of object-selective brain regions using	
	a block fMRI experiment.	114
5.4	The localization of face-selective brain regions using a	
	block fMRI experiment comparing blocks of	
	successively presented face images with blocks of non-face images.	115
5.5	Different fMRI designs.	113
5.6	Hemodynamic signal variation in visual cortex when	110
	stimulus trials (SD: stimulus duration) alternate with	
	no-stimulus trials at a range of fixed interstimulus	
	intervals (ISI).	116

xii		List of Figures
5.7	The modulation of the hemodynamic signal in a rapid	
	counterbalanced event-related design.	117
5.8	The importance of a resting baseline to disambiguate	
	more activation from less deactivation.	119
5.9	fMRI activation in a contrast of an active task	
	minus a passive no-stimulus baseline.	121
6.1	Overview of the major steps in the data analysis of an	
	fMRI experiment.	128
Box 6.1	Obvious artifacts in MRI images.	129
6.2	Example images before and after motion correction of	
	a time series.	133
6.3	Motion correction parameters.	134
6.4	Example of the input images for coregistration	
	between a T1-weighted anatomical scan and	
	T2*-weighted functional MRI scan.	136
6.5	Functional MRI images at various levels of smoothing.	138
7.1	Visualization of the general linear model as applied to	
	real fMRI data.	144
7.2	Visualization of the design of a block-design fMRI	
	experiment.	147
7.3	The beta values associated with the two first predictors	
	of the design matrix in Figure 7.2 in one example	
	participant.	149
7.4	Visualization of the voxels with a high <i>t</i> -value in a	
	simple t-contrast of visually presented faces minus	
	scrambled images.	149
7.5	Spurious brain activity in a dead salmon related to the	1.50
	emotional content of pictures shown to it.	152
7.6	Example table from SPM12 with <i>t</i> - and <i>p</i> -values	
	associated with the contrast shown in	1.7.4
7.7	Figure 7.4.	154
7.7	Illustration of the region-of-interest approach.	157
7.8	The effect of circular analyses in a region-of-interest	150
7.0	analysis.	159
7.9	The investigation of the neural basis of romantic love	161
0 1	through reverse inference.	161 165
8.1 8.2	Seed-based functional connectivity. Three possible explanations for why two brain regions	103
0.2		
	A and B might show a correlation in how their fMRI signal changes over time.	166
8.3	Correlations in fMRI signal between regions can be	100
0.3	caused by subject motion.	168
8.4	Structural equation modeling in the domain of	100
O. 1	numerical cognition.	170
8.5	Task-based modulation of functional connectivity.	170
0.5	rask based inodulation of functional connectivity.	1/2

List of Figures		XIII
8.6	The default mode network identified through the	
0.0	analysis of functional connectivity in resting-state	
	fMRI.	175
8.7	Schematic illustration of multi-voxel pattern analyses.	177
8.8	Illustration of the design and analysis approach in an	1//
0.0	MVPA fMRI study.	179
8.9	MVPA results obtained through correlational MVPA	177
0.7	and decoding MVPA.	180
8.10	Shape representations derived from human similarity	100
0.10	judgments (perceived shape), MVPA (neural shape),	
	and artificial "deep" neural networks (deep shape).	182
8.11	Results from a condition-rich fMRI experiment with	102
	92 stimulus conditions.	184
8.12	The principle of hyperacuity.	185
8.13	Functional MRI adaptation as a method to detect	
	neuronal selectivity.	189
9.1	Hans Berger's EEG system.	194
9.2	Electromagnetic field due to membrane potentials	
	of neurons.	196
9.3	Human EEG.	200
9.4	Oscillation as a wave or rotation.	201
9.5	EEG in sensor space and its estimated source.	205
9.6	Sleep stages.	207
10.1	Illustration of EEG measurement.	210
10.2	EEG electrodes.	211
Box 10.1	The five steps of the international 10–20 system.	213
10.3	The international 10–20 system.	215
10.4	EOG electrode placement.	217
10.5	Sampling frequency and AD level.	220
10.6	Schematic illustration of an MEG system.	223
10.7	Fleming's right-hand rule.	224
10.8	MEG coil configuration.	225
10.9	The first MEG recorded with SQUID in the MIT	
	shielded room in 1971.	227
11.1	Major noises in M/EEG.	234
11.2	ICA steps.	237
11.3	Time and frequency representations of waves.	239
11.4	PSD in eyes open and closed conditions (electrode	
	~O ₂), and corresponding time domain signal.	243
11.5	Example of a spectrum analysis.	245
11.6	ERP components.	247
11.7	Example of an ERP analysis (grand average of VEPs).	249
12.1	PSD stuck in time.	253
12.2	Illustration of wavelet analysis.	256
12.3	Example of wavelet analysis (scalogram during finger	
	tapping).	258

xiv		List of Figures
12.4	Averaging phases.	261
12.5	Example of phase synchrony analysis (synchrony	262
12.6	between left and right motor cortices). Example of a network analysis (functional network of theta band activity in control group and dyslexic	263
	children).	264
12.7	Example of an inter-trial phase coherence (ITPC) plot (MEG response time-locked to a visual image in	
12.8	control and schizophrenic groups). Phase and ERPs.	266 268
12.8	Autocorrelation function and partial autocorrelation	208
12.7	function.	270
13.1	The application of multi-voxel/sensor pattern analyses to fMRI and MEG data from a condition-rich design	
	with 92 object conditions.	280
13.2	Simultaneous fMRI-EEG shows face-selective ERP	282
13.3	responses. Correlations between fMRI-derived and EEG-derived	282
13.3	face selectivity in simultaneous fMRI-EEG.	283
13.4	Source localization as an ill-posed problem.	284
13.5	Combination of MVPA with functional connectivity	
	analyses to investigate the differences between normal	
	readers (NR) and dyslexic readers (DR).	288
14.1	Invasive microstimulation of face-selective patches in	206
140	the human brain.	296
14.2	Simulation of the area of stimulated tissue during the	298
14.3	application of FUS to somatosensory cortex S1. Illustration of transcranial magnetic stimulation (TMS)	290
14.5	and coil design.	299
14.4	Determination of the anatomical coordinates of the	
	region of interest and overview of the experimental	
	methods of Pitcher et al. (2008).	301
14.5	The influence of repetitive TMS and double-pulse	
	TMS on face identity and face emotion recognition.	302
14.6	The equipment used for transcranial current	202
147	stimulation.	303
14.7	The application of TDCS in the context of perceptual learning.	306
14.8	The application of TDCS in the context of numerical	300
11.0	cognition for two subject groups, anodal stimulation	
	and sham.	307

Preface

We want to understand the world around us. Society and some of its most brilliant minds invest considerable energy and resources in finding out the laws and the origin of the universe, exposing us to exotic concepts such as big bangs and string theories. For this enterprise, researchers measure all sorts of *signals from outer space* through huge telescopes and satellites. In science fiction movies these devices pick up signals from extraterrestrial beings, but in reality the signals inform us about what physical events happen very far away around other stars and in other galaxies.

Humankind, or at least the physicists among us, is interested not only in the big and the large, such as the borders of the universe, but also in the small and the submicroscopic. We need to know what happens at the smallest as much as at the largest scale before we can truly understand the physical world. For this small scale, scientists make inferences based on *signals from events happening at the subatomic level*. Ironically, the smaller the scale, the larger the apparatus that physicists need to use to detect these events. The current state of the art is the Large Hadron Collider, which detected the signal allowing scientists to infer the existence of the Higgs boson.

This book is about other signals, signals that are perhaps even more interesting. Of course outer space is great, as is picking up signals from an unimaginably small particle using a machine large and complicated enough to make every human nerd drool. However, there is one thing we as humans want to get a grip on even more than our environment, and that is ourselves. We want to understand and control ourselves. For this, we have to look where our "self" is situated, and that is in our head. It turns out that the head, and more specifically the brain, also emits all sorts of signals. This text is about these *signals from our brain* and how to measure them.

We must immediately warn the reader that these brain signals are not simple to understand and not easy to measure. Much must be learned. Measuring signals from outer space is complicated and involves armies of physicists and engineers, but we also need to learn some facts about physics and engineering to understand how we can measure brain signals. We need bits and pieces of knowledge from biology, neurophysiology, electricity, engineering, advanced statistics, radiology, neurology, cognitive science, and even philosophy. Getting the complete picture from brain signals requires you to take a truly interdisciplinary viewpoint. You are, it is hoped, ready for this.

xvi Preface

Aims of This Text

The goal of this text is to bring students from a wide background to the point where they can read human neuroscience papers and understand all sections, including methodology – that is, how a technique works and why it was chosen, data analysis, and interpretation of the results. It will take hard work, but it is worth it. We avoid complexity as much as possible, and you should not worry about complicated formulas. For example, you do not need a physics degree to understand the concepts of physics as they are introduced in this book. Rather, our intent is that a motivated student who has successfully obtained an academic bachelor's degree in a scientific discipline should be able to grasp most of this book.

With this knowledge in your backpack, you as a reader will have what it takes to add human brain imaging to your own thinking, in whatever remote subject area you are interested in (e.g., psychology, economics, social sciences, law) and whatever type of neuroscience that might be most relevant to you (e.g., cognitive neuroscience, clinical neuroscience, educational neuroscience, neuroeconomics). And who knows, if you are particularly adventurous, the provision of just enough details about how the techniques are implemented and how the data are analyzed might bring you to the point where you want to do such research yourself. In that case, this book should be a perfect primer.

Key Features

We have included the following features to aid students and instructors in getting the most out of this text:

- Learning objectives are listed at the beginning of each chapter.
- Further reading suggestions are included, along with explanations of their relevance.
- **Chapter summaries** are provided at the end of each chapter to recap the key points that students should be aware of.
- Review questions are included to test knowledge as part of homework or selfstudy.
- A detailed glossary is supplied, with all key words also highlighted in bold throughout the text.
- Online resources include lecture slides, answers to the review questions, and links to further tutorials and useful websites.

Choice of Topics

This book covers the most popular neuroimaging techniques at a level of detail that takes into account the following trade-off: On the one hand, we want to avoid unnecessary details to make sure that the book as a whole can be read as part of

Preface xvii

a normal course or as an introduction to a multi-methods lab environment rather than used as an encyclopedia-style reference. On the other hand, we aim to include sufficient details to provide the student with a relatively in-depth understanding of all the different domains related to human neuroimaging – indeed, also including physics, neuroscience, statistics, and cognition. For example, we do not abstain from a chapter on the physics of MRI, but we focus on the basics needed to understand a typical methods section in a paper and to know the parameters that a *non-physicist* researcher might alter during scanning. As another example, we include many examples of applications of imaging in various research fields in order to illustrate basic concepts, but we do not aim to provide a review of any specific field (no chapter such as "the cognitive neuroscience of attention"). Nevertheless, the knowledge acquired in this book will be tremendously helpful for a better understanding of the many books that focus on specific fields, including many of the contributions in the series to which this book belongs: *Cambridge Fundamentals of Neuroscience in Psychology*.

Our overview of brain imaging does not shy away from criticism. Criticism can be voiced at many levels, from the general level of philosophy of science ("Can brain imaging really help us understand the human mind?") all the way down to very specific criticisms about a particular statistical method. Yet readers will notice that there is no chapter called "Criticisms of Human Brain Imaging." This choice reflects our belief that a thorough, in-depth discussion of the various pros and cons of particular approaches or methods requires sufficient knowledge about conceptual as well as technical issues. Thus, at the appropriate time and place, we present many important discussions, including neuro-hypes, neo-phrenology, brain activity in a dead salmon, reverse inference, open science or lack thereof, the limitations of group studies, the trade-off between spatial and temporal resolution, the relative value of different methods, and why a neuroscientist interested in neurons would measure blood flow, among others. This approach should help the reader not only to become an expert in terms of conceptual and technical knowledge, but also to apply this knowledge to develop a critical mindset when reading about and applying human brain imaging.

Acknowledgments

In the process of writing this book, we received help from numerous people. Naming them puts us at risk of forgetting people, but we will try nevertheless. First, we are indebted to the peers who were involved during the review process organized by Cambridge University Press (CUP), in particular the four peers who read the entire book and provided many helpful comments. Next, several colleagues read almost the whole book (Brendan Ritchie) or important parts of it (Jessica Bulthé, Radha Nila Meghanathan, Lien Peters, Hannah Bernhard, Céline Gillebert, Marcello Giannini, and Kevin Vanbecelaere). We are also grateful to the students who read and commented on precursor texts that we used in our own course on human

xviii Preface

brain imaging at KU Leuven. Material for figures was provided, in decreasing order of number of figures, by Christine Van Vliet, Céline Gillebert, Nicky Daniels, Jessica Bulthé, Haemy Lee Masson, Ineke Pillet, Brendan Ritchie, Lien Peters, and Michelle Hendriks. Many helpful insights were provided along the full way by Janka Romero and along part of the way by Claire Eudall and Heather Brolly, who all embody the high standards of CUP. Our gratitude to all these special people does not make them responsible for any remaining errors in this book – that curse remains with the authors.