Contents

Preface xxiii
Acknowledgment xxvii

Unit 1 - Concepts of Design

1. Introduction to Machine Design
 1.1 Introduction 1
 1.2 Stages in Design 2
 1.3 Design Considerations 3
 1.4 Types of Design 4
 1.5 Units 5
 1.6 Standardization 8
 1.6.1 Objectives of standardization 9
 1.6.2 Advantages of standardization 9
 1.7 Use of Standards in Design 10
 1.8 Standard Mechanical Component Designations 11
 1.9 Preferred Numbers 12

2. Engineering Materials
 2.1 Introduction 21
 2.2 Material Properties 21
 2.3 Classification of Engineering Materials 22
 2.4 Ferrous Metals 23
2.5 Wrought Iron 24
2.6 Carbon Steels 24
 2.6.1 Bureau of Indian Standards designation of steels 24
 2.6.2 Applications of steels 26
 2.6.3 Selecting a steel 28
2.7 Cast Iron 28
 2.7.1 Code designation for ferrous castings 29
 2.7.2 Types of cast iron 30
 2.7.3 Applications of cast iron 31
 2.7.4 Effects of impurities on properties of cast iron 32
2.8 Alloy Steels 32
 2.8.1 Alloy steels designation 32
 2.8.2 Properties of alloy steels 33
 2.8.3 Applications of alloy steel 34
 2.8.4 Guidelines for selecting alloy steel 35
2.9 Stainless Steels 35
2.10 Steels for High Temperatures 36
2.11 High Speed Steels 36
2.12 Spring Steels 37
2.13 Non-Ferrous Metals 37
2.14 Aluminum and its Alloys 38
 2.14.1 Aluminum designation 38
 2.14.2 Applications of aluminum alloys 38
 2.14.3 Mechanical properties of aluminum alloys 39
2.15 Copper and its Alloys 40
2.16 Tin 41
2.17 Zinc Alloys 41
2.18 Nickel Alloys 41
2.19 Bearing Materials 42
2.20 Lead 42
2.21 Non Metals 43
2.22 Elastomers (Rubber) 44
2.23 Wood 44
2.24 Selecting a Material 45

3. Limits, Tolerances and Fits

3.1 Introduction 55
3.2 Terminology 55
3.3 International Tolerance Grade (IT Grade) 57
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Tolerances and Manufacturing Processes</td>
<td>59</td>
</tr>
<tr>
<td>3.5 Fundamental Tolerances</td>
<td>60</td>
</tr>
<tr>
<td>3.5.1 Letter symbol for holes</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2 Letter symbol for shafts</td>
<td>61</td>
</tr>
<tr>
<td>3.6 Indication of Tolerance on a Drawing</td>
<td>67</td>
</tr>
<tr>
<td>3.7 Fits</td>
<td>70</td>
</tr>
<tr>
<td>3.8 Systems of Fits</td>
<td>70</td>
</tr>
<tr>
<td>3.8.1 Hole basis</td>
<td>70</td>
</tr>
<tr>
<td>3.8.2 Shaft basis</td>
<td>70</td>
</tr>
<tr>
<td>3.9 Specifying a Fit</td>
<td>71</td>
</tr>
<tr>
<td>3.10 Types of Fits</td>
<td>71</td>
</tr>
<tr>
<td>3.11 Selection of Fits</td>
<td>72</td>
</tr>
<tr>
<td>3.12 Interchangeability</td>
<td>74</td>
</tr>
<tr>
<td>4.0 Manufacturing Aspects in Design</td>
<td></td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Manufacturing Processes</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Selection of Processes</td>
<td>83</td>
</tr>
<tr>
<td>4.4 Shaping Processes</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1 Sand casting</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2 Design considerations in sand castings</td>
<td>87</td>
</tr>
<tr>
<td>4.4.3 Factors controlling casting tolerances</td>
<td>90</td>
</tr>
<tr>
<td>4.4.4 Die casting</td>
<td>91</td>
</tr>
<tr>
<td>4.5 Forging Processes</td>
<td>92</td>
</tr>
<tr>
<td>4.5.1 Hot and cold forging</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2 Forging in dies</td>
<td>93</td>
</tr>
<tr>
<td>4.5.3 Rolling</td>
<td>94</td>
</tr>
<tr>
<td>4.5.4 Drawing</td>
<td>94</td>
</tr>
<tr>
<td>4.5.5 Extrusion</td>
<td>94</td>
</tr>
<tr>
<td>4.5.6 Design aspects in forging</td>
<td>94</td>
</tr>
<tr>
<td>4.6 Joining Processes</td>
<td>98</td>
</tr>
<tr>
<td>4.6.1 Design considerations for welded parts</td>
<td>99</td>
</tr>
<tr>
<td>4.7 Material Removal Processes</td>
<td>100</td>
</tr>
<tr>
<td>4.7.1 Design considerations in machining</td>
<td>101</td>
</tr>
<tr>
<td>4.8 Jigs</td>
<td>102</td>
</tr>
<tr>
<td>4.9 Fixtures</td>
<td>102</td>
</tr>
<tr>
<td>4.10 Chemical Processes</td>
<td>103</td>
</tr>
<tr>
<td>4.11 Computerized Machines</td>
<td>103</td>
</tr>
<tr>
<td>4.11.1 CNC machines</td>
<td>103</td>
</tr>
<tr>
<td>4.11.2 Rapid prototyping</td>
<td>104</td>
</tr>
</tbody>
</table>
Table of Contents

4.12 Heat Treatment Processes 104
4.13 Surface Finishing Processes 105
4.14 Design for Assembly 106
 4.14.1 Approaches to design for assembly 107
 4.14.2 Assembly methods 107
 4.14.3 Cost of design for assembly 108
 4.14.4 Guidelines for design for assembly 109

Unit 2– Designing for Strength

5. Simple Stresses 117
 5.1 Introduction to Design 118
 5.2 Types of Loads 119
 5.3 Tensile Stress 119
 5.4 Strength and Stiffness 119
 5.5 Tensile Strain – Linear / Lateral 119
 5.6 Stress - Strain Curve 120
 5.7 Factor of Safety 121
 5.7.1 Factor of ignorance 121
 5.8 Poisson's Ratio 122
 5.9 Young's Modulus of Elasticity 123
 5.10 Compressive Stresses 127
 5.11 Compressive Stresses in Long Columns 129
 5.11.1 Euler’s formula 129
 5.11.2 Rankine’s formula 130
 5.12 Bearing Stresses 133
 5.13 Shear Stresses 134
 5.14 Shear Strain 138
 5.15 Shear Modulus of Rigidity 138
 5.16 Bulk Modulus 139
 5.17 Resilience 139
 5.18 Thermal Stresses 140
 5.19 Stresses due to Impact 143
 5.20 Hertz Stresses 146
 5.20.1 Sphere to sphere contact 146
 5.20.2 Cylinder to cylinder contact 147
 5.21 Hoop Stress 148
 5.21.1 Thin wall 148
 5.21.2 Thick-walled vessels 149
6. Bending Stresses
 6.1 Bending Stresses 160
 6.2 Flexural Strength 161
 6.3 Bending Moment 161
 6.4 Moment of Area 167
 6.5 Beam Supports 169
 6.6 Shear Stress in Beams 169
 6.6.1 Shear force diagram 170
 6.7 Bending Moment Diagram 171
 6.8 Deflection of Beams 173
 6.9 Eccentric Loading 178
 6.10 Curved Beams 179
 6.11 Neutral and Central Axis 180
 6.12 Analysis of Curved Beam 182
 6.13 C - Clamp 183
 6.14 Machine Frame 185

7. Torsional Stresses
 7.1 Torsional Shear Stresses 198
 7.2 Design for Rigidity 200
 7.3 Design of a Hollow Shaft 201
 7.4 Torsion of Non-Circular Shafts 204
 7.5 Torsion in Thin Sections 205
 7.5.1 Closed thin sections 205
 7.5.2 Open thin sections 208

8. Combined Stresses
 8.1 Introduction to Combined Stresses 214
 8.2 Bending with Axial Load 214
 8.3 Principal Stresses 216
 8.4 Torsion with Axial Load 219
 8.5 Bending with Torsion 221
 8.6 Torsion and Bending Combined with Axial Load 224
 8.7 Mohr’s Circle 226
 8.7.1 Two-dimensional stresses 226
 8.7.2 One-dimensional stress 228
 8.7.3 Three-dimensional stresses 230
8.8 Theories of Failure 233
 8.8.1 Maximum principal strain theory 233
 8.8.2 Maximum shear stress theory 234
 8.8.3 Maximum strain energy theory 236
 8.8.4 Maximum distortion energy theory 237
 8.8.5 Maximum principal stress theory 244
8.9 Summary of Failure Theories 247

9. Stress Concentration

9.1 Introduction 255
9.2 Stress Concentration Areas 255
9.3 Parameters Causing Stress Concentration 256
9.4 Stress Concentration Factor 256
9.5 Localized Stress Concentration with an Elliptical Hole 257
9.6 Stress Concentration with a Circular Hole 258
9.7 Axial Loads on Flats with Holes 258
 9.7.1 Axial loads on flats with circular holes 258
 9.7.2 Axial load with two circular holes 260
9.8 Axial Loads on Flats with a Fillet 263
9.9 Axial Loads on Flats with a Notch 265
9.10 Axial Loads on Cylinders 266
 9.10.1 Cylinder with a fillet or a shoulder 266
 9.10.2 Cylinder with a notch 267
9.11 Stress Concentration in Bending 268
9.12 Cylinder with a Notch 272
9.13 Stress Concentration in Torsion 274
9.14 Stress Concentration due to Keyway in a Shaft 276
9.15 Stress Concentration in Screw Threads 277
9.16 Stress Concentration in Gears 277
9.17 Methods of Reducing Stress Concentration 277
9.18 Actual Stress Concentration 278
9.19 Notch Sensitivity 278
 9.19.1 Notch factor 280

10. Endurance Strength

10.1 Variable Loads 286
10.2 Endurance Strength 287
10.3 Fatigue Strength Testing 288
10.4 S-N Curve 288
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5</td>
<td>289</td>
</tr>
<tr>
<td>10.6</td>
<td>290</td>
</tr>
<tr>
<td>10.7</td>
<td>292</td>
</tr>
<tr>
<td>10.8</td>
<td>294</td>
</tr>
<tr>
<td>10.8.1</td>
<td>294</td>
</tr>
<tr>
<td>10.8.2</td>
<td>294</td>
</tr>
<tr>
<td>10.8.3</td>
<td>295</td>
</tr>
<tr>
<td>10.8.4</td>
<td>295</td>
</tr>
<tr>
<td>10.8.5</td>
<td>296</td>
</tr>
<tr>
<td>10.8.6</td>
<td>297</td>
</tr>
<tr>
<td>10.8.7</td>
<td>297</td>
</tr>
<tr>
<td>10.9</td>
<td>297</td>
</tr>
<tr>
<td>10.10</td>
<td>302</td>
</tr>
<tr>
<td>11.1</td>
<td>312</td>
</tr>
<tr>
<td>11.2</td>
<td>313</td>
</tr>
<tr>
<td>11.2.1</td>
<td>314</td>
</tr>
<tr>
<td>11.2.2</td>
<td>314</td>
</tr>
<tr>
<td>11.2.3</td>
<td>314</td>
</tr>
<tr>
<td>11.2.4</td>
<td>315</td>
</tr>
<tr>
<td>11.2.5</td>
<td>316</td>
</tr>
<tr>
<td>11.3</td>
<td>316</td>
</tr>
<tr>
<td>11.4</td>
<td>321</td>
</tr>
<tr>
<td>11.5</td>
<td>324</td>
</tr>
<tr>
<td>11.6</td>
<td>325</td>
</tr>
<tr>
<td>11.7</td>
<td>328</td>
</tr>
<tr>
<td>11.8</td>
<td>333</td>
</tr>
<tr>
<td>11.9</td>
<td>335</td>
</tr>
<tr>
<td>11.10</td>
<td>338</td>
</tr>
<tr>
<td>11.11</td>
<td>341</td>
</tr>
<tr>
<td>12.1</td>
<td>352</td>
</tr>
<tr>
<td>12.2</td>
<td>352</td>
</tr>
<tr>
<td>12.3</td>
<td>353</td>
</tr>
</tbody>
</table>

Unit 3 - Joints

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>352</td>
</tr>
<tr>
<td>12.2</td>
<td>352</td>
</tr>
<tr>
<td>12.3</td>
<td>353</td>
</tr>
</tbody>
</table>
Table of Contents

12. Pin Joints

- 12.4 Sleeve and Cotter Joint
- 12.5 Design Procedure of Sleeve and Cotter Joint
- 12.6 Socket and Spigot Joint
- 12.7 Design Procedure for Socket and Spigot Joint
- 12.8 Gib and Cotter Joint
- 12.9 Design of a Gib and Cotter Joint

13. Pin Joints

- 13.1 Introduction to Pin Joints
- 13.2 Knuckle Joint
- 13.3 Design Procedure for a Knuckle Joint

14. Riveted Joints

- 14.1 Introduction
- 14.2 Rivets
- 14.3 Making a Riveted Joint
- 14.4 Rivet Materials
- 14.5 Rivet Heads
- 14.6 Classification of Riveted Joints
 - 14.6.1 According to arrangement of plates
 - 14.6.2 According to number of rows of rivets (Single / Double / Triple)
 - 14.6.3 According to number of cover plates (Single / Double-Equal / Unequal)
 - 14.6.4 According to arrangement of rivets (Chain / Zigzag)
- 14.7 Failures of a Riveted Joint and Strength
 - 14.7.1 Failure of rivets
 - 14.7.2 Failure of plates
- 14.8 Joint Efficiency
- 14.9 Design of Riveted Joints
 - 14.9.1 Selection of rivet size
 - 14.9.2 Rivet hole size
 - 14.9.3 Rivet length
 - 14.9.4 Joint proportions
 - 14.9.5 Thickness of cover plates
 - 14.9.6 Width of cover plates
 - 14.9.7 Calculate strength in different modes of failure
 - 14.9.8 Calculate joint efficiency
- 14.10 Diamond Riveting
 - 14.10.1 Design procedure for diamond riveted joint
Contents

15.20 Combination of Transverse and Parallel Fillet Weld 457
15.21 Stress Concentration in Welds 458
15.22 Asymmetrical Parallel Welds 459
15.23 Welds in Bending 461
15.24 Welds in Torsion 461
 15.24.1 Torsion of circular fillet 461

16. **Bolted joints**

 16.1 Introduction 472
 16.2 Advantages / Disadvantages of Threaded Joints 472
 16.3 Terminology 473
 16.4 Classification of Threads 474
 16.5 Thread Profile 475
 16.5.1 Metric threads 475
 16.5.2 British standard Whitworth threads 475
 16.5.3 Square threads 475
 16.5.4 Acme threads 476
 16.5.5 Buttress threads 476
 16.5.6 Knuckle threads 476
 16.6 Pitch of Threads 476
 16.7 Thread Designation 477
 16.8 Specifications of Threads 478
 16.9 Bolts and Nuts 479
 16.10 Bolt Materials 480
 16.11 Bolt Manufacturing 481
 16.12 Locking Devices 481
 16.12.1 Lock nut 482
 16.12.2 Locking with pin 482
 16.12.3 Slotted nut 483
 16.12.4 Castle nut 483
 16.12.5 Sawn nut 483
 16.12.6 Ring and groove nut 484
 16.12.7 External locking devices 484
 16.13 Screws 485
 16.13.1 Bolt versus screws 485
 16.13.2 Types of screws 485
 16.14 Types of Threaded Joints 488
 16.15 Stresses in Threaded Joints 489
 16.15.1 Initial stresses 489
 16.15.2 Stresses due to external forces 492
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.16 Design of Nut</td>
<td>494</td>
</tr>
<tr>
<td>16.17 Design of Turnbuckle</td>
<td>495</td>
</tr>
<tr>
<td>16.17.1 Design procedure for turnbuckle</td>
<td>497</td>
</tr>
<tr>
<td>16.18 Bolts of Uniform Strength</td>
<td>500</td>
</tr>
<tr>
<td>16.19 Design of Cylinder Cover Joint</td>
<td>501</td>
</tr>
<tr>
<td>16.20 Stiffness of Threaded Joints</td>
<td>505</td>
</tr>
<tr>
<td>16.20.1 Stiffness of bolt</td>
<td>506</td>
</tr>
<tr>
<td>16.20.2 Stiffness of components</td>
<td>508</td>
</tr>
<tr>
<td>16.21 Load Sharing by bolt and Components</td>
<td>510</td>
</tr>
<tr>
<td>16.22 Loads while Tightening Nut</td>
<td>512</td>
</tr>
<tr>
<td>16.23 Maximum Load on a Bolt</td>
<td>512</td>
</tr>
<tr>
<td>16.24 Gaskets in Threaded Joint</td>
<td>514</td>
</tr>
<tr>
<td>16.24.1 Soft gasket</td>
<td>515</td>
</tr>
<tr>
<td>16.24.2 Hard gasket</td>
<td>515</td>
</tr>
<tr>
<td>16.25 Variable Loading</td>
<td>518</td>
</tr>
<tr>
<td>16.26 Design Procedure for Variable Loading</td>
<td>521</td>
</tr>
</tbody>
</table>

17. Eccentric Loading of Joints

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1 Eccentric Loading</td>
<td>540</td>
</tr>
<tr>
<td>17.2 Eccentrically Loaded Riveted Joints</td>
<td>541</td>
</tr>
<tr>
<td>17.2.1 Eccentricity in plane of rivets</td>
<td>541</td>
</tr>
<tr>
<td>17.3 Inclined Load</td>
<td>552</td>
</tr>
<tr>
<td>17.4 Load Parallel and Offset to Plane of Fasteners</td>
<td>555</td>
</tr>
<tr>
<td>17.5 Eccentrically Loaded Bolted Joints</td>
<td>555</td>
</tr>
<tr>
<td>17.5.1 Eccentric load in plane of bolts</td>
<td>555</td>
</tr>
<tr>
<td>17.5.2 Eccentric load parallel to plane of bolts</td>
<td>557</td>
</tr>
<tr>
<td>17.5.3 Eccentric load with rectangular base</td>
<td>557</td>
</tr>
<tr>
<td>17.5.4 Eccentric load parallel to circular base</td>
<td>561</td>
</tr>
<tr>
<td>17.6 Eccentrically Loaded Welds</td>
<td>570</td>
</tr>
<tr>
<td>17.6.1 Eccentric load in plane of welds</td>
<td>570</td>
</tr>
<tr>
<td>17.6.2 Eccentric load parallel and offset to plane of welds</td>
<td>576</td>
</tr>
<tr>
<td>17.6.3 Welding all around</td>
<td>581</td>
</tr>
</tbody>
</table>

18. Power screws

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1 Introduction</td>
<td>591</td>
</tr>
<tr>
<td>18.2 Types of Power Screws</td>
<td>592</td>
</tr>
</tbody>
</table>
Contents

18.3 Torque for Raising Load 593
18.4 Torque for Lowering Load 595
18.5 Efficiency of Square Threads 595
18.6 Maximum Efficiency of Square Threads 597
18.7 Torque for Raising Load using Acme Threads 597
18.8 Self Locking Screws 598
18.9 Screw and Nut Materials 599
18.10 Coefficient of Friction 600
18.11 Stresses in Power Screws 600
\hspace{1em} 18.11.1 Direct axial compressive stress 600
\hspace{1em} 18.11.2 Shear stress at the root of the threads 601
\hspace{1em} 18.11.3 Torsional shear due to friction 601
\hspace{1em} 18.11.4 Bearing pressures 602
18.12 Design of Thrust Collar 602
18.13 Lead Screw 605
18.14 Screw Jack 606
\hspace{1em} 18.14.1 Construction and working of screw jack 606
\hspace{1em} 18.14.2 Stresses in screw 607
18.15 Design of Screw Jack 608
\hspace{1em} 18.15.1 Design of screw 608
\hspace{1em} 18.15.2 Design of nut 611
\hspace{1em} 18.15.3 Design of cup 611
\hspace{1em} 18.15.4 Design of body 612
18.16 Hand Press 617
18.17 Screw of a Vice 621
18.18 Screw of Pipe Vice 623
18.19 Screw of a Broaching Machine 625
18.20 Differential Screw 628
18.21 Compound Screw 629
18.22 Design of Toggle Jack 630

19. Shafts and Keys

19.1 Introduction 644
19.2 Types of Shafts 645
19.3 Shaft Manufacturing 645
19.4 Shaft Materials 645
19.5 Standard Rod / Shaft Sizes 646
19.6 Shaft Design on Strength Basis 646
19.7 Shaft Design for Torsion only 647
Contents

19.8	Shaft Design for Bending	649
19.9	Shaft Design for Combined Torsion and Bending	650
19.10	Power Transmission using Pulley and Belt	654
19.11	Power Transmission through Gears	657
19.12	Long Shafts	664
19.13	Axial Load Combined with Torsion and Bending	665
19.14	Shaft Design with Varying Loads	673
19.15	Shaft Design for Rigidity	677
19.15.1	Torsional rigidity	677
19.15.2	Lateral rigidity	678
19.16	Stepped Shafts	679
19.16.1	Shafts in series	679
19.16.2	Shafts in parallel	680
19.17	Critical Speeds for Shafts	682
19.18	Keys	684
19.18.1	Key materials and allowable stresses	685
19.19	Keyways	686
19.20	Types of Keys	686
19.21	Saddle Keys	686
19.22	Taper Sunk Keys (IS 2048 - 1983)	687
19.23	Parallel Sunk Keys (IS 2048 - 1975)	688
19.24	Design of Sunk Keys	689
19.25	Round Keys	694
19.26	Tangent Keys (IS 2291)	696
19.27	Woodruff Key (IS 2294)	698
19.28	Set Screws	701
19.29	Splines	701

20. Couplings

20.1	Couplings	720
20.2	Types of Couplings	721
20.3	Rigid Flange Couplings	721
20.3.1	Marine coupling	721
20.3.2	Muff coupling	724
20.3.3	Split muff coupling	727
20.3.4	Half lap muff coupling	730
20.3.5	Rigid flange coupling	730
20.3.6	Protected flange coupling	736
20.4	Flexible Couplings	739
Contents

20.5 Oldham Coupling
 20.5.1 Design of Oldham coupling 747
20.6 Universal Coupling
 20.6.1 Construction of universal coupling 751
 20.6.2 Joint proportions 752
 20.6.3 Designing for strength 753

21. Levers
 21.1 Introduction 763
 21.2 Uses of Levers 763
 21.3 Types of Levers 764
 21.4 Design of a Lever 765
 21.5 Design of a Hand Lever 766
 21.6 Foot Lever 768
 21.7 Cranking Lever 771
 21.8 Safety Valve Lever 775
 21.9 Bell Crank Lever 778
 21.10 Cross Lever 782
 21.11 Rocker Arm 783
 21.12 Compound Lever 785

22. Helical Springs
 22.1 Introduction 797
 22.2 Classification of Springs 798
 22.3 Helical Spring Terminology 799
 22.4 Materials 800
 22.5 Helical Springs 803
 22.5.1 Compression spring 803
 22.5.2 Tension spring 804
 22.5.3 Torsion spring 805
 22.5.4 Spiral spring 805
 22.6 Conventional and Symbolic Representation of Springs 805
 22.7 Stresses in Springs 805
 22.8 Deflection and Number of Turns 808
 22.9 Buckling of Spring 809
 22.10 Design Force and Operating Force 810
 22.11 Selection of Spring Index 810
 22.12 Design Procedure for Helical Spring 810
 22.13 Spring of a Safety Valve 814
22.14 Spring of an Internal Combustion Engine 815
22.15 Springs of Non-Circular Cross-Section 816
22.16 Spring of a Spring Balance 819
22.17 Spring Design for Impact Load 820
22.18 Spring for a Clutch 821
22.19 Natural Frequency of Helical Springs 822
22.20 Surge in Springs 824
22.21 Multiple Springs 824
22.22 Concentric or Composite Springs 827
22.23 Design of Spring with Varying Loads 832
22.24 Design of Helical Extension Springs 838
22.25 Helical Torsion Springs 841
22.26 Spiral Spring 844
22.27 Belleville Spring 846

23. Leaf Springs

23.1 Introduction 862
23.2 Spring Materials 863
23.3 Sizes of Spring Components 864
23.4 Shapes of Leaf Springs 864
23.5 Analysis of Leaf Spring 865
23.6 Graduated Leaves 866
23.7 Nipping 869
23.8 Length of Leaves 870
23.9 Energy Stored in a Spring 871
23.10 Design Procedure 871

Appendix 1 889
Appendix 2 890
Appendix 3 893
References 897
Index 899