<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acme threads</td>
<td>476, 593</td>
</tr>
<tr>
<td>Actual size</td>
<td>56</td>
</tr>
<tr>
<td>Allowance</td>
<td>56</td>
</tr>
<tr>
<td>Alloy Steels</td>
<td>32</td>
</tr>
<tr>
<td>Applications</td>
<td>34</td>
</tr>
<tr>
<td>Designation</td>
<td>32</td>
</tr>
<tr>
<td>Guide lines for selection</td>
<td>35</td>
</tr>
<tr>
<td>Properties</td>
<td>33</td>
</tr>
<tr>
<td>Aluminum</td>
<td>38</td>
</tr>
<tr>
<td>Alloys</td>
<td>38</td>
</tr>
<tr>
<td>Applications</td>
<td>38</td>
</tr>
<tr>
<td>Designation</td>
<td>38</td>
</tr>
<tr>
<td>Annealing</td>
<td>104</td>
</tr>
<tr>
<td>Arc welding</td>
<td>98, 437</td>
</tr>
<tr>
<td>Arch</td>
<td>863</td>
</tr>
<tr>
<td>Arrow line</td>
<td>441</td>
</tr>
<tr>
<td>ASME elliptical curve</td>
<td>316</td>
</tr>
<tr>
<td>Assembly methods</td>
<td>107</td>
</tr>
<tr>
<td>Axial loads</td>
<td>454, 646</td>
</tr>
<tr>
<td>Axles</td>
<td>645</td>
</tr>
<tr>
<td>Babbitt</td>
<td>42</td>
</tr>
<tr>
<td>Basic size</td>
<td>56</td>
</tr>
<tr>
<td>Beam supports</td>
<td>169</td>
</tr>
<tr>
<td>Bearing materials</td>
<td>42</td>
</tr>
<tr>
<td>Bearing pressures</td>
<td>599, 602</td>
</tr>
<tr>
<td>Bearing stresses</td>
<td>16</td>
</tr>
<tr>
<td>Bell crank lever</td>
<td>778</td>
</tr>
<tr>
<td>Belleville spring</td>
<td>846</td>
</tr>
<tr>
<td>Bending moment</td>
<td>161</td>
</tr>
<tr>
<td>Bending moment diagram</td>
<td>171</td>
</tr>
<tr>
<td>Bending stresses</td>
<td>160</td>
</tr>
<tr>
<td>Bergsträsser factor</td>
<td>808</td>
</tr>
<tr>
<td>BIS Designation of steels</td>
<td>24</td>
</tr>
<tr>
<td>Blank length of weld</td>
<td>443</td>
</tr>
<tr>
<td>Boiler joints</td>
<td>412</td>
</tr>
<tr>
<td>Circumferential</td>
<td>417</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>412</td>
</tr>
<tr>
<td>Bolt</td>
<td>472</td>
</tr>
<tr>
<td>Load sharing by bolt and</td>
<td></td>
</tr>
<tr>
<td>components</td>
<td>510</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>481</td>
</tr>
<tr>
<td>Materials</td>
<td>480</td>
</tr>
<tr>
<td>Maximum load</td>
<td>512</td>
</tr>
<tr>
<td>Uniform strength</td>
<td>500</td>
</tr>
<tr>
<td>versus screws</td>
<td>485</td>
</tr>
<tr>
<td>Bolts and nuts</td>
<td>479</td>
</tr>
<tr>
<td>Brass</td>
<td>22, 40</td>
</tr>
<tr>
<td>British Standard Whitworth</td>
<td></td>
</tr>
<tr>
<td>threads</td>
<td>475</td>
</tr>
<tr>
<td>Bronze</td>
<td>22, 40</td>
</tr>
<tr>
<td>Bulk modulus</td>
<td>139</td>
</tr>
<tr>
<td>Butt joint</td>
<td></td>
</tr>
<tr>
<td>Riveted</td>
<td>394</td>
</tr>
<tr>
<td>Welded</td>
<td>438</td>
</tr>
<tr>
<td>Buttress threads</td>
<td>476</td>
</tr>
</tbody>
</table>
C- Clamp, 183
Camber, 863
Cantilever, 169
Cap bolt, 488
Cap screws, 485
Carbon Steels, 24
Carburizing, 104
Casting, 86
Factors controlling tolerances, 90
Cast iron, 28
Applications, 31
Effects of impurities on properties, 32
Types, 30
Castle nut, 483
Clearance fit, 72
Closed coil end, 799, 804
Closed thin sections, 205
Coefficient of friction, 496, 594, 596, 598
Combined stresses, 214
Axial load with torsion and bending, 224
Bending with axial load, 214
Bending with torsion, 221
Compound lever, 785
Compound screw, 629
Compression spring, 803
Compressive stresses, 127
Direct axial, 600, 635
in long columns, 129
Copper alloys, 40
Cost of DFA, 108
Cotter, 353
Cotter joint, 352
Couplings
Detachable, 472, 721
Flexible, 739
Half lap muff, 730
Marine, 721
Muff, 724
Protected flange, 736
Rigid flange, 730
Split muff, 727
Cranking lever, 771
Crest, 473, 475
Critical speeds for shafts, 682
Cross lever, 782
Cumulative design, 302
Curved beams, 179
Cylinder cover joint design, 501
Deflection of beams, 173
Design for assembly, 106
Guidelines, 109
Design considerations, 3
for assembly, 106
for machining, 101
for sand castings, 86
for welded parts, 99
Design for rigidity, 200
Designing for strength, 753
Deviation, 56
Diamond riveting, 409
Die casting, 91
Differential screw, 628
Drawing process, 94
Eccentric load, 178, 540
in plane of rivets, 541
parallel and offset to plane of welds, 576
parallel to circular base, 561
parallel to plane of bolts, 557
plane of welds, 570
with rectangular base, 557
Edge joint, 98
Edge preparation, 439
Elastomers, 44
Electric discharge machine, 103
Electro chemical machining, 103
Electroplating, 103
Endurance Limit, 280
Endurance strength, 287
Approximate, 297
by rotary test machine, 288
for reversed stresses, 289
for given number of cycles, 292
Modifying factors, 294
Energy, 6, 8
Etching, 103
Euler’s formula, 129
Extension helical springs, 838
External locking devices, 484
Extrusion process, 94
Factor of ignorance, 121
Factor of safety, 121
Failures of a riveted joint, 397
 Plate failure, 398
 Rivet failure, 397
Fatigue, 118, 288
 Design under combined loads, 338
 High cycle, 289
 Low cycle, 289
Fatigue strength, 288, 290, 312
 Number of cycle, 290
 Strength testing, 288
Feather key, 686, 688
Ferrous metals, 23
Fillet welds, 449
Fits, 70, 72
Fixed ends, 169, 665
Fixtures, 102
Flank, 473
Flexible couplings, 739
Flexural strength, 161
Fluctuating loads, 312
 Axial, 316
 Axial and bending, 328
 Bending, 321
 Torsional and axial, 333
 Torsional and bending, 335
Foot lever, 768
Forging in dies, 93
Forging, 92
 Cold, 93
 Design aspects, 94
 Hot, 93
Fundamental deviation, 57
Fundamental tolerances, 60
Gaskets in threaded joints, 514
 Confined, 514
 Soft, 515
 Hard, 515
 Gas welding, 437
Gerber parabola, 315
Gib and cotter joint design, 369, 370
Goodman Line, 314
Guest's theory, 221
Hand press, 617
Hard gasket, 515
Hardening, 104
Helical springs, 797
 Design procedure, 810
 Free length, 799
Helical torsion springs, 838
Hertz stresses, 146, 147
High speed steels, 36
Hollow shaft design, 201
Hoop stress, 148
Infinite life, 289
Initial stresses, 489
Interchangability, 74
Interference fit, 72
International Tolerance grade, 57, 58, 60
Jigs, 102
Joint efficiency, 400
 Riveted joints, 404
 Welded joints, 435
 Joint proportions, 402, 752
Keys, 684
 Allowable stresses, 685
 Materials, 685
 Types of keys, 686
 Keyways, 686
 Kinetic energy, 8
 Knuckle joint design, 378
Lateral rigidity, 678
Lead screw, 605
Leaf spring, 862
 Analysis, 865
 Design procedure, 871
 Graduated leaves, 866
 Materials, 863
 Master leaf, 862
 Leaf spring types, 864
Length of leaves, 870
Length of weld, 443
Letter symbol of tolerance, 60
for holes, 60
for shafts, 61
Lever design, 765, 781
Limits, 56
Line shafts, 645, 677
Load factor, 294, 298
Load types, 118
Impact, 118
Fluctuating, 312
Reversed, 287
Static, 121
Variable, 286
Lock nut, 481
Locking devices, 481
Locking with pin, 482
Long shafts, 664

Machine frame, 185
Machine shafts, 645
Major diameter, 473, 478, 593
Maximum distortion energy theory, 237
Maximum efficiency
of square threads, 597
Maximum shear stresses in parallel fillet Welds, 455
Maximum shear stresses in transverse fillet Welds, 452
Maximum strain energy theory, 236
Mechanical properties of aluminum alloys, 33
Methods of reducing stress concentration, 277
Metric threads, 475
Miner’s equation, 302
Minor diameter, 473
Modified Goodman line, 314
Modified Goodman line for torsional shear stresses, 324
Mohr’s Circle
One dimensional, 228
Three dimensional, 230
Two dimensional, 226
Moment of area, 167, 704
Natural frequency of helical springs, 822
Neutral and central axis, 180
Nickel alloys, 41
Nipping, 869
Normalizing, 104
Notch factor, 280
Notch sensitivity, 278
Nut design, 494, 611
Number of turns of helical springs, 799, 808, 809
O ring, 514
Oldham coupling design, 746
One dimensional stress, 229, 239
Open coil helical spring, 799
Open thin sections, 208
Parallel fillet weld (Axial loading), 454
Parallel sunk keys, 688
Parameters causing stress concentration, 256
Pascal, 6
Pin joints, 378
Pitch, 395, 402
Pitch diameter, 473
Pitch of thread, 473
Plug welds, 444
Poisson’s ratio, 122
Potential energy, 8
Power screws, 591
Acme thread, 597
Square thread, 593, 595
Power transmission using gears, 657
pulleys and belt, 654
Preferred numbers, 12
Pressure welding, 437
Seam, 444
Spot, 444
Principal stresses, 216
Proof resilience, 139
Proof stress, 480
Property class of the bolts, 480
Protected flange coupling, 736
Rankine theory, 650
Rankine’s formula, 130
Rapid prototyping, 104
Reference line, 441
Reliability factor, 295
Repeated loads, 287
Resilience, 139
Reversed loads, 287
Right hand threads, 473
Rigid couplings, 720, 721
Protected flange coupling, 736
Rigid flange couplings, 721
Ring and groove nut, 484
Rivet heads, 393
Rivet materials, 393
Rivets, 391
Riveted joints, 392
Butt, 394
Design, 401
Lap, 394
Diamond, 409
Riveted joint failure
of plates, 403
of rivets, 403
Rocker arm, 783
Rolling process, 94
Root diameter, 473
Safe and unsafe zones, 313
Safety valve, 814
Lever, 775
Spring, 814
Sand casting, 86
Sawn nut, 483
Screw and nut materials, 599
Screw jack design, 608
Construction and working, 606
Thrust collar design, 602
Torque for lowering load, 595
Torque for raising load with square threads, 593
Torque for raising load with Acme threads, 597
Screw of a vice, 621
Screw of broaching machine, 625
Screw of pipe vice, 623
Screws, 485
Design of screw, 608
Hex cap screws, 485
Seam welds, 444
Selecting a material, 45
Selecting a steel, 28
Selection of fits, 72
Selection of processes, 83
Selection of spring index, 810
Set screws, 701
Shafts, 644
Materials, 645
in parallel, 680
in series, 679
Shaft design for
Bending strength, 649
Bending and torsion, 650
Rigidity, 677
Torsion only, 677
Varying loads, 673
Shaft manufacturing, 645
Shape of helical spring ends, 800, 804
Shapes of leaf springs, 864
Shaping processes, 86
Shear force diagram, 70
Shear modulus of resilience, 139
Shear modulus of rigidity, 138
Shear strain, 138
Shear stress at the root of the threads, 609
Shear stress in beams, 169
Shear stress, 134
Simply supported beams, 160
Single head screw key, 686, 689
Single start thread, 474
Size factor, 294
Sleeve and cotter joint design, 353, 354
Slenderness ratio, 129
Slip coupling, 721
Slotted nut, 483
Steels
Applications, 26
S-N Curve, 288
Socket and spigot joint, 359, 360
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soderberg line, 314</td>
</tr>
<tr>
<td>Specifications of threads, 478</td>
</tr>
<tr>
<td>Specifying a fit, 71</td>
</tr>
<tr>
<td>Specifying a welded joint, 441</td>
</tr>
<tr>
<td>Spindle, 645</td>
</tr>
<tr>
<td>Spiral spring, 844</td>
</tr>
<tr>
<td>Splines, 701</td>
</tr>
<tr>
<td>Spot welds, 444</td>
</tr>
<tr>
<td>Spring design with impact load, 820</td>
</tr>
<tr>
<td>Varying Loads, 832</td>
</tr>
<tr>
<td>Springs helical, 797</td>
</tr>
<tr>
<td>Buckling, 809</td>
</tr>
<tr>
<td>Deflection, 808</td>
</tr>
<tr>
<td>Energy stored, 871</td>
</tr>
<tr>
<td>Free length, 799</td>
</tr>
<tr>
<td>Index selection, 810</td>
</tr>
<tr>
<td>Materials, 800</td>
</tr>
<tr>
<td>Multiple, 824</td>
</tr>
<tr>
<td>Number of turns, 805</td>
</tr>
<tr>
<td>Solid length, 799</td>
</tr>
<tr>
<td>Spring steels, 37</td>
</tr>
<tr>
<td>Springs of non-circular cross-section, 816</td>
</tr>
<tr>
<td>Square threads, 475</td>
</tr>
<tr>
<td>St. Venant’s theory, 650</td>
</tr>
<tr>
<td>Stages in design, 2</td>
</tr>
<tr>
<td>Stainless steels, 35</td>
</tr>
<tr>
<td>Standard mechanical component designations, 11</td>
</tr>
<tr>
<td>Standard rod / Shaft sizes, 646</td>
</tr>
<tr>
<td>Standard size, 55</td>
</tr>
<tr>
<td>Standardization, 8</td>
</tr>
<tr>
<td>Advantages, 9</td>
</tr>
<tr>
<td>Objectives, 9</td>
</tr>
<tr>
<td>Start of thread, 474, 478, 479</td>
</tr>
<tr>
<td>Steels for high temperatures, 36</td>
</tr>
<tr>
<td>Stepped shafts, 679</td>
</tr>
<tr>
<td>Stiffness of bolt, 506</td>
</tr>
<tr>
<td>Components, 508</td>
</tr>
<tr>
<td>threaded joints, 505</td>
</tr>
<tr>
<td>Strain energy, 8</td>
</tr>
<tr>
<td>Strength and stiffness, 119</td>
</tr>
<tr>
<td>Strength of a butt weld, 445</td>
</tr>
<tr>
<td>Stress - Strain curve, 120</td>
</tr>
<tr>
<td>Stress concentration, 255</td>
</tr>
<tr>
<td>Actual, 278</td>
</tr>
<tr>
<td>Areas, 255</td>
</tr>
<tr>
<td>Factor, 256</td>
</tr>
<tr>
<td>Due to Keyway, 276</td>
</tr>
<tr>
<td>Stress concentration in bending, 268</td>
</tr>
<tr>
<td>Cylinder with a fillet, 266</td>
</tr>
<tr>
<td>Cylinder with a notch, 272</td>
</tr>
<tr>
<td>Gears, 277</td>
</tr>
<tr>
<td>Screw threads, 277</td>
</tr>
<tr>
<td>Shaft, 644</td>
</tr>
<tr>
<td>Torsion, 274</td>
</tr>
<tr>
<td>Welds, 98</td>
</tr>
<tr>
<td>Stress concentration with circular hole, 258</td>
</tr>
<tr>
<td>Elliptical hole, 257</td>
</tr>
<tr>
<td>Two circular holes, 260</td>
</tr>
<tr>
<td>Stress concentration with axial loads on cylinders, 266</td>
</tr>
<tr>
<td>Flats with a fillet, 263</td>
</tr>
<tr>
<td>Flats with circular hole, 258</td>
</tr>
<tr>
<td>Flats with notch, 265</td>
</tr>
<tr>
<td>Stresses in screws, 277</td>
</tr>
<tr>
<td>in power screws, 600</td>
</tr>
<tr>
<td>due to impact, 143</td>
</tr>
<tr>
<td>in springs, 805</td>
</tr>
<tr>
<td>in threaded joints, 489</td>
</tr>
<tr>
<td>Stud and nut, 489</td>
</tr>
<tr>
<td>Surface finish factor, 295</td>
</tr>
<tr>
<td>Surface finish symbols, 440</td>
</tr>
<tr>
<td>Surface finishing processes, 105</td>
</tr>
<tr>
<td>Surge in springs, 824</td>
</tr>
<tr>
<td>Systems of fits, 70</td>
</tr>
<tr>
<td>Hole basis, 70</td>
</tr>
<tr>
<td>Shaft basis, 70</td>
</tr>
<tr>
<td>Tee joint, 438</td>
</tr>
<tr>
<td>Temperature factor, 296</td>
</tr>
<tr>
<td>Tempering, 104</td>
</tr>
<tr>
<td>Tensile load, 119</td>
</tr>
<tr>
<td>Tensile strain – Linear / Lateral, 119</td>
</tr>
</tbody>
</table>
Index

Tensile stress, 119
Tension spring, 804
Theories of failure, 233
 Maximum principal strain, 233
 Maximum principal stress, 244
 Maximum shear stress, 234
Thermal stresses, 140
Thermite welding, 437
Thermoplastics, 43
Thermosetting plastics, 43
Thick-walled vessels, 149
Thin wall, 148
Threads
 Hand of helix, 473
 Helix angle, 473
 Thread designation, 477
 Threaded joint
 Advantages/Disadvantages, 472
Thread profiles, 475
 B.S.W., 475
 Buttress, 476
 Knuckle, 476
 Square, 475
 Vee, 475
Threads per inch, 474
Three dimensional stresses, 230
Throat size, 449
Toggle jack design, 630
Tin, 41
Tolerances, 56
 Manufacturing processes, 59
Torsion bar, 798
Torsion in thin sections, 205
Torsion spring, 805
Torsion with axial load, 219
Torsional rigidity, 677
Torsional shear due to friction, 601
Torsional shear stresses, 198
Transition fit, 72
Transverse fillet weld, 450
Triple start thread, 474
Turnbuckle design, 495
Two dimensional stresses, 338
 Varying loads, 341
Types of threaded joints, 488
 Cap bolt, 488
 Stud and nut, 488
 Through bolt and nut, 488
Units, 5
Universal coupling, 750
 Construction, 751
Unsymmetrical axial welds, 459
Variable loading, 286
 Design procedure for springs, 832
 Torsional, 325
Von-Mises stresses in transverse fillet welds, 453
Wahl correction factor, 807
Weld in bending, 461
Weld size, 442
Welded joints, 435
 All around, 581
 In torsion, 461
 Parallel and transverse fillet, 457
 Parallel fillet, 454
 Transverse fillet, 450
 Versus castings, 436
 Versus riveted joint, 435
Weld Symbols, 439
 Contour symbols, 440
 Additional symbols, 440
 Groove symbols, 439
Welding symbol, 439
White metal, 42
Woodruff key, 698
Wrought iron, 24
Young's modulus of elasticity, 123
Zinc alloys, 41