Fundamentals of Machine Design
Volume I

Machine design is a part of Engineering Design. Fundamentals of Machine Design is compiled in two volumes. Vol. I provides extensive coverage and comprehensive discussion on the fundamental concepts and processes of machine design. Unit 1 of this volume starts by giving a background to the subject and then discusses the types of materials, their properties and their selection criteria for designing. Unit 2 covers different types of stresses including direct stress, bending stress, torsional stress and combined stress in detail. Unit 3 covers different types of temporary and permanent joints including pin joint, cotter joint, threaded joint, riveted joint and welded joint. The final unit covers the design procedure for keys, cottsers, couplings, shafts, levers and springs in detail. It discusses applications of different types of joints used in boilers, bridges, power presses, automobile springs, screw jacks and couplings.

The chapters in the book are rich in pedagogical features like outcomes in beginning of a chapter summary at its end, many solved examples, review questions, multiple choice questions, design problems and questions of previous competition examinations are also provided. This textbook is primarily meant for undergraduate students of mechanical engineering for an introductory course on machine design. Design engineers will also find it useful. It is accompanied with teaching resources including a solutions manual for instructors.

Ajeet Singh was Professor and retired as Head at the Department of Mechanical Engineering, from Motilal Nehru National Institute of Technology (MNNIT), Allahabad. In addition to teaching, he worked in many administrative positions like Dean Academic, Dean Research and Consultancy etc. He has about three decades of teaching experience at undergraduate, graduate and doctoral level in India and 15 years abroad. He taught courses in machine drawing, machine design, internal combustion engines, tribology, computer aided design and engineering processes. He has been consultant to industries like BHEL, TEW etc. Besides publishing several papers in national and international journals, he has published three textbooks: Working with AutoCAD 2000 with updates to AutoCAD 2000i (2002), Machine Drawing: Includes AutoCAD 2005 (2005) and Machine Drawing: Includes AutoCAD 2010 (2012).
Fundamentals of Machine Design

Volume I

Ajeet Singh
Dedicated to my wife Mrs Kanwaljeet

Daughters Preety, Dileet and Maneet

and our grand children

Gaganjit, Karanjit, Ananya, Neha, Tanvi and Simar
Contents

Preface
xxiii

Acknowledgment
xxvii

Unit 1 - Concepts of Design

1. **Introduction to Machine Design**
 1.1 Introduction
 1.2 Stages in Design
 1.3 Design Considerations
 1.4 Types of Design
 1.5 Units
 1.6 Standardization
 1.6.1 Objectives of standardization
 1.6.2 Advantages of standardization
 1.7 Use of Standards in Design
 1.8 Standard Mechanical Component Designations
 1.9 Preferred Numbers

2. **Engineering Materials**
 2.1 Introduction
 2.2 Material Properties
 2.3 Classification of Engineering Materials
 2.4 Ferrous Metals
Contents

2.5 Wrought Iron 24
2.6 Carbon Steels 24
 2.6.1 Bureau of Indian Standards designation of steels 24
 2.6.2 Applications of steels 26
 2.6.3 Selecting a steel 28
2.7 Cast Iron 28
 2.7.1 Code designation for ferrous castings 29
 2.7.2 Types of cast iron 30
 2.7.3 Applications of cast iron 31
 2.7.4 Effects of impurities on properties of cast iron 32
2.8 Alloy Steels 32
 2.8.1 Alloy steels designation 32
 2.8.2 Properties of alloy steels 33
 2.8.3 Applications of alloy steel 34
 2.8.4 Guidelines for selecting alloy steel 35
2.9 Stainless Steels 35
2.10 Steels for High Temperatures 36
2.11 High Speed Steels 36
2.12 Spring Steels 37
2.13 Non-Ferrous Metals 37
2.14 Aluminum and its Alloys 38
 2.14.1 Aluminum designation 38
 2.14.2 Applications of aluminum alloys 38
 2.14.3 Mechanical properties of aluminum alloys 39
2.15 Copper and its Alloys 40
2.16 Tin 41
2.17 Zinc Alloys 41
2.18 Nickel Alloys 41
2.19 Bearing Materials 42
2.20 Lead 42
2.21 Non Metals 43
2.22 Elastomers (Rubber) 44
2.23 Wood 44
2.24 Selecting a Material 45

3. Limits, Tolerances and Fits

3.1 Introduction 55
3.2 Terminology 55
3.3 International Tolerance Grade (IT Grade) 57
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4 Tolerances and Manufacturing Processes</td>
<td>59</td>
</tr>
<tr>
<td>3.5 Fundamental Tolerances</td>
<td>60</td>
</tr>
<tr>
<td>3.5.1 Letter symbol for holes</td>
<td>60</td>
</tr>
<tr>
<td>3.5.2 Letter symbol for shafts</td>
<td>61</td>
</tr>
<tr>
<td>3.6 Indication of Tolerance on a Drawing</td>
<td>67</td>
</tr>
<tr>
<td>3.7 Fits</td>
<td>70</td>
</tr>
<tr>
<td>3.8 Systems of Fits</td>
<td>70</td>
</tr>
<tr>
<td>3.8.1 Hole basis</td>
<td>70</td>
</tr>
<tr>
<td>3.8.2 Shaft basis</td>
<td>70</td>
</tr>
<tr>
<td>3.9 Specifying a Fit</td>
<td>71</td>
</tr>
<tr>
<td>3.10 Types of Fits</td>
<td>71</td>
</tr>
<tr>
<td>3.11 Selection of Fits</td>
<td>72</td>
</tr>
<tr>
<td>3.12 Interchangeability</td>
<td>74</td>
</tr>
</tbody>
</table>

4. Manufacturing Aspects in Design

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Manufacturing Processes</td>
<td>83</td>
</tr>
<tr>
<td>4.3 Selection of Processes</td>
<td>83</td>
</tr>
<tr>
<td>4.4 Shaping Processes</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1 Sand casting</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2 Design considerations in sand castings</td>
<td>87</td>
</tr>
<tr>
<td>4.4.3 Factors controlling casting tolerances</td>
<td>90</td>
</tr>
<tr>
<td>4.4.4 Die casting</td>
<td>91</td>
</tr>
<tr>
<td>4.5 Forging Processes</td>
<td>92</td>
</tr>
<tr>
<td>4.5.1 Hot and cold forging</td>
<td>93</td>
</tr>
<tr>
<td>4.5.2 Forging in dies</td>
<td>93</td>
</tr>
<tr>
<td>4.5.3 Rolling</td>
<td>94</td>
</tr>
<tr>
<td>4.5.4 Drawing</td>
<td>94</td>
</tr>
<tr>
<td>4.5.5 Extrusion</td>
<td>94</td>
</tr>
<tr>
<td>4.5.6 Design aspects in forging</td>
<td>94</td>
</tr>
<tr>
<td>4.6 Joining Processes</td>
<td>98</td>
</tr>
<tr>
<td>4.6.1 Design considerations for welded parts</td>
<td>99</td>
</tr>
<tr>
<td>4.7 Material Removal Processes</td>
<td>100</td>
</tr>
<tr>
<td>4.7.1 Design considerations in machining</td>
<td>101</td>
</tr>
<tr>
<td>4.8 Jigs</td>
<td>102</td>
</tr>
<tr>
<td>4.9 Fixtures</td>
<td>102</td>
</tr>
<tr>
<td>4.10 Chemical Processes</td>
<td>103</td>
</tr>
<tr>
<td>4.11 Computerized Machines</td>
<td>103</td>
</tr>
<tr>
<td>4.11.1 CNC machines</td>
<td>103</td>
</tr>
<tr>
<td>4.11.2 Rapid prototyping</td>
<td>104</td>
</tr>
</tbody>
</table>
Contents

4.12 Heat Treatment Processes 104
4.13 Surface Finishing Processes 105
4.14 Design for Assembly 106
 4.14.1 Approaches to design for assembly 107
 4.14.2 Assembly methods 107
 4.14.3 Cost of design for assembly 108
 4.14.4 Guidelines for design for assembly 109

Unit 2– Designing for Strength

5. Simple Stresses

- 5.1 Introduction to Design 117
- 5.2 Types of Loads 118
- 5.3 Tensile Stress 119
- 5.4 Strength and Stiffness 119
- 5.5 Tensile Strain – Linear / Lateral 119
- 5.6 Stress - Strain Curve 120
- 5.7 Factor of Safety 121
 - 5.7.1 Factor of ignorance 121
- 5.8 Poisson’s Ratio 122
- 5.9 Young’s Modulus of Elasticity 123
- 5.10 Compressive Stresses 127
- 5.11 Compressive Stresses in Long Columns 129
 - 5.11.1 Euler’s formula 129
 - 5.11.2 Rankine’s formula 130
- 5.12 Bearing Stresses 133
- 5.13 Shear Stresses 134
- 5.14 Shear Strain 138
- 5.15 Shear Modulus of Rigidity 138
- 5.16 Bulk Modulus 139
- 5.17 Resilience 139
- 5.18 Thermal Stresses 140
- 5.19 Stresses due to Impact 143
- 5.20 Hertz Stresses 146
 - 5.20.1 Sphere to sphere contact 146
 - 5.20.2 Cylinder to cylinder contact 147
- 5.21 Hoop Stress 148
 - 5.21.1 Thin wall 148
 - 5.21.2 Thick-walled vessels 149
6. Bending Stresses

6.1 Bending Stresses
6.2 Flexural Strength
6.3 Bending Moment
6.4 Moment of Area
6.5 Beam Supports
6.6 Shear Stress in Beams
 6.6.1 Shear force diagram
6.7 Bending Moment Diagram
6.8 Deflection of Beams
6.9 Eccentric Loading
6.10 Curved Beams
6.11 Neutral and Central Axis
6.12 Analysis of Curved Beam
6.13 C - Clamp
6.14 Machine Frame

7. Torsional Stresses

7.1 Torsional Shear Stresses
7.2 Design for Rigidity
7.3 Design of a Hollow Shaft
7.4 Torsion of Non-Circular Shafts
7.5 Torsion in Thin Sections
 7.5.1 Closed thin sections
 7.5.2 Open thin sections

8. Combined Stresses

8.1 Introduction to Combined Stresses
8.2 Bending with Axial Load
8.3 Principal Stresses
8.4 Torsion with Axial Load
8.5 Bending with Torsion
8.6 Torsion and Bending Combined with Axial Load
8.7 Mohr’s Circle
 8.7.1 Two-dimensional stresses
 8.7.2 One-dimensional stress
 8.7.3 Three-dimensional stresses
Contents

8.8 Theories of Failure
- 8.8.1 Maximum principal strain theory 233
- 8.8.2 Maximum shear stress theory 234
- 8.8.3 Maximum strain energy theory 236
- 8.8.4 Maximum distortion energy theory 237
- 8.8.5 Maximum principal stress theory 244

8.9 Summary of Failure Theories 247

9. Stress Concentration

- 9.1 Introduction 255
- 9.2 Stress Concentration Areas 255
- 9.3 Parameters Causing Stress Concentration 256
- 9.4 Stress Concentration Factor 256
- 9.5 Localized Stress Concentration with an Elliptical Hole 257
- 9.6 Stress Concentration with a Circular Hole 258
- 9.7 Axial Loads on Flats with Holes 258
 - 9.7.1 Axial loads on flats with circular holes 258
 - 9.7.2 Axial load with two circular holes 260
- 9.8 Axial Loads on Flats with a Fillet 263
- 9.9 Axial Loads on Flats with a Notch 265
- 9.10 Axial Loads on Cylinders 266
 - 9.10.1 Cylinder with a fillet or a shoulder 266
 - 9.10.2 Cylinder with a notch 267
- 9.11 Stress Concentration in Bending 268
- 9.12 Cylinder with a Notch 272
- 9.13 Stress Concentration in Torsion 274
- 9.14 Stress Concentration due to Keyway in a Shaft 276
- 9.15 Stress Concentration in Screw Threads 277
- 9.16 Stress Concentration in Gears 277
- 9.17 Methods of Reducing Stress Concentration 277
- 9.18 Actual Stress Concentration 278
- 9.19 Notch Sensitivity 278
 - 9.19.1 Notch factor 280

10. Endurance Strength

- 10.1 Variable Loads 286
- 10.2 Endurance Strength 287
- 10.3 Fatigue Strength Testing 288
- 10.4 S-N Curve 288
Contents

10.5 Endurance Limit for Reversed Stresses 289
10.6 Number of Cycles and Fatigue Strength 290
10.7 Endurance Strength for Given Number of Cycles 292
10.8 Endurance Strength Modifying Factors 294
 10.8.1 Load factor (K_{load}) 294
 10.8.2 Size factor (K_{size}) 294
 10.8.3 Reliability factor (K_{rel}) 295
 10.8.4 Surface finish factor (K_{surf}) 295
 10.8.5 Temperature factor (K_{temp}) 296
 10.8.6 Notch factor (K_{notch}) 297
 10.8.7 Miscellaneous factor (K_{m}) 297
10.9 Approximate Endurance Strength 297
10.10 Cumulative Design 302

11. Fluctuating Stresses

11.1 Designing for Fluctuating Loads 312
11.2 Safe and Unsafe Zones 313
 11.2.1 Soderberg line 314
 11.2.2 Goodman line 314
 11.2.3 Modified Goodman line 314
 11.2.4 Gerber parabola 315
 11.2.5 ASME elliptical curve 316
11.3 Axial Fluctuating Loads 316
11.4 Bending Fluctuating Loads 321
11.5 Modified Goodman Line for Torsional Shear Stresses 324
11.6 Torsional Varying Loads 325
11.7 Axial and Bending Fluctuating Loads 328
11.8 Torsional and Axial Fluctuating Loads 333
11.9 Torsional and Bending Fluctuating Loads 335
11.10 Fatigue Design under Combined Loads 338
11.11 Two Dimensional Varying Loads 341

Unit 3 - Joints

12. Cotter Joints

12.1 Cotter Joint 352
12.2 Types of Cotter Joints 352
12.3 Cotter 353
Contents

12.4 Sleeve and Cotter Joint 353
12.5 Design Procedure of Sleeve and Cotter Joint 354
12.6 Socket and Spigot Joint 359
12.7 Design Procedure for Socket and Spigot Joint 360
12.8 Gib and Cotter Joint 369
12.9 Design of a Gib and Cotter Joint 370

13. Pin Joints

13.1 Introduction to Pin Joints 378
13.2 Knuckle Joint 378
13.3 Design Procedure for a Knuckle Joint 378

14. Riveted joints

14.1 Introduction 391
14.2 Rivets 391
14.3 Making a Riveted Joint 392
14.4 Rivet Materials 393
14.5 Rivet Heads 393
14.6 Classification of Riveted Joints 394
 14.6.1 According to arrangement of plates 394
 14.6.2 According to number of rows of rivets (Single / Double / Triple) 395
 14.6.3 According to number of cover plates (Single / Double-Equal / Unequal) 396
 14.6.4 According to arrangement of rivets (Chain / Zigzag) 396
14.7 Failures of a Riveted Joint and Strength 397
 14.7.1 Failure of rivets 397
 14.7.2 Failure of plates 398
14.8 Joint Efficiency 400
14.9 Design of Riveted Joints 401
 14.9.1 Selection of rivet size 401
 14.9.2 Rivet hole size 401
 14.9.3 Rivet length 402
 14.9.4 Joint proportions 402
 14.9.5 Thickness of cover plates 402
 14.9.6 Width of cover plates 403
 14.9.7 Calculate strength in different modes of failure 403
 14.9.8 Calculate joint efficiency 404
14.10 Diamond Riveting 409
 14.10.1 Design procedure for diamond riveted joint 410
Welded Joints

15. Introduction

15.1 Introduction

15.2 Welded versus Riveted Joint

15.3 Welded Joints versus Castings

15.4 Types of Welding Processes

15.4.1 Arc welding

15.4.2 Gas welding

15.4.3 Thermit welding

15.4.4 Pressure welding

15.5 Types of Welded Joints

15.6 Edge Preparation

15.7 Weld Symbols

15.7.1 Groove symbols

15.7.2 Contour symbols

15.7.3 Surface finish symbols

15.7.4 Additional welding symbols

15.8 Specifying a Welded Joint

15.8.1 Arrow line

15.8.2 Reference line

15.8.3 Weld size (a)

15.8.4 Welding symbol

15.8.5 Length of weld

15.8.6 Blank length

15.9 Spot Welds

15.10 Seam Welds

15.11 Plug Welds

15.12 Strength of a Butt Weld

15.13 Fillet Welds

15.14 Throat Size

15.15 Transverse Fillet Weld

15.16 Maximum Shear Stresses in Transverse Fillet Welds

15.17 Von-Mises Stresses in Transverse Fillet Welds

15.18 Parallel Fillet Weld (Axial Loading)

15.19 Maximum Shear Stresses in Parallel Fillet Welds
Contents

15.20 Combination of Transverse and Parallel Fillet Weld 457
15.21 Stress Concentration in Welds 458
15.22 Asymmetrical Parallel Welds 459
15.23 Welds in Bending 461
15.24 Welds in Torsion 461
15.24.1 Torsion of circular fillet 461

16. Bolted joints

16.1 Introduction 472
16.2 Advantages / Disadvantages of Threaded Joints 472
16.3 Terminology 473
16.4 Classification of Threads 474
16.5 Thread Profile 475
16.5.1 Metric threads 475
16.5.2 British standard Whitworth threads 475
16.5.3 Square threads 475
16.5.4 Acme threads 476
16.5.5 Buttress threads 476
16.5.6 Knuckle threads 476
16.6 Pitch of Threads 476
16.7 Thread Designation 477
16.8 Specifications of Threads 478
16.9 Bolts and Nuts 479
16.10 Bolt Materials 480
16.11 Bolt Manufacturing 481
16.12 Locking Devices 481
16.12.1 Lock nut 482
16.12.2 Locking with pin 482
16.12.3 Slotted nut 483
16.12.4 Castle nut 483
16.12.5 Sawn nut 483
16.12.6 Ring and groove nut 484
16.12.7 External locking devices 484
16.13 Screws 485
16.13.1 Bolt versus screws 485
16.13.2 Types of screws 485
16.14 Types of Threaded Joints 488
16.15 Stresses in Threaded Joints 489
16.15.1 Initial stresses 489
16.15.2 Stresses due to external forces 492
Contents

16.16 Design of Nut 494
16.17 Design of Turnbuckle 495
 16.17.1 Design procedure for turnbuckle 497
16.18 Bolts of Uniform Strength 500
16.19 Design of Cylinder Cover Joint 501
16.20 Stiffness of Threaded Joints 505
 16.20.1 Stiffness of bolt 506
 16.20.2 Stiffness of components 508
16.21 Load Sharing by bolt and Components 510
16.22 Loads while Tightening Nut 512
16.23 Maximum Load on a Bolt 512
16.24 Gaskets in Threaded Joint 514
 16.24.1 Soft gasket 515
 16.24.2 Hard gasket 515
16.25 Variable Loading 518
16.26 Design Procedure for Variable Loading 521

17. Eccentric Loading of Joints
 17.1 Eccentric Loading 540
 17.2 Eccentrically Loaded Riveted Joints 541
 17.2.1 Eccentricity in plane of rivets 541
 17.3 Inclined Load 552
 17.4 Load Parallel and Offset to Plane of Fasteners 555
 17.5 Eccentrically Loaded Bolted Joints 555
 17.5.1 Eccentric load in plane of bolts 555
 17.5.2 Eccentric load parallel to plane of bolts 557
 17.5.3 Eccentric load with rectangular base 557
 17.5.4 Eccentric load parallel to circular base 561
 17.6 Eccentrically Loaded Welds 570
 17.6.1 Eccentric load in plane of welds 570
 17.6.2 Eccentric load parallel and offset to plane of welds 576
 17.6.3 Welding all around 581

Unit 4 – Design of Machine Elements

18. Power screws
 18.1 Introduction 591
 18.2 Types of Power Screws 592
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>Torque for Raising Load</td>
<td>593</td>
</tr>
<tr>
<td>18.4</td>
<td>Torque for Lowering Load</td>
<td>595</td>
</tr>
<tr>
<td>18.5</td>
<td>Efficiency of Square Threads</td>
<td>595</td>
</tr>
<tr>
<td>18.6</td>
<td>Maximum Efficiency of Square Threads</td>
<td>597</td>
</tr>
<tr>
<td>18.7</td>
<td>Torque for Raising Load using Acme Threads</td>
<td>597</td>
</tr>
<tr>
<td>18.8</td>
<td>Self Locking Screws</td>
<td>598</td>
</tr>
<tr>
<td>18.9</td>
<td>Screw and Nut Materials</td>
<td>599</td>
</tr>
<tr>
<td>18.10</td>
<td>Coefficient of Friction</td>
<td>600</td>
</tr>
<tr>
<td>18.11</td>
<td>Stresses in Power Screws</td>
<td>600</td>
</tr>
<tr>
<td>18.11.1</td>
<td>Direct axial compressive stress</td>
<td>600</td>
</tr>
<tr>
<td>18.11.2</td>
<td>Shear stress at the root of the threads</td>
<td>601</td>
</tr>
<tr>
<td>18.11.3</td>
<td>Torsional shear due to friction</td>
<td>601</td>
</tr>
<tr>
<td>18.11.4</td>
<td>Bearing pressures</td>
<td>602</td>
</tr>
<tr>
<td>18.12</td>
<td>Design of Thrust Collar</td>
<td>602</td>
</tr>
<tr>
<td>18.13</td>
<td>Lead Screw</td>
<td>605</td>
</tr>
<tr>
<td>18.14</td>
<td>Screw Jack</td>
<td>606</td>
</tr>
<tr>
<td>18.14.1</td>
<td>Construction and working of screw jack</td>
<td>606</td>
</tr>
<tr>
<td>18.14.2</td>
<td>Stresses in screw</td>
<td>607</td>
</tr>
<tr>
<td>18.15</td>
<td>Design of Screw Jack</td>
<td>608</td>
</tr>
<tr>
<td>18.15.1</td>
<td>Design of screw</td>
<td>608</td>
</tr>
<tr>
<td>18.15.2</td>
<td>Design of nut</td>
<td>611</td>
</tr>
<tr>
<td>18.15.3</td>
<td>Design of cup</td>
<td>611</td>
</tr>
<tr>
<td>18.15.4</td>
<td>Design of body</td>
<td>612</td>
</tr>
<tr>
<td>18.16</td>
<td>Hand Press</td>
<td>617</td>
</tr>
<tr>
<td>18.17</td>
<td>Screw of a Vice</td>
<td>621</td>
</tr>
<tr>
<td>18.18</td>
<td>Screw of Pipe Vice</td>
<td>623</td>
</tr>
<tr>
<td>18.19</td>
<td>Screw of a Broaching Machine</td>
<td>625</td>
</tr>
<tr>
<td>18.20</td>
<td>Differential Screw</td>
<td>628</td>
</tr>
<tr>
<td>18.21</td>
<td>Compound Screw</td>
<td>629</td>
</tr>
<tr>
<td>18.22</td>
<td>Design of Toggle Jack</td>
<td>630</td>
</tr>
<tr>
<td>19</td>
<td>Shafts and Keys</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>644</td>
</tr>
<tr>
<td>19.2</td>
<td>Types of Shafts</td>
<td>645</td>
</tr>
<tr>
<td>19.3</td>
<td>Shaft Manufacturing</td>
<td>645</td>
</tr>
<tr>
<td>19.4</td>
<td>Shaft Materials</td>
<td>645</td>
</tr>
<tr>
<td>19.5</td>
<td>Standard Rod / Shaft Sizes</td>
<td>646</td>
</tr>
<tr>
<td>19.6</td>
<td>Shaft Design on Strength Basis</td>
<td>646</td>
</tr>
<tr>
<td>19.7</td>
<td>Shaft Design for Torsion Basis</td>
<td>647</td>
</tr>
</tbody>
</table>
19. Shaft Design for Bending
- 19.8 Shaft Design for Bending: 649
- 19.9 Shaft Design for Combined Torsion and Bending: 650
- 19.10 Power Transmission using Pulley and Belt: 654
- 19.11 Power Transmission through Gears: 657
- 19.12 Long Shafts: 664
- 19.13 Axial Load Combined with Torsion and Bending: 665
- 19.14 Shaft Design with Varying Loads: 673

19.15 Shaft Design for Rigidity
- 19.15.1 Torsional rigidity: 677
- 19.15.2 Lateral rigidity: 678

19.16 Stepped Shafts
- 19.16.1 Shafts in series: 679
- 19.16.2 Shafts in parallel: 680

19.17 Critical Speeds for Shafts: 682

19.18 Keys
- 19.18.1 Key materials and allowable stresses: 685

19.19 Keyways: 686

19.20 Types of Keys: 686
- 19.21 Saddle Keys: 686

19.22 Taper Sunk Keys (IS 2048 - 1983): 687

19.23 Parallel Sunk Keys (IS 2048 - 1975): 688

19.24 Design of Sunk Keys: 689

19.25 Round Keys: 694

19.26 Tangent Keys (IS 2291): 696

19.27 Woodruff Key (IS 2294): 698

19.28 Set Screws: 701

19.29 Splines: 701

20. Couplings
- 20.1 Couplings: 720

20.2 Types of Couplings: 721

20.3 Rigid Flange Couplings
- 20.3.1 Marine coupling: 721
- 20.3.2 Muff coupling: 724
- 20.3.3 Split muff coupling: 727
- 20.3.4 Half lap muff coupling: 730
- 20.3.5 Rigid flange coupling: 730
- 20.3.6 Protected flange coupling: 736

20.4 Flexible Couplings: 739
Contents

20.5 Oldham Coupling 746
 20.5.1 Design of Oldham coupling 747
20.6 Universal Coupling 750
 20.6.1 Construction of universal coupling 751
 20.6.2 Joint proportions 752
 20.6.3 Designing for strength 753

21. Levers

21.1 Introduction 763
21.2 Uses of Levers 763
21.3 Types of Levers 764
21.4 Design of a Lever 765
21.5 Design of a Hand Lever 766
21.6 Foot Lever 768
21.7 Cranking Lever 771
21.8 Safety Valve Lever 775
21.9 Bell Crank Lever 778
21.10 Cross Lever 782
21.11 Rocker Arm 783
21.12 Compound Lever 785

22. Helical Springs

22.1 Introduction 797
22.2 Classification of Springs 798
22.3 Helical Spring Terminology 799
22.4 Materials 800
22.5 Helical Springs 803
 22.5.1 Compression spring 803
 22.5.2 Tension spring 804
 22.5.3 Torsion spring 805
 22.5.4 Spiral spring 805
22.6 Conventional and Symbolic Representation of Springs 805
22.7 Stresses in Springs 805
22.8 Deflection and Number of Turns 808
22.9 Buckling of Spring 809
22.10 Design Force and Operating Force 810
22.11 Selection of Spring Index 810
22.12 Design Procedure for Helical Spring 810
22.13 Spring of a Safety Valve 814
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.14 Spring of an Internal Combustion Engine</td>
<td>815</td>
</tr>
<tr>
<td>22.15 Springs of Non-Circular Cross-Section</td>
<td>816</td>
</tr>
<tr>
<td>22.16 Spring of a Spring Balance</td>
<td>819</td>
</tr>
<tr>
<td>22.17 Spring Design for Impact Load</td>
<td>820</td>
</tr>
<tr>
<td>22.18 Spring for a Clutch</td>
<td>821</td>
</tr>
<tr>
<td>22.19 Natural Frequency of Helical Springs</td>
<td>822</td>
</tr>
<tr>
<td>22.20 Surge in Springs</td>
<td>824</td>
</tr>
<tr>
<td>22.21 Multiple Springs</td>
<td>824</td>
</tr>
<tr>
<td>22.22 Concentric or Composite Springs</td>
<td>827</td>
</tr>
<tr>
<td>22.23 Design of Spring with Varying Loads</td>
<td>832</td>
</tr>
<tr>
<td>22.24 Design of Helical Extension Springs</td>
<td>838</td>
</tr>
<tr>
<td>22.25 Helical Torsion Springs</td>
<td>841</td>
</tr>
<tr>
<td>22.26 Spiral Spring</td>
<td>844</td>
</tr>
<tr>
<td>22.27 Belleville Spring</td>
<td>846</td>
</tr>
<tr>
<td>23. Leaf Springs</td>
<td></td>
</tr>
<tr>
<td>23.1 Introduction</td>
<td>862</td>
</tr>
<tr>
<td>23.2 Spring Materials</td>
<td>863</td>
</tr>
<tr>
<td>23.3 Sizes of Spring Components</td>
<td>864</td>
</tr>
<tr>
<td>23.4 Shapes of Leaf Springs</td>
<td>864</td>
</tr>
<tr>
<td>23.5 Analysis of Leaf Spring</td>
<td>865</td>
</tr>
<tr>
<td>23.6 Graduated Leaves</td>
<td>866</td>
</tr>
<tr>
<td>23.7 Nipping</td>
<td>869</td>
</tr>
<tr>
<td>23.8 Length of Leaves</td>
<td>870</td>
</tr>
<tr>
<td>23.9 Energy Stored in a Spring</td>
<td>871</td>
</tr>
<tr>
<td>23.10 Design Procedure</td>
<td>871</td>
</tr>
</tbody>
</table>

Appendix 1 889

Appendix 2 890

Appendix 3 893

References 897

Index 899
Subject of Machine Design is a combination of engineering and art. The engineering part is important for the functional working of a machine, so that all the machine elements when assembled as a machine, work properly e.g. as an automobile, sewing machine, a lathe etc. The engineering may also include ergonomics, to cause minimum fatigue, if the machine has to be handled by human beings for a long time. The art part is adding aesthetic for appealing shapes, selecting suitable colors etc. which attract the customers.

Fundamentals of machine design considers the concepts of design for each element separately like for a shaft, bearing, pulley etc. Loads on a part/component are assessed, checked for the stresses, whether it is within the safe strength of the selected material. Deflection also should not be beyond a certain limit. The subject should not be confused with strength of materials as the designer has to selecting a suitable material and consider the production aspects also.

Course content is limited to topics, included in the syllabi of the universities and colleges. The subject is so wide that it is covered in two semesters, for mechanical engineering students in most of the universities. Hence the book is also divided in two volumes.

English language used in this book is direct and simple, so that an average student can understand easily. The sequence of the chapters is arranged in such a way that the concepts described in earlier chapters become useful for subsequent chapters.

Symbols used for mathematical derivations have been so assigned, that they are easy to remember. There is no list of symbols in the beginning of the book, they are defined wherever they have been used in the text.

Volume - I is for the first course on Machine Design, covering first semester topics offered by most colleges. The main objective of this volume is to provide rules for the design of general-purpose machine elements. This volume has four units.

Unit 1 of the book is on fundamentals and has four chapters. The first chapter introduces basic fundamentals and types of machine design. Chapter 2 is on the selection of engineering materials, which will be useful for every part to be designed. Although manufacturing a part
is the job of a production engineer, however a designer should know the advantages and disadvantages of the different manufacturing processes. Hence a brief summary of various manufacturing processes, limits and tolerances, and surface finish are described in chapters 3 and 4. The tolerances and other production need to be specified on the working drawings, to be sent to shop floor.

Unit 2 is on design for strength and has seven chapters. This unit is the backbone of the concepts of the subject, as the theory described here is applicable to the design of any machine member. Different types of stresses, like direct, bending, torsion are described in chapters 5, 6 and 7. Chapters 8 to 11 describe principal stresses, stress concentration, fatigue failure and endurance strength for fluctuating loads.

Unit 3 is on design of joints, which is covered in six chapters. Chapter 12 is on cotter joints chapter 13 on pin joints, chapter 14 on riveted joints, chapter 15 on welded joints, chapter 16 on bolted joints and lastly chapter 17 on eccentric loading, which happens to any joint like rivet, weld or bolted.

Unit 4 describes design of simple machine elements in six chapters. Chapter 18 is on power screws, chapter 19 on shafts and keys, chapter 20 on couplings, chapter 21 on levers, chapter 22 on helical springs and the last chapter 20 on leaf springs.

Pedagogy features of the book are excellent. Before starting a chapter, an outcome given in the beginning, gives an idea as to what a student is going to learn in that chapter. Each chapter is followed by theory questions, multiple choice questions, design problems. An effort has been made to explain theory with 490 figures. To make the book further illustrative, license free 68 pictures are pasted from the Internet and referenced in the text, wherever necessary. Students face a lot of difficulty in solving design problems, hence 238 solved examples and 226 unsolved design problem are given. Solution to the unsolved examples will be put in solution manual on the internet in due course of time. To practice for small quiz type questions, 270 multiple choice questions have been given.

Summary is given at the end of each chapter for quick revision of the course and formulas at the time of examination.

Competition examinations questions of past 3-4 years from Engineering services examinations and GATE examinations are given at the end of chapter, to help students preparing for such examinations.

S.I. units have been used for mathematical calculations and design problems. Indian Standards and other standards have also been mentioned, wherever necessary.

Volume - 2 is for the second course of the same subject. This volume has twenty chapters in four units. Unit 1 covers mainly design of drives like belt, rope, chain and gears of various types, Unit 2 is on sleeve and rolling bearings. Unit 3 is on the design of I.C. engine parts and unit 4 covers miscellaneous parts like levers, clutches, brakes and pressure vessels.

After successful completion of the course, the student will be able to understand various aspects of the machine design process, and will be encouraged to seek opportunities for its satisfactory working. The mastering of the course is a pre-condition to a successful design.
Audience – This book can be easily recommended as a text book of the subject for undergraduate students. The book can also be used by practicing engineers, students appearing for competition examinations and for graduate admission tests.

Although every effort is made to minimize the errors, but a human being is likely to commit mistakes. Also, there is always a possibility of improving the book. Any errors, omissions or suggestions for the improvement of the book may please be written to the publisher or emailed to the author at ajeet41@yahoo.com.
Acknowledgements

Many books on the subject of machine design have been consulted and the author feels the need to thank the publishers and authors of these books. The author thanks Gauravjeet Singh Reen, commissioning editor at Cambridge University Press, who has been very helpful and prompt in interaction for any of my queries or doubts. I am thankful to the reviewers for giving encouraging remarks in their reviews and appreciating my effort in preparing the book. Thanks are due to the editorial and production staff of M/S Cambridge University Press, for their cooperation and help in the publication of the book. I wish to acknowledge my gratitude to Indian Standards Institution, for the extracts of some of standards used in this book. Lastly, I thank all my family members for their moral support in the preparation of the book.