Financial Econometrics Models and Methods

This is a thorough exploration of the models and methods of financial econometrics by one of the world's leading financial econometricians and is for students in economics, finance, statistics, mathematics, and engineering who are interested in financial applications.

Based on courses taught around the world, the up-to-date content covers developments in econometrics and finance over the past twenty years while ensuring a solid grounding in the fundamental principles of the field.

Care has been taken to link theory and application to provide real-world context for students, worked exercises and empirical examples have also been included to make sure complicated concepts are solidly explained and understood.

OLIVER LINTON is a fellow of Trinity College and is Professor of Political Economy at Cambridge University. Formerly, Professor of Econometrics at the London School of Economics and Professor of Economics at Yale University. He obtained his PhD in Economics from the University of California at Berkeley in 1991. He has written more than a hundred articles on econometrics, statistics, and empirical finance. In 2015 he was a recipient of the Humboldt Research Award of the Alexander von Humboldt Foundation. He has been a Co-editor at the Journal of Econometrics since 2014. He is a Fellow of: the Econometric Society, the Institute of Mathematical Statistics, the Society for Financial Econometrics, the British Academy, and the International Foundation of Applied Econometrics. He was a lead expert in the U.K. Government Office for Science Foresight project: "The future of Computer Trading in Financial Markets", which published in 2012. He has appeared as an expert witness for the FSA and the FCA in several cases involving market manipulation.

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Financial Econometrics Models and Methods

OLIVER LINTON University of Cambridge

© in this web service Cambridge University Press & Assessment

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316630334

DOI: 10.1017/9781316819302

© Oliver Linton 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2019

A catalogue record for this publication is available from the British Library

ISBN 978-1-107-17715-4 Hardback ISBN 978-1-316-63033-4 Paperback

Additional resources for this publication at www.cambridge.org/linton

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my wife, Jianghong Song.

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Short Contents

	List of Figures	page xv
	List of Tables	xix
	Preface	xxi
	Acknowledgments	XXV
	Notation and Conventions	XXVII
1	Introduction and Background	1
2	Econometric Background	55
3	Return Predictability and the Efficient Markets Hypothesis	75
4	Robust Tests and Tests of Nonlinear Predictability of Returns	134
5	Empirical Market Microstructure	152
6	Event Study Analysis	201
7	Portfolio Choice and Testing the Capital Asset Pricing Model	238
8	Multifactor Pricing Models	279
9	Present Value Relations	314
10	Intertemporal Equilibrium Pricing	337
11	Volatility	358
12	Continuous Time Processes	422
13	Yield Curve	463
14	Risk Management and Tail Estimation	476
15	Exercises and Complements	497
16	Appendix	524
	Bibliography Index	533 553

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Contents

	List	of Figures	<i>page</i> xv
	List	of Tables	xix
	Prej	face	xxi
	Ack	nowledgments	XXV
	Not	ation and Conventions	xxvii
1	Intr	oduction and Background	1
	1.1	Why Do We Have Financial Markets?	1
	1.2	Classification of Financial Markets	3
	1.3	Types of Markets and Trading	8
	1.4	Financial Returns	12
	1.5	Risk Aversion	27
	1.6	Mean Variance Portfolio Analysis	39
	1.7	Capital Asset Pricing Model	45
	1.8	Arbitrage Pricing Theory	49
	1.9	Appendix	53
2	Eco	nometric Background	55
	2.1	Linear Regression	55
	2.2	Time Series	61
3	Ret	urn Predictability and the Efficient Markets Hypothesis	75
	3.1	Efficient Markets Hypothesis	75
	3.2	The Random Walk Model for Prices	81
	3.3	Testing of Linear Weak Form Predictability	85
	3.4	Testing under More General Conditions than rw1	106
	3.5	Some Alternative Hypotheses	118
	3.6	Empirical Evidence regarding Linear Predictability based on	
		Variance Ratios	121
	3.7	Trading Strategy Based Evidence	124
	3.8	Regression Based Tests of Semi-Strong Form Predictability	129
	3.9	Summary of Chapter	132

х

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

> Contents Robust Tests and Tests of Nonlinear Predictability of Returns 4 134 4.1 **Robust Tests** 134 4.2 Nonlinear Predictability and Nonparametric Autoregression 146 4.3 Further Empirical Evidence on Semistrong and Strong Form EMH 148 4.4 Explanations for Predictability 150 4.5 Summary of Chapter 151 5 Empirical Market Microstructure 152 152 5.1 **Stale Prices** 5.2 Discrete Prices and Quantities 164 5.3 Bid, Ask, and Transaction Prices 168 5.4 What Determines the Bid–Ask Spread? 173 5.5 Strategic Trade Models 183 5.6 Electronic Markets 187 5.7 Summary of Chapter 196 5.8 Appendix 196 6 Event Study Analysis 201 201 Some Applications 6.1 6.2 Basic Structure of an Event Study 202 6.3 Regression Framework 218 6.4 Nonparametric and Robust Tests 221 6.5 Cross-sectional Regressions 222 6.6 Time Series Heteroskedasticity 223 6.7 Panel Regression for Estimating Treatment Effects 224 6.8 Matching Approach 228 6.9 Stock Splits 229 6.10 Summary of Chapter 237 6.11 Appendix 237 Portfolio Choice and Testing the Capital Asset Pricing Model 238 7 7.1 Portfolio Choice 238 7.2 Testing the Capital Asset Pricing Model 241 7.3 Maximum Likelihood Estimation and Testing 246 7.4 Cross-sectional Regression Tests 259 7.5 Portfolio Grouping 264 7.6 Time Varying Model 268 7.7 Empirical Evidence on the CAPM 270 Summary of Chapter 7.8 273 7.9 Appendix 274

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

xi	Conte	ents	
8	Mult	ifactor Pricing Models	279
	8.1	Linear Factor Model	279
	8.2	Diversification	280
	8.3	Pervasive Factors	286
	8.4	The Econometric Model	288
	8.5	Multivariate Tests of the Multibeta Pricing Model with	
		Observable Factors	290
	8.6	Which Factors to Use?	293
	8.7	Observable Characteristic Based Models	299
	8.8	Statistical Factor Models	300
	8.9	Testing the APT with Estimated Factors	312
	8.10	The MacKinlay Critique	312
	8.11	Summary of Chapter	312
	8.12	Appendix	312
9	Prese	ent Value Relations	314
	9.1	Fundamentals versus Bubbles	314
	9.2	Present Value Relations	316
	9.3	Rational Bubbles	319
	9.4	Econometric Bubble Detection	321
	9.5	Shiller Excess Volatility Tests	323
	9.6	An Approximate Model of Log Returns	326
	9.7	Predictive Regressions	329
	9.8	Summary of Chapter	335
	9.9	Appendix	336
10	Inter	temporal Equilibrium Pricing	337
	10.1	Dynamic Representative Agent Models	337
	10.2	The Stochastic Discount Factor	338
	10.3	The Consumption Capital Asset Pricing Model	339
	10.4	The Equity Premium Puzzle and the Risk Free Rate Puzzle	345
	10.5	Explanations for the Puzzles	346
	10.6	Other Asset Pricing Approaches	353
	10.7	Summary of Chapter	357
11	Vola	tility	358
	11 1	- Why is Valatility Important?	358
	11.1	Implied Volatility from Option Prices	250
	11.2	Intra Period Volatility	353
	11.5	Cross-sectional Volatility	370
	1 I I T	cross socional commity	570

371

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Y	п	н	
~	-		

Contents

	11.6	Discrete Time Series Models	374
	11.7	Engle's ARCH Model	377
	11.8	The GARCH Model	380
	11.9	Asymmetric Volatility Models and Other Specifications	389
	11.10	Mean and Variance Dynamics	392
	11.11	Estimation of Parameters	395
	11.12	Stochastic Volatility Models	402
	11.13	Long Memory	404
	11.14	Multivariate Models	407
	11.15	Nonparametric and Semiparametric Models	412
	11.16	Summary of Chapter	419
	11.17	Appendix	419
12	Conti	nuous Time Processes	422
12	Conti 12.1	nuous Time Processes Brownian Motion	422 422
12	Conti 12.1 12.2	nuous Time Processes Brownian Motion Stochastic Integrals	422 422 427
12	Conti 12.1 12.2 12.3	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes	422 422 427 428
12	Conti 12.1 12.2 12.3 12.4	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes Estimation of Diffusion Models	422 422 427 428 436
12	Conti 12.1 12.2 12.3 12.4 12.5	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes Estimation of Diffusion Models Estimation of Quadratic Variation Volatility from High	422 422 427 428 436
12	Conti 12.1 12.2 12.3 12.4 12.5	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes Estimation of Diffusion Models Estimation of Quadratic Variation Volatility from High Frequency Data	422 422 427 428 436 450
12	Conti 12.1 12.2 12.3 12.4 12.5 12.6	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes Estimation of Diffusion Models Estimation of Quadratic Variation Volatility from High Frequency Data Levy Processes	422 422 427 428 436 450 459
12	Conti 12.1 12.2 12.3 12.4 12.5 12.6 12.7	nuous Time Processes Brownian Motion Stochastic Integrals Diffusion Processes Estimation of Diffusion Models Estimation of Quadratic Variation Volatility from High Frequency Data Levy Processes Summary of Chapter	422 422 427 428 436 450 459 462

13	Yield	Curve	463
	13.1	Discount Function, Yield Curve, and Forward Rates	463
	13.2	Estimation of the Yield Curve from Coupon Bonds	464
	13.3	Discrete Time Models of Bond Pricing	469
	13.4	Arbitrage and Pricing Kernels	471

14	Risk I	Management and Tail Estimation
	14.1	Types of Risks
	14.2	Value at Risk
	14.3	Extreme Value Theory
	14.4	A Semiparametric Model of Tail Thickness
	14.5	Dynamic Models and VAR
	14.6	The Multivariate Case
	14.7	Coherent Risk Measures

14.9Black Swan Theory49414.10Summary of Chapter496

Summary of Chapter

Expected Shortfall

13.5

14.8

475

492 493

xiii

Contents

15 Exercises and Complements	497
------------------------------	-----

16	Арре	endix	524
	16.1	Common Abbreviations	524
	16.2	Two Inequalities	526
	16.3	Signal Extraction	527
	16.4	Lognormal Random Variables	528
	16.5	Data Sources	529
	16.6	A Short Introduction to Eviews	530
	Biblio	ography	533
	Index	x	553

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

List of Figures

1.1	Level of the S&P500 index	19
1.2	Daily return on the S&P500 daily index	23
1.3	Euro/dollar daily exchange rate	25
1.4	Return on the euro/dollar daily exchange rate	26
1.5	Daily Tbill Rates	26
1.6	Daily Federal Funds rate annualized	27
1.7	Price of West Texas Oil, monthly frequency	27
1.8	Daily return on West Texas Oil	28
3.1	Shows "Head and Shoulders" pattern in artificial dataset	79
3.2	Correlogram of S&P500 daily returns	92
3.3	Correlogram of S&P500 daily returns by decade	93
3.4	Correlogram of FTSE100 daily returns from 1984–2017	93
3.5	Correlogram of FTSE100 daily returns long horizon	94
3.6	ACF(1) of daily Dow stock returns against market capitalization	95
3.7	Average ACF of Dow stocks daily returns	97
3.8	Daily return on the Malaysian Ringgit	104
3.9	Variance ratio of S&P500 daily returns, 1950–2017	123
3.10	Variance ratio of FTSE100 daily returns, 1984–2017	123
3.11	ACF of the winner and loser stocks in sample	127
3.12	ACF of winner and loser stocks in and out of sample	128
3.13	ACF of the max versus max of the ACF	129
4.1	Cowles–Jones statistic with standard errors	139
4.2	Quantilogram of daily S&P500 returns	142
4.3	Fraction of positive returns on the stocks of the S&P500 index	143
4.4	The AD line on the daily S&P500 return	144
4.5	Length of daily runs on the S&P500	145
5.1	Prices and discretization	166
5.2	Histogram of integer remainders	166
5.3	Price changes on S&P500 Emini contract	170
5.4	Autocovariance of daily Dow	172
5.5	Efficient price volatility of the daily Dow	172
5.6	Price trajectory 1	180
5.7	Price trajectory 2	181
5.8	Daily Amihud illiquidity on S&P500	186
5.9	Daily Amihud illiquidity of S&P500 index since 2008	186
5.10	FTSE100 one minute data during nonfarm payroll announcement	191
5.11	Flash crash	192

xv

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

xvi

List of Figures

5.12	Feedback loop	192
6.1	Shows examples of price trajectories around event at time 0	205
6.2	Dow Jones stock splits	232
6.3	Exxon stock splits CAR	233
6.4	Exxon splits average CAR	233
6.5	Exxon splits, longer window	234
6.6	Exxon splits average CAR over splits	234
6.7	Exxon splits, shorter window	235
6.8	Exxon splits, shorter window average CAR	235
7.1	Efficient frontier of Dow stocks	241
7.2	Skewness of Dow Jones returns by sampling frequency	245
7.3	Kurtosis of Dow Jones returns by frequency	245
7.4	Risk return relation	264
7.5	Time varying betas of IBM	269
7.6	Time varying alphas of IBM	269
7.7	SMB portfolio beta with market return	270
8.1	Ouantiles of ordered (absolute) cross-correlations between	
	S&P500 stocks	283
8.2	Quantiles of ordered (absolute) cross-correlations between	
	S&P500 stocks idiosyncratic errors	284
8.3	Solnik curve of Dow stocks	285
8.4	GMV of Dow stocks	286
8.5	Rolling window correlation between the FTSE100 and FTSE250	287
8.6	Fama–French factors returns and implied prices	295
8.7	Variance ratios of Fama–French factors	297
8.8	US monthly CPI percentage change	298
8.9	Eigenvalues of $\hat{\Sigma}$ for daily S&P500 stocks. $N = 441$ and $T = 2732$	309
8.10	Eigenvalues of $\hat{\Psi}$ for monthly S&P500 returns	309
8.11	Dominant principal component for monthly data	310
9.1	NASDAO price level	315
92	Bitcoin price level from 2010–2017	315
93	Bubble time series	320
9.4	The logarithm of S&P500 index with trend line fitted from 1950 to 2017	325
95	Gross return on S&P500	333
9.6	Dividend vield on the S&P500	333
97	Rolling window (+20 years) R^2 of predictive regression	334
9.8	Rolling window $(\pm 20 \text{ years})$ slope coefficient of predictive regression	335
9.9	Overlapping daily 5 year returns on the S&P500	335
10.1	Growth rate of annual real PCF in 2009 dollars	346
10.1	Rolling window trailing 10 year gross nominal returns on the	540
10.2	CRSP value weighted index	347
10 3	Distribution of the annual risk premium on the FF market factor	511
10.5	from ten years of daily data	349
10.4	Quarterly US differenced log of PCF (seasonally adjusted)	340
10.4	Autocorrelation of quarterly US differenced log of PCF	350
10.5	rationation of quarterly OS unfortuned log of I CE	550

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

xvii

List of Figures

10.6	Quarterly time series CAY_t	355
11.1	US commercial airline fatalities per mile	359
11.2	Daily VIX index	361
11.3	Histogram of the VIX index	361
11.4	ACF of the VIX	362
11.5	Annual volatility of the S&P500	364
11.6	Parkinson estimator of daily volatility	368
11.7	ACF of intraday volatility	368
11.8	Histogram of intraday volatility	369
11.9	Cross-section volatility	371
11.10	Correlogram of returns (first panel) and absolute	
	returns (second panel)	375
11.11	Conditional standard deviation of daily returns	382
11.12	Standardized residuals	383
11.13	S&P500 daily return cross autocovariance	
	$\operatorname{cov}(Y_t^2, Y_{t-j}), j = -10, \dots, 10$	389
11.14	Comparison of the estimated news impact curves from	
	GARCH(1,1) and GJR(1,1) for daily S&P500 returns	392
11.15	Density of S&P500 returns	413
11.16	Shows the nonparametrically estimated conditional	
	comulants $cum_j(y_t y_{t-k})$, for $j = 1, 2, 3, 4$ and $k = 1,, 50$	415
11.17	Time varying cumulants of S&P500 returns	418
12.1	Crossing time density	425
12.2	ACF of daily federal funds rate 1954–2017	434
12.3	Conditional mean of exponential	435
12.4	Volatility signature plot	454
13.1	Time series of one month and ten year yields since 2000	470
13.2	Conditional cumulants of T-bill	474
13.3	Conditional cumulants of 10-year bonds	475
14.1	Estimated tail index of daily S&P500 returns 1950-2017	487
14.2	Expected shortfall	495
14.3	Daily S&P500 stock return events exceeding 6σ	496

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

List of Tables

1.1	Stock exchanges ranked by value traded	11
1.2	Descriptive statistics 1950–2017	23
1.3	Daily CRSP market returns descriptive statistics	24
1.4	Daily returns on individual stocks descriptive statistics, 1995–2017	25
3.1	Dow Jones stocks with market capitalization in January 2013	94
3.2	Parameter estimates of AR(22) model	104
3.3	Autocorrelation of squared returns and kurtosis of returns	113
3.4	The off-diagonal terms	113
3.5	Variance ratios for weekly small-size portfolio returns	114
3.6	Variance ratios for weekly medium-size portfolio returns	115
3.7	Variance ratios for weekly large-size portfolio returns	116
3.8	Day of the week effect	131
5.1	Tick size on the LSE	165
5.2a	Limit order book example	188
5.2b	Limit order book example	188
5.3	Round trip speed of the LSE	193
6.1	Recent stock splits on NASDAQ	230
6.2	Dow stocks split size distribution	232
7.1	Tangency and GMV portfolio weights for Dow Stocks	240
7.2	Market model estimates of Dow Stocks, daily data	247
7.3	Market model estimates of Dow Stocks, monthly data	248
8.1	Fama–French factors, mean and std	296
8.2	Fama–French factors correlation matrix	296
9.1	Dividend yield on the Dow stocks	336
10.1	Market risk premium	348
11.1	The FTSE100 top 20 most volatile days since 1984	369
11.2	The S&P500 top 20 most volatile days since 1960	370
11.3	Idiosyncratic volatility of Dow stocks	374
11.4	GARCH(1,1) parameter estimates	382
11.5	Estimated EGARCH model	391
11.6	Estimation of asymmetric GJR GARCH model	391
11.7	Estimates of GARCH in mean model	394
11.8	Correlation Matrix of estimated parameters from GARCH model	399
11.9	Daily GARCH in mean t-error	400
11.10	Estimated d by frequency	406
11.11	Estimated GARCH model by decade	417
13.1	Summary statistics of daily yields	471
13.2	Autocorrelation of daily yields	471

xix

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Preface

This work grew out of my teaching and research. It started from my considerable admiration of the seminal financial econometrics book Campbell, Lo, and MacKinlay (1997), henceforth CLM, and my teaching of that material to Master's students. I have kept along a similar line to that work in terms of selection of material and development, and have updated the material in several places. I have tried to adapt the material to a Master's audience by reducing the peerless literature review that is in that book and by amplifying some of the econometric discussions. I have included some theorems of varying degrees of rigor, meaning that I have not in every case specified all the required regularity conditions. I apologize for any upset this may cause, but the interests of time and space kept me from doing this. I hope the use of theorems can help to focus the material and make it easier to teach.

Financial econometrics has grown enormously as a discipline in the 20 years since CLM was published, and the range of authors engaged in its development has also increased. Computer scientists and so-called econo-physicists have taken an interest in the field and made major contributions to our understanding of financial markets. Mathematicians and statisticians have established rigorous proofs of many important results for our field and developed new tools for analyzing and understanding big financial data. The academic landscape has also become more international with a big expansion in the study of finance and financial statistics in China.

Data is the plural of anecdote, and happily there has recently been a massive increase in the amount of data, which has in itself stimulated research. Simultaneously computer power, both hardware and software, has increased substantially, allowing the analysis of much larger and more complex datasets than was previously possible. Econometric methodology has also expanded in many relevant areas, notably: volatility measurement and modelling; bounteous variate statistics where the size of the cross-section and time series is large; tools for extreme risk management; and quantifying causal effects. Despite the improvement in tools, the Global Financial Crisis following 2008, led to some skepticism about the value of economic theory and econometrics in predicting the armageddon that then ensued and in managing its aftermath, but this has in turn led to development of more relevant methodology, and hopefully some humility. Has all this attention and development improved our understanding of how financial markets work and how to change them for the better? I think so, but the subject is far from complete or satisfactory. The quantity and quality of empirical work and its presentation has improved substantially over time, but this has to some extent just made it harder for the reader to tell where the "bodies are buried" and what is the permanent value added of a particular study. Statistical methods are vital in this endeavor and in many cases their contribution is

xxi

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

xxii

Preface

to provide a framework for acknowledging the limitations of our knowledge. Some of the empirical regularities that were cited in CLM have not stood the test of time, or at least they had to be qualified and their limitations acknowledged. This makes it hard to give a clear and simple picture that one could explain to a teenager.

This book is intended to be used as a text for advanced undergraduates and graduate students in economics, finance, statistics, mathematics, and engineering who are interested in financial applications and the methodology needed to understand and interpret those applications. I have taught part of this material at Yale University, the London School of Economics, the University of Cambridge, Humboldt University, Shandong University, SHUFE, and Renmin University. I provide two introductory chapters on financial institutions, financial economics, and econometrics, which provide some essential background that will be drawn on in later chapters. The main material begins with the efficient markets hypothesis and the predictability of asset returns, which is a central question of financial economics. I provide some updates on the empirical regularities found in CLM. I then provide a separate chapter on robust methods, which are important because large observations such as the October 1987 stock market crash can have an undue influence on estimation and hypothesis tests. I then cover some topics in market microstructure, which is a very active area struggling with new developments in market structure, technology, and regulation. I cover the classical topics of stale and discrete prices as well as the models for adverse selection and market impact that form the language of this area. I use some matrix algebra in Chapters 6 to 8; it is hard if not impossible to present this material cogently without these tools, and to understand big data without the basics of linear algebra is like trying to assemble an IKEA cupboard in the dark without an Allen key. Luckily there are many excellent books that provide suitable coverage of the necessary material, for example Linton (2016). The material on event studies has been expanded to include recent work coming from microeconometrics that can be used to evaluate the effects of policy changes on outcomes other than stock returns. I also include the standard methodology based on the market model but provide a more detailed discussion of the effects of overlapping estimation and event windows. I cover the CAPM next with some discussion of portfolio grouping methods and the two main testing methodologies. The chapter on multifactor models covers the main approaches including the Fama-French approach, which was still in its early days when CLM was published but is now one of the dominant methodologies. I also cover statistical factor models and characteristic based models. The next two chapters consider some intertemporal asset pricing material and the associated econometrics such as predictive regressions, volatility tests, and generalized method of moments (GMM). The chapter on volatility describes the three main approaches to measuring and defining volatility based on option prices, high frequency data, and dynamic time series modelling. The chapter on continuous time models develops some of this material further, but also introduces the models and methods widely used in this area. I cover some material on yield curve estimation and its application to pricing. The final chapter considers risk management including extreme value theory and dynamic modelling approaches. I use a number of datasets of different frequencies in the book to illustrate various points and to report on the main features of financial data. As usual, results can vary.

xxiii

Preface

I have included short biographies of authors who have influenced me regarding financial econometrics particularly. My prediction is that at least one of them will win the Nobel Prize in economics.

The book contains many terms in bold face, which can then be investigated further by internet search. I have provided some computer code in different languages, such as MATLAB, GAUSS, and R, pertinent to various parts of the book. I am told that STATA can accomplish many things, but I have yet to see the light. A lot of analysis can be done by EVIEWS, and I provide a short introduction to its use in handling daily stock return data. I also provide a link to a number of data sources that can help with student projects and the like.

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Acknowledgments

No man is an island, and I would like to thank the people who have had an influence on my research career. Even though they may not have been directly involved in the development of this book, I have drawn heavily on my interactions with them throughout this project. In roughly chronological order they are: Haya Friedman, Jan Magnus, Tom Rothenberg, Jens Perch Nielsen, Peter Bickel, Greg Connor, Peter Robinson, Wolfgang Härdle, Enno Mammen, Per Mykland, Miguel Delgado, Neil Shephard, Don Andrews, Peter Phillips, Xiaohong Chen, Arthur Lewbel, Yoon-Jae Whang, Zhijie Xiao, Christian Hafner, Frank Diebold, Eric Ghysels, Jean-Marie Dufour, Haim Levy, Andrew Patton, Jiti Gao, Jon Danielsson, Jean-Pierre Zigrand, Alexei Onatskiy, Andrew Harvey, Andrew Chesher, Hashem Pesaran, Richard Smith, and Mark Salmon. I would like also to thank my current and former PhD and Master's students who have contributed to the development of this book. I would like to thank Greg Connor, Katja Smetanina, and anonymous referees for comments.

Cambridge University Press & Assessment 978-1-316-63033-4 — Financial Econometrics Oliver Linton Frontmatter <u>More Information</u>

Notation and Conventions

In this book I use the dating convention yyyymmddhhmmss. A visiting time traveller would surely prefer to know the year before the month or day, although he might ask why we have we have chosen 24 hours in a day and 60 minutes in an hour, etc. I use \xrightarrow{P} to denote convergence in probability and \implies to denote convergence in distribution. $\log(x)$ is the natural logarithm unless otherwise stated. \mathbb{R} is the set of real numbers, ' denotes differentiation, and ^T denotes matrix transpose. We use $X_n = O(n)$ to mean that X_n/n is bounded for a deterministic sequence X_n . I use \simeq to generically denote an approximation and \sim to mean to have the same distribution as. I do not have a bracketing convention like some journals, but I do have a preference for round curved brackets over square ones. Dollars or \$ are US unless otherwise specified.

xxvii