INDEX

Aberration on the electromagnetic theory, 365–368
Abraham’s electron, 354
Action, medium and distance, contrasted, 52; question of velocity of transmission of, 52; Faraday-Maxwell theory of transmission of electromagnetic, 52, 89–97
Action and Reaction, Newton’s principle of, 194
Aether: displacement currents in, 75, 97–102; conception of, as a carrier of energy, 236; experimental evidence of fixity and rigidity of, 353, 362; position of, in the theory of relativity, 388
Ampère’s electromagnetic theory. 163–165; the circuital equation of, 164; the position of magnetism in, 165; general dynamical formulation of, 244–251
Anion, 135
Anode, 135, 149
Availability of energy in electrostatic fields, 80–86; in magnetic fields, 184
Blot and Savart; law of, in electromagnetic theory, 192
Boundary problems: conditions for, in electrostatics, 24, 37; in dielectric theory, 72; in magnetic theory, 175–177; involving electromagnetic waves, 268; involving moving bodies, 337–342
Calamoids: Whitaker’s 4-dimensional tubes of force, 380
Carnot’s cycle, 40; application of, in thermoelectric problems, 133; to the voltaic phenomena, 140; in thermomagnetic problems, 395
Cathode, 135, 149
Cathode rays, 150; constitution of, 150; charge and mass of particles in, 151
Circuitality of electric displacement flux, 101; of total current flux, 220–222; of magnetic induction, 166–218
Condenser, discharge of, 290
Conduction of electricity, by metals, 110–117; electron theory of, in metals, 404–422; by gases and air under the action of Roentgen rays, 141–144; by liquids and electrolytes, 134–141
Conduction of heat, by metals, explained on electron theory, 411–416
Conductors, general properties of the static field of a system of, 33–37; ponderomotive forces acting on and between, 46–50; propagation of electric waves in, 267; reflection of waves by, 288; general relations of charged, in uniform motion, 334
Convection, field due to, of electrostatic system, 335; current due to, of charged and polarised media, 214
Convection potential, due to moving system, 335; characteristic equations for, 337; due to uniformly moving ellipsoidal shell, 339; due to spherical shell, 331; due to Lorentz’s ellipsoidal shell, 342
Coulomb, the practical unit of capacity defined in terms of the theoretical units, 224; law of force in electrostatics due to, 5; law of force in magnetostatics due to, 154
Crystals, analysis of structure by X rays, 303; pyro- and piezo-electric properties of, 105; magnetic properties of, 398
Curie’s law, in thermomagnetic effects, 391; its thermodynamic bearing, 395
D’Alembert’s principle, in dynamics, its significance, 15
Dark space, Faraday’s, 149; Crooke’s, 149
Diamagnetism, 390
Dielectric constant, 53, 56; its relation to density, 162–163
Dielectrics, on Faraday-Maxwell theory, 52–59; the effect of, on capacity of a condenser, 53; the polar theory of, 60–64; specification of the field of polarised, 61–65; validity of expressions for the field functions in the theory of, 66–69; Poisson’s transformation of the potential of polarised, 67; composition of the displacement current in the theory of polarised, 75; characteristic properties of the field with dielectrics, 70; the law of induction of polarisation in, 56; energy relations of, 78–85; intrinsic energy of, 82; energy restrictions on the law of induction in, 83; complete expression for the
energy in the field of polarised, 85; mechanical relations of polarised, 87, 88; force and couple on the elements of, 87; the stress in polarised, 91; effect of, on the propagation of electric waves, 268

Dimensions, doctrine of, 223; of magnitudes in electric theory, 223–225
Discharge tube, phenomena in, 149
Displacement, see Electric displacement

Elchenwald’s experiment on moving polarised dielectrics, 332
Electric currents, origin of, 102; general definition of, 115; special definition of, 113; resistance to flow of, 114, 115; hydrostatic analogy for, 117; energy relations of, 120–128; distribution of steady, in a network of conductors, 127; law of minimum dissipation for the flow of, 128; the thermal relations of, 128–134; thermodynamic discussion of these relations, 133; in liquids, 134–138; in gases, 141–152; magnetic field due to, 147–160; dimensions of, 224; complete expression for, on Maxwell’s theory, 213, 214, 330; due to convexion of charged and polarised media, 214, 330; electronic aspects of the, in Maxwell’s theory, 215, 216; statistical analysis of in metallic conductors, 404–422; circuitual property of, 220, 221; induction of, by varying magnetic fields, 195–197; mutual mechanical relations of linear conductors carrying, 199–208; interaction between magnets and circuits carrying, 191–194; energy in the field of linear conductors carrying, 182; dynamical theory of the interaction of linear conductors carrying, 199–209; in a discharging condenser, 290; in a network of conductors, 207; oscillating, in a conductor of finite cross-section, 274; in the 4-dimensional equations of the theory, 379
Electric displacement, 55; tube of, 56; characteristic properties of, 56–69; circuitual property of, 57, 98–102; physical significance of, 60, 61; on the theory of polarised dielectrics, 60, 61; currents of, 70–75, 98–102; significance of, in the theory of electric waves, 205–209
Electricity, 1–4; constitution of, 3; atomic structure of, 3, 136; specific heat of, 132–134, 415; dissipation of charge of, by conduction, 267

INDEX

Electro-caloric effects, 105–109
Electrodynamic potential, 205
Electrodynamics of linear circuits carrying currents, 199–208; Maxwell’s general theory of, 244–251; of the single electron, 248, 382
Electrolysis, 134–140; Faraday’s laws of, 136; electrolytic dissociation, 139; velocity of ions in, 139; thermodynamic relations of, 140
Electromagnetic field, Ampère’s circuitual equation for, 195; Faraday’s circuitual equation for, 195–197; definition of, in terms of scalar and vector potentials, 226; Maxwell’s general theory of, 329; of the Hartzsian oscillator, 293–296; of a given distribution of currents, 231; of given moving charges, 233–244, 335, 343; in radiation, plane waves, 284–286; distribution and flux of energy in, 236–244; distribution of force and momentum in, 238; Lorentz’s transformation of the equations for, 372–375; the 4-dimensional form of the equations for, 378–390
Electromagnetic induction, Faraday’s law of, 195; its connexion with the energy principle, 185
Electromagnetic momentum, in the general electromagnetic field, 238; in the field of a number of point charges, 258–263; of a single electron, 263; alternative expressions for, 263; of a general electrostatic system in motion, 344–359; of the general system, its connexion with the Lagrangian function, 351; of a moving ellipsoid, 353, 354; in the 4-dimensional analysis, 385
Electromagnetic potentials, see also Scalar potential and Vector potential; general definition of, 226; characteristic equations for, 227; the instantaneous, 227; the retarded, 228; in the 4-dimensional analysis, 351, 382
Electromagnetic waves, characteristic equations for the field in, 275–284; in conductors, 267; in dielectrics, 268; propagated along the surface of a conductor, 269; from an incandescent body, 290; from a group of electrons, 296–302; in Roentgen or X-rays, 302; mechanism of the generation of, 289–304; of a Hartzsian oscillator, 293; boundary conditions at the wave front of, 305; energy carried by, 314–316; radiation pressure due to, 320–328; in moving media, 359–372
INDEX

Electromotive force, definition of static, 7; connexion with the potential, 8, 57–40; complete expression for, on moving charge, 249, 329; in 4-dimensional analysis, 382

Electron, 3; mass of, 3, 151; charge on, 3, 147; electromotive force on, 249, 329; field of a moving, 231–236; momentum of, in quasi-stationary motion, 203, 332–335; mass of, in quasi-stationary motion, 354; Abraham’s, 394; Lorentz’s, 355, 356; discrimination of type by experiment, 357; relation between energy and mass of, in relativity mechanics, 383

Electrostatic field, definition of, 6, 7; of a point charge, 7; of a system of charges, 8; of continuous charge distributions, 9–18; surrounding charged conductors, 33–37; distribution of energy in, 40–46; transmission of force through, 47–50, 88–96; Green’s analysis of, 18–26; Gauss’ analysis of, 26

Electricity, 109

Energy, conservation of, 37–40; of electrostatic system, 40–46; distribution of, in the electrostatic field, 70–86; of the magnetic-static system, 179–182; distribution of, in the magnetic field, 182–187; relations of an electric current, 124–128; of a voltaic cell, 140, 141; distinction between kinetic and potential, 187; general conception of, in the electromagnetic field, 236; flux of, in the electromagnetic field, 238–244; flux of, in radiation fields, 313–320; of an electron in relation to its mass, 383; relations of Lorentz electron, 355, 356

Equilibrium in the static distribution of charge, 43

Equilibrium theories in dynamics, their significance, 208

Equi-potential surfaces, 31

Faraday, 224

Faraday-Maxwell theory, of the electrostatic field, 51–109; of the electromagnetic field, 212–264; of the field of radiation, 265–269; general dynamical formulation of, 244–251

Faraday’s law of electromagnetic induction, 195; its differential form, 198; for circuits in general, 390; general laws of, to dynamical theory, 244–251

Ferromagnetism, 390–396; Weiss’ theory of, 390–403

Fitzgerald-Lorenz contraction, 371

Force, lines of, in electrostatic field, 53, 54; in 4-dimensional analysis, 380, 381

Gases, conduction of electricity in, 140–152

Gauss’ normal induction, theorem, 26; in Faraday-Maxwell theory, 57

Gauss’ reciprocal energy theorem, 44

Green’s analysis, of the electrostatic field, 18–24

Green’s theorem, 18; 4-dimensional form equivalent to Maxwell’s equations, 380

Henry, 295

Hertz’s oscillator, 292; field of, 293–295

Huygen’s principle, 276; Larmor’s discussion of, 276–283

Hysteresis, curve of, in iron, 386; loss of energy due to, in magnetic cycles, 186

Ideal, electric distribution equivalent to dielectric polarisation, 68; magnetic distribution equivalent to magnetic polarisation, 156

Ignoration of coordinates, 187

Induced polarisation in dielectrics, 69; in magnetism, 172–176, 390

Induction, electromagnetic, Faraday’s law of, 195; coefficients of self and mutual, for linear circuits, 177, 182; general dynamical theory of, as regards linear currents, 198–208

Induction, electrostatic, electrification by, 2

Induction, magnetic, vector of, as distinguished from the magnetic force, 157

Inverse square law, 4, 154

Joule, 224

Joule effect, in magnetism, 210

Kinetic energy, as distinct from potential energy, 187; in relativity mechanics, 383; in radiation fields, 313–320, 384

Kirchhoff’s equations for the flow of currents in a network of conductors, 127

Lagrange’s equations for current circuits, 198–208

Lagrange’s function, for current circuits, 205; for the general electrodynamic system, 247; for the uniformly convected electrical system, 350; for the moving electron, in relativity mechanics, 387
INDEX

Laplace’s equation in electrostatics, 24
Larmor-Lorentz transformation of the electromagnetic equations, 372–378
Least-action, principle of, 245; application in electromagnetic theory, 246–248; 4-dimensional form of, 387
Level surfaces, see Equipotential surfaces
Leyden jar, discharge of, 290
Lines of force, in electrostatic field, 29; in 4-dimensional analysis, 380, 381
Magnet, poles of a long thin, 153; axis of, 152; field of a finite, 156
Magnetic field, 152–166; reason for special choice of force at internal points, 157; mathematical relations of, the 165; boundary conditions in, 167; of the bi-pole, 155; of a finite magnet, 166; of a magnetic filament, 157; of a magnetic shell, 159; of a linear circuit current, 100–103; vector potential of, 168–175; boundary conditions in, in terms of the vector potential, 176; energy relations of, 174–177; energy of polarisations in, 179; energy of currents in, 180; degradation of energy in, by hysteresis, 186; forces on polarisation in, 189–191; forces on currents in, 191–194
Magnetic force, 157
Magnetic induction, new definition of, as mechanically effective force, 157; its connection with the magnetic potential, 157, 165
Magnetic matter, Poisson’s ideal, 156
Magnetic shell, potential in field of, 159; equivalence of, and a linear current, 160–163; vector potential of, 171
Magnetic stress, 257
Magnetisation; specification of, in a magnet, 155; solenoidal, 180; lamellar, 160; Ampère’s view of origin of, 165; law of induction of, 173; permanent, 172; hysteresis curve for, 396; energy of, 179; loss of energy of, due to hysteresis, 187; Curie’s law of dependence of, on temperature, 391; thermodynamical relations of, 395
Magnetism, 153–177; unit of, 154; law of force in, 154; permanent and in duced, 172; law of induction in, 172; Ampère’s theory of, 165; Langevin’s theory of, 391–394; constitutional theory of, 397–399
Magnetostriiction, 209
Mass, of cathode particle, 147; of electron, 3; of Abraham’s electron, 355, 356; Kaufmann’s experiments on, of electron, 357; electromagnetic, of a moving electrical system, 353; relation between, and kinetic energy, 383
Maxwell’s equations, 330; 4-dimensional form of, 379, 380
Maxwell’s stress in electrostatic field, 91; in electromagnetic field, 257; in the 4-dimensional relations, 385
Maxwell’s theory of the electrostatic field, 51–109; of the electromagnetic field, 212–223; the vectors covered in, 213; the constitutional relations in, 219; dynamical aspects of, 244–251
Michelson-Morley experiment, 371
Momentum, electromagnetic, see Electromagnetic momentum
Mutual induction, 177
Ohm’s Law, 114
Paramagnetism, 390
Pellerin effect, 131, 421
Piezo-electricity, 165
Poisson’s equation, 24
Polarisation, dielectric, 60–64; field of, 64, 65–71; contribution to displacement, 75; law of induction of, 58; energy relations of, 78–86; mechanical relations of, 87–91
Polarisation, magnetic, field of, 155; law of induction of, 173, 290–399; energy relations of, 174–183, 391–395; mechanical relations of, 180–191, 257
Potential, convection, in moving electrical systems, 335
Potential, electromagnetic, Volta’s difference of, for substances in contact, 117–122; electron theory of contact, 418–422
Potential, electrostatic, definition of, 8; of point charge, 8; of continuous charge distributions, 9–18; physical nature of, 37–40; of polarised media, 61–65
Potential, magnetostatic, of magnetic bi-pole, 155; of finite magnets, 156; of a solenoid, 157; of a magnetic shell, 159; of a linear current, 160–163
Potential, scalar, see Scalar potential
Potential, vector, see Vector potential
Potential energy, see Energy
Poynting’s vector, for flux of energy, 241; relative to a moving framework, 367; position of, in the 4-dimensional analysis, 385
Pressure of radiation, 320–328; on moving conductor, 383–385
INDEX

Pyro-electricity, 105

Quasi-stationary motions, significance of concept of, 347

Radiation, mechanism of, from a group of electrons, 298–304; plane fields of, 284–289; from a Hertzian oscillator, 292–298; pressure of, on any absorbing medium, 322; pressure of, on a mirror, 322; reaction from, on the source, 323; pressure of, on mirror in motion, 326; propagation of, in a moving medium, 359–362

Reaction, principle of action and, 194; Kelvin’s kinetic, 206

Reflection of electric waves by conductors, 288

Relativity, theory of, 368–378

Resistance of metals to flow of electricity, 114–117; mechanism of, in metals, 404–414

Retarded potentials, see Scalar potential and Vector potential

Roentgen rays, 302

Roentgen–Rowland experiment on moving polarised media, 332

Scalar potential, 198; in expression for electric force, 198, 226, 227; instantaneous, 226; retarded, 227; retarded, in field of given current distribution, 229; due to specified moving charges, 231–233; as multiplier in the variational form of Maxwell’s theory, 247; in the 4-dimensional analysis, 381–382

Self-induction, 177, 182

Specific heat of electricity, 133, 134, 415–421

Stress, Maxwell’s dielectric, 91; magnetic, 257; electromagnetic, 255, 258; in the 4-dimensional analysis, 385

Stress-energy tensor, 385

Surface distribution of charge, density of, 16; effect on continuity of force and potential, 24, 37

Thomson thermoelectric effect, 132

Tubes of force in electrostatic field, 30; in 4-dimensional field, 381

Vector potential of magnetic fields, 168–172; boundary conditions in terms of, 176; in expression for the electric force, 188; as a general electromagnetic potential, 226–228; instantaneous, 226; retarded, 227; retarded, in field of given current distribution, 231; due to specified moving charges, 231–233; as multiplier in the variational form of Maxwell’s theory, 247; in the 4-dimensional analysis, 381

Velocity of propagation of electromagnetic waves, 208, 268; of propagation of electric waves in moving dielectric, 361; of electron and its mass, 354–357

Villiari effect in magnetisation of iron, 210

Volta potential difference, 117–119

Voltaic cell, 138–141

Wave equation, significance of solution of, 275–284

Waves, electric, see Electro-magnetic waves

Wiedemann effect in magnetisation, 210

Wiedemann–Franz law of metallic conduction, 415