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Introduction

This book develops the contents of a series of lectures given at the Institut des

Hautes Études Scientifiques in February and March 2015 (see [KS15]), based

on [Ka84], [DK13] and [KS14]. They are addressed to readers familiar with

the language of sheaves and D-modules, in the derived sense.

As announced in the title, the subject of this book is holonomic D-modules.

The theory of D-modules appeared in the 1970s with the thesis of [Ka70] and

Bernstein’s paper [Be71]. However, already in the 1960s, Mikio Sato had the

main ideas of the theory in mind and gave talks at Tokyo University on these

topics. Unfortunately, Sato did not write anything and it seems that his ideas

were not understood at this time. (See [An07, Sc07].)

A left coherent DX-module on a complex manifold X is locally represented

by (the cokernel of ) a matrix of differential operators acting on the right.

Hence, D-module theory is essentially the algebraic study of systems of linear

partial differential equations. It seems that algebraic geometers were frightened

by the non-commutative nature of the sheaf of rings DX , and it may be the

reason why one had to wait untill the 1970s until the theory appeared. But

once one realizes that the ring DX has a natural filtration (by the order of

the operators) and that the associated graded ring is commutative, it is not

too difficult to apply the tools of algebraic geometry to this non-commutative

setting. In particular, one can define the characteristic variety char(M ) of a

coherent DX-module, a closed C
×-conic complex analytic subset of the cotan-

gent bundle T∗X and a fundamental result of the theory is that this variety is co-

isotropic (or involutive). Partial results in this direction (involutivity at generic

points) were first obtained by Guillemin, Quillen, and Sternberg [GQS70].

The general case was obtained later by Sato, Kawai, and Kashiwara [SKK73],

using tools of microlocal analysis such as microdifferential operators of infinite

order. Then Gabber proposed a purely algebraic proof of this result in [Ga81],
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2 Introduction

and there is also now another totally different proof based on the involutivity

of the microsupport of sheaves on a real manifold (see [KS90]).

Once one knows that the characteristic variety of a coherent DX-module

is co-isotropic, it is natural to study with a special attention those modules

whose characteristic variety is as small as possible, that is, Lagrangian,

and these are the holonomic D-modules. They were first called “maximally

overdetermined systems” in [SKK73], and they are the natural generalization

in higher dimension of the classical theory of ordinary differential equations.

An ordinary differential equation may also be regarded as a connection with

poles, and among them, there are the connections with regular singularities

or, equivalently, the Fuchsian differential operators. In this framework, the

Riemann–Hilbert problem is, roughly speaking, to construct a Fuchsian oper-

ator on a Riemann surface when the monodromy of its holomorphic solutions

is prescribed.

A natural question is to generalize the theory of Fuchsian equations to higher

dimensions. A first important step is the book of Deligne [De70], in which he

solves the Riemann–Hilbert problem for regular connections with singularities

on hypersurfaces.

A second important step is the constructibility theorem of [Ka75], which

asserts that the functor “holomorphic solutions” sends the derived category of

holonomic DX-modules to that of constructible sheaves on X. More precisely,

denote by D
b
hol(DX) the bounded derived category of left DX-modules with

holonomic cohomology and by D
b
C-c(CX) the bounded derived category of

sheaves of C-vector spaces with constructible cohomologies. Then it is proved

in [Ka75] that the (contravariant) functor SolX( • ) = RHom
D

( • , OX), when

restricted to D
b
hol(DX), takes its values in D

b
C-c(CX). It is also noticed in this

paper that if an object of D
b
C-c(CX) is in the image of the abelian category

Modhol(DX) of holonomic DX-modules, then it satisfies the properties which

are now called the perversity conditions.

It is well known that the functor SolX : D
b
hol(DX)op −→ D

b
C-c(CX) is not

faithful. For example, if X = A
1(C), the complex line with coordinate t, P =

t2∂t − 1 and Q = t2∂t + t, then the two holonomic DX-modules DX/DXP

and DX/DXQ have the same sheaves of solutions. Hence, a natural question

is to look for a full triangulated category of D
b
hol(DX) on which SolX is fully

faithful and induces an equivalence with D
b
C-c(CX). A precise formulation was

formulated in 1977 by the same author (see [Ra78, p. 287]), and a detailed

sketch of proof of the theorem establishing this correspondence (in the regular

case) appeared in [Ka80] where the functor Thom of tempered cohomology

was introduced; a detailed proof appears in [Ka84]. Many tools used in the
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Introduction 3

proof of this result were first elaborated in [KK81]. Note that a quite different

proof to this correspondence was obtained by Mebkhout in [Me84].

The functor Thom is thus an essential tool in the original proof of the

regular Riemann–Hilbert correspondence. Its functorial properties as well as

the construction of the Whitney tensor product
w
⊗, a kind of “dual functor” of

Thom, are systematically studied in [KS96]. These two functors are in fact

better understood in the language of indsheaves of [KS01]. They correspond

to the indsheaves O t
X and O

w
X of tempered holomorphic functions and Whitney

holomorphic functions. For example, O t
X is constructed as the Dolbeault

complex with tempered distributions as coefficients. Of course, the presheaf

of tempered distributions (on a real analytic manifold) is not a sheaf for the

usual topology, but it becomes a sheaf for a suitable Grothendieck topology,

called the subanalytic topology, and one can naturally embed the category of

subanalytic sheaves in that of indsheaves.

Already, in early 2000, it became clear that the indsheaf O t
X is an essential

tool for the study of irregular holonomic modules. A toy model was studied

in [KS03], where the indsheaf of tempered holomorphic solutions of the

ordinary differential operator t2∂t + 1 is calculated. However, on X = A
1(C),

the two holonomic DX-modules DX exp(1/t) and DX exp(2/t) have the same

tempered holomorphic solutions, which shows that O t
X is not precise enough

to treat irregular holonomic D-modules.

This difficulty is overcome in [DK13] by adding an extra variable in order

to capture the growth at singular points. This is done first by adapting to ind-

sheaves a construction of Tamarkin [Ta08], leading to the notion of “enhanced

indsheaves”, then by defining the “enhanced indsheaf of tempered holomor-

phic functions”. Using fundamental results of Mochizuki [Mo09, Mo11] (see

also Sabbah [Sa00] for preliminary results and see Kedlaya [Ke10, Ke11]

for the analytic case), this leads to the solution of the Riemann–Hilbert

correspondence for (not necessarily regular) holonomic D-modules.

First, we shall recall the main results of the theory of indsheaves and

subanalytic sheaves and we shall explain with some detail the operations on

D-modules and their tempered holomorphic solutions. As an application, we

obtain the Riemann–Hilbert correspondence for regular holonomic D-modules

as well as the fact that the de Rham functor commutes with integral transforms.

Second, we do the same for the sheaf of enhanced tempered solutions of (no

longer necessarily regular) holonomic D-modules. For that purpose, we first

recall the main results of the theory of indsheaves on bordered spaces and its

enhanced version.

Let us describe with some details the contents of this book.
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4 Introduction

Chapter 1 is a review on the theory of sheaves and D-modules. Sheaf theory

is now so classical that it does not seem necessary to recall it, and our aim is

essentially to establish the notation and to recall the main formulas of constant

use. Reference for this subject is made to [KS90]. On the other hand, D-module

theory is not so well known. Our presentation of the subject here may be

considered as an invitation to the reading of [Ka03].

In Chapter 2, extracted from [KS96, KS01], we briefly describe the category

of indsheaves on a locally compact space and the six operations on indsheaves.

A method for constructing indsheaves on a subanalytic space is the use of

the subanalytic Grothendieck topology, a topology for which the open sets

are the open relatively compact subanalytic subsets and the coverings are the

finite coverings. On a real analytic manifold M, this allows us to construct

the indsheaves of Whitney functions, tempered C∞-functions and tempered

distributions. On a complex manifold X, by taking the Dolbeault complexes

with such coefficients, we obtain the indsheaf (in the derived sense) O
w
X of

Whitney holomorphic functions and the indsheaf O t
X of tempered holomorphic

functions.

Then, in Chapter 3, also extracted from [KS96, KS01], we study the tempered

de Rham and Sol (“Sol” for solutions) functors; that is, we study these functors

with values in the sheaf of tempered holomorphic functions. We prove two

main results which will be the main tools to treat the regular Riemann–Hilbert

correspondence later. The first one is Theorem 3.1.1, which calculates the

inverse image of the tempered de Rham complex. It is a reformulation of a

theorem of [Ka84], a vast generalization of the famous Grothendieck theorem

on the de Rham cohomology of algebraic varieties. The second result, Theorem

3.1.5, is a tempered version of the Grauert direct image theorem.

In Chapter 4, we give a proof of the main theorem of [Ka80, Ka84] on

the Riemann–Hilbert correspondence for regular holonomic D-modules (see

Corollary 4.3.4). Our proof is based on Lemma 4.1.9, which essentially claims

that to prove that regular holonomic D-modules have a certain property, it

is enough to check that this property is stable by projective direct images

and is satisfied by modules of “regular normal forms”, that is, modules

associated with equations of the type zi∂zi − λi or ∂zj . The Riemann–Hilbert

correspondence as formulated in [Ka80, Ka84] is not enough to treat integral

transform, and we have to prove a “tempered” version of it (Theorem 4.3.2).

We then collect all results on the tempered solutions of D-modules in a

single formula which, roughly speaking, asserts that the tempered de Rham

functor commutes with integral transforms whose kernel is regular holonomic

(Theorem 4.4.2). We end this chapter with a detailed study of the irregular
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Introduction 5

holonomic D-module DX · exp(1/z) on A
1(C), following [KS03]. This case

shows that the solution functor with values in the indsheaf O t
X gives much

information on the holonomic D-modules, but not enough: it is not fully

faithful. As seen in the next chapters, in order to treat irregular case, we need

the enhanced version of the setting discussed in this chapter.

Chapter 5, extracted from [DK13], treats indsheaves on bordered spaces. A

bordered space is a pair (M, M̂) of good topological spaces with M ⊂ M̂ an

open embedding. The derived category of indsheaves on (M, M̂) is the quotient

of the category of indsheaves on M̂ by that of indsheaves on M̂ \ M. Indeed,

contrary to the case of usual sheaves, this quotient is not equivalent to the

derived category of indsheaves on M.

The main way of treating the irregular Riemann–Hilbert correspondence is

to replace the indsheaf O t
X with an enhanced version, the object O E

X . Roughly

speaking, this object (which is no longer an indsheaf) is obtained as the image

of the complex of solutions of the operator ∂t −1 acting on O t
X×C

, in a suitable

category, namely that of enhanced indsheaves.

Chapter 6, also extracted from [DK13], defines and studies the triangulated

category Eb(IkM) of enhanced indsheaves on M, adapting to indsheaves a

construction of Tamarkin [Ta08]. Denoting by R∞ the bordered space (R,R)

in which R is the two-point compactification of R, the category Eb(IkM) is

the quotient of the category of indsheaves on M × R∞ by the subcategory of

indsheaves which are isomorphic to the inverse image of indsheaves on M.

Chapter 7, mainly extracted from [DK13], treats the irregular Riemann–

Hilbert correspondence. Similarly as in the regular case, an essential tool is

Lemma 7.5.5, which asserts that to prove that holonomic D-modules have a

certain property, it is enough to check that this property is stable by projective

direct images and is satisfied by modules of “normal forms”, that is, D-modules

of the type DX · exp ϕ where ϕ is a meromorphic function. This lemma follows

directly from the fundamental results of Mochizuki [Mo09, Mo11] (in the

algebraic setting) and later Kedlaya [Ke10, Ke11] in the analytic case, after

preliminary results by Sabbah [Sa00]. The proof of the irregular Riemann–

Hilbert correspondence is rather intricate and uses enhanced constructible

sheaves and a duality result between the enhanced solution functor and the

enhanced de Rham functor. However, as formulated in [DK13], this theorem

is not enough to treat irregular integral transform and we have to prove an

“enhanced” version of it (Theorem 7.8.1, extracted from [KS14]).

In Chapter 8, extracted from [KS14], we apply the preceding results. The

main formula (8.1.4) asserts, roughly speaking, that the enhanced de Rham
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6 Introduction

functor commutes with integral transforms with irregular kernels. In a previous

paper [KS97] we had already proved (without the machinery of enhanced

indsheaves) that given a complex vector space V, the Laplace transform

induces an isomorphism of the Fourier–Sato transform of the conic sheaf

associated with O t
V

with the similar sheaf on V
∗ (up to a shift). We obtain

here a similar result in a non-conic setting, replacing O t
V

with its enhanced

version O E

V
. For that purpose, we extend first the Tamarkin non-conic Fourier-

Sato transform to the enhanced setting.

Comments. As already mentioned, most of the results discussed here are

already known. We sometimes do not give proofs or give only a sketch of the

proof. However, Theorems 2.5.13 and 6.6.4 and Corollaries 2.5.15 and 7.7.2,

proving the R-constructibility of tempered and Whitney holomorphic solutions

of (irregular) holonomic D-modules, are new.
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1

A review on sheaves and D-modules

As already mentioned in the Introduction, we assume the reader is familiar

with the language of sheaves and D-modules, in the derived sense. Hence, the

aim of this chapter is mainly to establish some notation.

1.1 Sheaves

We refer to [KS90] for all notions of sheaf theory used here. For simplicity, we

denote by k a field, although most of the results would remain true when k is

a commutative ring of finite global dimension.

A topological space is good if it is Hausdorff, locally compact, countable at

infinity and has finite flabby dimension. Let M be such a space. For a subset

A ⊂ M, we denote by A its closure and Int(A) its interior.

One denotes by Mod(kM) the abelian category of sheaves of k-modules on

M and by D
b(kM) its bounded derived category. Note that Mod(kM) has a finite

homological dimension.

For a locally closed subset A of M, one denotes by kA the constant sheaf on

A with stalk k extended by 0 on X \A. For F ∈ D
b(kM), one sets FA :=F ⊗kA.

One denotes by Supp(F) the support of F.

We shall make use of the dualizing complex on M, denoted by ωM , and the

duality functors

D′
M := RHom ( • , kM), DM := RHom ( • , ωM). (1.1.1)

Recall that, when M is a real manifold, ωM is isomorphic to the orientation

sheaf shifted by the dimension.
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8 A review on sheaves and D-modules

We have the two internal operations of internal hom and tensor product:

RHom ( • , • ) : D
b(kM)op × D

b(kM) −→ D
b(kM),

• ⊗ • : D
b(kM) × D

b(kM) −→ D
b(kM).

Hence, D
b(kM) has a structure of commutative tensor category with kM as unit

object, and RHom is the inner hom of this tensor category.

Now let f : M −→ N be a morphism of good topological spaces. One has the

functors

f −1 : D
b(kN) −→ D

b(kM) inverse image,

f ! : D
b(kN) −→ D

b(kM) extraordinary inverse image,

R f ∗ : D
b(kM) −→ D

b(kN) direct image,

R f ! : D
b(kM) −→ D

b(kN) proper direct image.

We get the pairs of adjoint functors (f −1, R f ∗) and (R f !, f !).

The operations associated with the functors ⊗, RHom , f −1, f !, R f ∗, and

R f ! are called Grothendieck’s six operations.

For two topological spaces M and N, one defines the functor of external

tensor product

• ⊠ • : D
b(kM) × D

b(kN) −→ D
b(kM×N)

by setting F ⊠ G := q−1
1 F ⊗ q−1

2 G, where q1 and q2 are the projections from

M × N to M and N, respectively.

Denote by pt the topological space with a single element and by aM : M −→

pt the unique morphism. One has the isomorphism

kM ≃ a−1
M kpt, ωM ≃ a !

Mkpt.

There are many important formulas relying on the six operations. In particular

we have the formulas below in which F, F1, F2 ∈ D
b(kM), G, G1, G2 ∈ D

b(kN):

RHom (F ⊗ F1, F2) ≃ RHom
(
F, RHom (F1, F2)

)
,

R f ∗RHom (f −1G, F) ≃ RHom (G, R f ∗F),

R f !(F ⊗ f −1G) ≃ (R f !F) ⊗ G (projection formula),

f !RHom (G1, G2) ≃ RHom (f −1G1, f !G2),
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1.2 D-modules 9

and for a Cartesian square of good topological spaces,

M′
f ′

��

g′

��

N′

g

��

M
f

��

�

N

(1.1.2)

we have the base change formulas for sheaves

g−1R f ! ≃ Rf ′
! g′−1 and g !R f ∗ ≃ Rf ′

∗g′ !.

In this book, we shall also encounter R-constructible sheaves. References

are made to [KS90, ch. 8]. Let M be a real analytic manifold. On M there is the

family of subanalytic sets due to Hironaka and Gabrielov (see [BM88, VD98]

for an exposition). This family is stable by all usual operations (finite intersec-

tion and locally finite union, complement, closure, interior) and contains the

family of semi-analytic sets (those locally defined by analytic inequalities). If

f : M −→ N is a morphism of real analytic manifolds, then the inverse image of

a subanalytic set is subanalytic. If Z is subanalytic in M and f is proper on the

closure of Z, then f (Z) is subanalytic in N.

A sheaf F is R-constructible if there exists a subanalytic stratification M =⊔
j∈J Mj such that for each j ∈ J, the sheaf F|Mj is locally constant of finite

rank. One defines the category D
b
R-c(kM) as the full subcategory of D

b(kM)

consisting of objects F such that Hi(F) is R-constructible for all i ∈ Z and one

proves that this category is triangulated.

The category D
b
R-c(kM) is stable by the usual internal operations (tensor

product, internal hom), and the duality functors in (1.1.1) induce anti-

equivalences on this category.

If f : M −→ N is a morphism of real analytic manifolds, then f −1 and f ! send

R-constructible objects to R-constructible objects. If F ∈ D
b
R-c(kM) and f is

proper on Supp(F), then R f !F ∈ D
b
R-c(kN).

1.2 D-modules

References for D-module theory are made to [Ka03]. See also [Ka70, Bj93,

HTT08].

Here, we shall briefly recall some basic constructions in the theory of

D-modules that we shall use. Note that many classical functors that shall

appear in this chapter will be extended to indsheaves in Chapter 3 and the

subsequent chapters.

In this section, the base field is the complex number field C.
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10 A review on sheaves and D-modules

1.2.1 Basic constructions

Let (X, OX) be a complex manifold. We denote as usual by

• dX the complex dimension of X,

• �X the invertible sheaf of differential forms of top degree,

• �X/Y the invertible OX-module �X ⊗f −1OY
f −1(�⊗−1

Y ) for a morphism

f : X −→ Y of complex manifolds,

• �X the sheaf of holomorphic vector fields,

• DX the sheaf of algebras of finite-order differential operators, the subring of

Hom (OX , OX) generated by OX and �X .

Denote by Mod(DX) the abelian category of left DX-modules and by

Mod(D
op
X ) that of right DX-modules. There is an equivalence

r : Mod(DX) ∼−→ Mod(D
op
X ), M �→ M

r := �X ⊗
OX

M . (1.2.1)

By this equivalence, it is enough to study left DX-modules.

1.2.2 Filtrations and characteristic variety

The ring DX is endowed with the filtration by the order. Denoting by F DX this

filtered ring, Fm DX is the sheaf of differential operators of order ≤ m. One can

also define this filtration by

F−1 DX = {0}, Fm DX = {P ∈ DX ; [P, OX] ∈ Fm−1 DX}.

Note that
{

F0 DX = OX , F1 DX = OX ⊕ �X ,

Fm DX · Fl DX ⊂ Fm+l DX , [Fm DX , Fl DX] ⊂ Fm+l−1 DX .
(1.2.2)

We denote by grDX the associated graded ring:

grDX =
⊕

i

Fi DX/ Fi−1 DX ,

by σ : F DX −→ grDX the “principal symbol map” and by σm : Fm DX −→

gr mDX the map “symbol of order m.”

The ring grDX is a commutative graded ring. Moreover, gr 0DX ≃ OX and

gr 1DX ≃ �X .

Denote by SOX
(�X) the symmetric OX-algebra associated with the locally

free OX-module �X . By the universal property of symmetric algebras, the

morphism �X −→ grDX may be extended to a morphism of symmetric algebras

SOX
(�X) −→ grDX , (1.2.3)

and one easily proves that the morphism (1.2.3) is an isomorphism.
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