CONTENTS

Preface

PART I

SPECTRAL LINE INVESTIGATIONS

1. H. C. van de Hulst: Studies of the 21-cm. line and their interpretation (Introductory Lecture) 3
2. M. Stahr Carpenter: 21-cm. observations in Sydney 14
3. F. K. Edmondson: Deviations from circular motion and the importance of southern hemisphere 21-cm. observations 19
4. G. Westerhout: Progress report on 21-cm. research by the Netherlands Foundation for Radio Astronomy and the Leiden Observatory 22
5. G. Westerhout: A 21-cm. line survey of the outer parts of the Galaxy 29
6. M. Schmidt: The distribution of atomic hydrogen in the inner parts of the Galaxy 37
7. B. J. Bok: Progress report on the project in Radio Astronomy at the G. R. Agassiz station of Harvard Observatory 42
8. T. A. Matthews: Report on 21-cm. observations between $l=60^\circ$ and $l=135^\circ$ 48
9. T. K. Menon: A 21-cm. study of the Orion region 56
10. R. S. Lawrence: Radio observations of interstellar neutral hydrogen clouds 66
11. H. E. Tatel: 21-cm. meridian plane surveys 67
12. R. D. Davies and D. R. W. Williams: The measurement of the distance of the radio sources 71
13. J. P. Hagen, A. E. Lilley and E. F. McClain: 21-cm. absorption effects 80
14. F. K. Edmondson: Comments on McClain’s observations of I.A.U. 17S2A 88
15. G. Getmanzev, K. S. Stankevitch and V. S. Troitzyk: Detection of the spectral line of deuterium from the centre of the Galaxy on the wave-length of 91·6 cm. 90
16. C. H. Townes: Microwave and radio-frequency resonance lines of interest to radio astronomy 92
PART II

POINT SOURCES: INDIVIDUAL STUDY AND PHYSICAL THEORY

17. R. Minkowski: Optical investigations of radio sources (Introductory Lecture) page 107
18. J. L. Pawsey: Current progress in development and results obtained with the ‘Mills Cross’ at the Radiophysics Laboratory 123
19. J. D. Kraus, H. C. Ko, R. T. Nash and D. V. Stoutenburg: Recent results in radio astronomy at the Ohio State University 132
20. J. P. Hagen: Spectra of some radio sources 142
22. H. W. Wells: Preliminary observations of point sources at 12.5 and 15.5 Mc./s. 148
23. B. F. Burke and K. L. Franklin: Observations of discrete sources with the 22 Mc./s. Mills Cross 151
24. Ch. L. Seeger: The 400 Mc./s. flux from Cassiopeia A 154
25. V. A. Razin and V. M. Pleshkov: Intensities of the discrete sources in Cassiopeia, Cygnus and Taurus at λ 32 cm. 155
27. R. C. Jennison: Intensity distribution across the Cygnus and Cassiopeia sources 159
28. H. P. Palmer: The angular diameter of discrete radio sources 162
29. F. G. Smith, P. A. O’Brien and J. E. Baldwin: The discrete source of radio waves at the galactic centre 166
30. G. de Vaucouleurs and K. V. Sheridan: Radio and optical intensity distributions in the Centaurus source (NGC5128) 169
32. J. L. Greenstein: Theoretical problems of discrete radio sources 179
33. F. T. Haddock: Hydrogen emission nebulae as radio sources 192
34. J. H. Oort and T. Wakraven: Polarization and the radiating mechanism of the Crab nebula 197
35. I. S. Shklovsky: Optical emission from the Crab nebula in the continuous spectrum 201
36. I. S. Shklovsky: On the nature of the emission from the Galaxy NGC4486 205
PART III

GALACTIC STRUCTURE AND STATISTICAL STUDIES OF POINT SOURCES

37. R. HANBURY BROWN: Galactic radio emission and the distribution of discrete sources (*Introductory Lecture*) page 211

38. J. R. SHAKESHAFT: The Cambridge survey of radio sources 218

39. M. RYLE: The spatial distribution of radio stars 221

40. J. L. PAWSEY: Preliminary statistics of discrete sources obtained with the ‘Mills Cross’ 228

41. J. E. BALDWIN: The spherical component of the galactic radio emission 233

42. A. UNSÖLD: Radio astronomy and the origin of cosmic rays 238

43. I. S. SHKLOVSKY: Some problems of metagalactic radio-emission 241

44. G. DE VAUCOULEURS: Comparison between radio and optical surface brightness distributions in the Magellanic Clouds 244

PART IV

THE QUIET SUN

45. C. W. ALLEN: The quiet and active sun (*Introductory Lecture*) 253

46. J. P. HAGEN: The structure of the solar chromosphere from centimetre-wave radio observations 263

47. C. H. MAYER, R. M. SLOANER AND J. P. HAGEN: Observation of the solar eclipse of 30 June 1954 at 94 cm. wave-length 269

48. F. T. HADDOCK: The radial brightness distribution of the sun at 94 cm. 273

49. RICHARD N. THOMAS AND R. G. ATHAY: On the uniformity of the lower chromosphere 279

50. J. L. PAWSEY: Observations of brightness over the disk of the quiet sun at frequencies of 85, 500 and 1400 Mc./s. 284

51. S. F. SMERD AND J. P. WILD: Interpretation of solar radio-frequency disk brightness distributions derived from observations with aerials extended in one dimension 290

52. J. FIROR: Brightness distribution of the sun at 1.45 metres 294

53. A. HEWISH: Radio observations of the solar corona at sunspot minimum 298
54. J. Tuominen: The ellipticity of the corona at 80 Mc./s. during sunspot minimum 1954
55. M. Laffineur: Radio observations of the eclipse of 30 June 1954
56. T. Hatanaka: Radio observation of the partial solar eclipse, 20 June 1955
57. B. M. Tchikhatchev: A survey of Soviet observations of the radio emission from the sun during solar eclipses
58. V. V. Vitkevitch: Results of observations of the scattering of radio waves by the electronic inhomogeneities of the solar corona

PART V

THE ACTIVE SUN

59. J. P. Wild: Spectral observations of solar activity at metre wavelengths
60. H. W. Dodson: Relation between optical solar features and solar radio emission
61. P. Simon: Sunspots: radio, optical and geomagnetic features
62. W. O. Roberts: Optical evidences of radiational and corpuscular emission from active solar regions
63. M. Waldmeier: The enhanced radiation from sunspot-regions
64. D. H. Menzel and M. Krook: On the origin of solar radio noise
65. K. O. Kiepenheuer: On the mechanism of solar outbursts
66. L. Biermann and R. Lüdt: Remarks on the energy of the non-thermal radio-frequency emission
67. A. Schlüter: Solar radio emission and the acceleration of magnetic-storm particles
68. T. Hatanaka: Polarization of solar radio bursts
69. V. V. Vitkevitch: Disturbed radio emission from the sun as a sum of small monochromatic peaks
70. C. de Jager and F. van 't Veer: Some properties of solar radio-transients on fast 200 Mc./s. records
71. A. D. Fokker: A peculiar type of scintillation of solar radio radiation
PART VI

METEORS AND PLANETS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>F. L. Whipple: Some problems of meteor astronomy (Introductory Lecture)</td>
<td>375</td>
</tr>
<tr>
<td>73</td>
<td>J. G. Davies: Orbits of sporadic meteors</td>
<td>390</td>
</tr>
<tr>
<td>74</td>
<td>I. C. Browne, K. Bulloch, S. Evans and T. R. Kaiser:</td>
<td>392</td>
</tr>
<tr>
<td></td>
<td>The distribution of meteor masses</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>B. F. Burke and K. L. Franklin: Jupiter as a radio source</td>
<td>394</td>
</tr>
<tr>
<td>76</td>
<td>C. A. Shain: Location on Jupiter of a source of radio noise</td>
<td>397</td>
</tr>
<tr>
<td>77</td>
<td>F. Link: Possible proofs of the lunar atmosphere</td>
<td>400</td>
</tr>
<tr>
<td>78</td>
<td>B. Elsmore: The lunar occultation of a radio star and the derivation of an upper limit for the density of the lunar atmosphere</td>
<td>403</td>
</tr>
<tr>
<td>79</td>
<td>V. S. Troitzky and S. E. Khaikin: Radio emission from the moon and the nature of its surface</td>
<td>406</td>
</tr>
<tr>
<td>80</td>
<td>I. C. Browne and J. V. Evans: The moon as a scatterer of radio waves</td>
<td>408</td>
</tr>
</tbody>
</table>