The Cambridge Technical Series
General Editor: P. Abbott, B.A.

AN INTRODUCTION TO
APPLIED MECHANICS
AN INTRODUCTION TO
APPLIED MECHANICS

BY

EWART S. ANDREWS, B.Sc. Eng. (Lond.)

Lecturer in the Engineering Department of the Goldsmiths' College, New Cross, and of the Westminster Technical Institute
Formerly demonstrator and lecturer to the Mechanical Engineering Department of University College, London
Member of the Council of the Concrete Institute

With numerous illustrations and numerical examples

Cambridge:
at the University Press
1915
PREFACE

MANY engineering and architectural teachers have found that applied mechanics is not an easy subject to teach, and most students have discovered that it is a difficult subject to understand. In searching for the reason for this unfortunate state of affairs, the author came to the conclusion that the treatment of the older form of text-book was too much that of applied mathematics—a kind of exercise-ground for algebraic manipulation—and that many of the more modern books that have attempted to remedy this weakness have given too much engineering application of the principles of mechanics without sufficient explanation of those principles.

The aim of the present book is to present the elementary principles of mechanics in accurate though clear terms and to show the application of those principles to the simpler problems arising in engineering and architectural applications. The general treatment is based more upon graphical conceptions than upon purely mathematical analysis because experience shows that the mind of the engineering student reasons more clearly from diagrams than from symbols.

A number of simple experiments have been given, principally those which require the simplest form of apparatus. It is not suggested that the experiments given are all that are desirable in a laboratory course, but it is believed that sufficient have been given to make the principles clear. It may be pointed out here that there is some danger in attempting to learn principles merely by experiments with simple (and usually inaccurate)
PREFACE

apparatus. Before the student can hope to obtain valuable results from experiments, he must learn to make accurate readings of his instruments and to make corrections for the errors that may arise. Some authorities seem to suggest that experiment is of much greater importance to engineers than reasoning, but it should be borne in mind that training is required for good experimental work as well as for anything else, and in the author’s opinion many engineering students who attempt to gather a knowledge of mechanical principles from experiment have not had sufficient preliminary training in experimental method. If our reasoning is based upon experimental laws and not upon dogmatic mathematical conceptions we shall probably make greater progress in elementary work by using experiment as an illustration of the results of our reasoning than by attempting to deduce the principles from the results of our experiments.

The great value of training in experimental work—and thorough training is essential—lies in the direction of research work which comes when we have understood the principles based upon the earlier researches of others.

It is hoped that this book will be found of value as a class-book in the junior classes of Engineering Colleges and in Public Schools that have an engineering side.

The author wishes to express his gratitude to Mr J. B. Peace, M.A., of Emmanuel College, Cambridge, for much valuable criticism and assistance with the proofs, and to the publishers for the great help that they have given in the preparation of the diagrams.

E. S. A.

GOLDSMITHS’ COLLEGE,
NEW CROSS, S.E.
May 1915.
CONTENTS

CHAPTER I
FORCES AND OTHER VECTOR QUANTITIES
Diagrammatic representation of forces—Resultant of a system of forces; triangle of forces—Resolution of forces—Equilibrium; equilibrant—Vector polygon construction—Experimental errors . Pages 1–15

CHAPTER II
MOMENTS AND LEVERAGE
Positive and negative moments—The principle of moments—Reactions on a beam—Stability of a wall—Lever safety valve—Equilibrium of a body under three forces—Link and vector polygon construction—Couples 16–35

CHAPTER III
WORK, POWER AND ENERGY
Definitions—Kinetic and potential energy—Conservation of energy—Useful energy—Work done by a variable force—Work against resistance—Graphical representation of effort and resistance—Mean effort . 36–51

CHAPTER IV
MACHINES AND EFFICIENCY
Wheel and axle and crow-bar—Mechanical advantage; efficiency of machines; velocity of the screw jack—Reversing machines—Pulley tackle—Weston’s pulley block—Actual performance of machines—Indicated and brake horsepower . 52–82

CHAPTER V
VELOCITY AND ACCELERATION
Uniform velocity—Velocity variable in magnitude—Velocity and space curves—Acceleration—Relation between acceleration, velocity and space curves—Equations of motion for constant acceleration—Gravity acceleration—Limits of use of simple formulae—Distance moved in a particular second 83–102
CONTENTS

CHAPTER VI
VELOCITY CHANGE IN DIRECTION; RELATIVE VELOCITY
Combination of velocities—Change of velocity—Relative velocity 103-112

CHAPTER VII
KINETIC ENERGY AND MOMENTUM
Measurement of kinetic energy—Connection between force and acceleration—Momentum—Importance of acceleration in traction problems 113-123

CHAPTER VIII
NEWTON'S LAWS OF MOTION; IMPACT

CHAPTER IX
STRESS AND STRAIN
Definitions—Hooke’s Law—Stress-strain diagrams for mild steel, cast iron and concrete—Elastic moduli—Factor of safety—Resilience—Stress due to sudden loading—Temperature stresses 139-160

CHAPTER X
RIVETED JOINTS; THIN CYLINDERS
Forms of rivet heads and joints, and diameter of rivets—Methods in which a joint may fail—Efficiency of joint—Strength of thin cylinders and pipes 161-173

CHAPTER XI
THE FORCES IN FRAMED STRUCTURES
Kinds of framed structures—Relation between bars and nodes in a perfect frame—Curved members—Reciprocal figure construction—Distinction between ties and struts—The method of moments 174-187

CHAPTER XII
BEAMS AND GIRDERs
Shearing force and bending moment—Diagrams for standard cases of loading for cantilevers and simply supported beams—Graphical construction 188-202
CONTENTS

CHAPTER XIII
CENTRE OF GRAVITY AND CENTROID
Centre of gravity by moments—Centre of gravity as balance point and by inspection—Centroid of an area—Centroid of triangle, quadrilateral, trapezium, semicircle and parabola—Centre of gravity of pyramids and cones—Graphical construction for centroid—Kinds of equilibrium

CHAPTER XIV
FRICITION AND LUBRICATION
Static and kinetic friction—Coefficient of friction and angle of friction—Rolling friction—Inclined plane and screw with friction—Angle of repose—Efficiency of a screw—Lubrication

CHAPTER XV
MOTION IN A CURVED PATH
Hodograph—Uniform motion in a circle—Centripetal and centrifugal force—Railway curves and motor tracks—Centrifugal governors—Balancing rotating parts—Projectiles

CHAPTER XVI
MECHANISMS
Crank and connecting-rod mechanism—Instantaneous or virtual centre—Watt’s parallel motion—Quick-return mechanism—Toggle mechanism—Cams and wipers—Pawl and ratchet mechanism

CHAPTER XVII
BELT, CHAIN AND TOOTHED GEARING
Belt gearing—Velocity ratio—Speed-cones—Sizes of cones for keeping belt taut—Belt reversing gear—Belt drive for inclined axes—Toothed gearing—Rack, spur, bevel, spiral and worm gearing—Toothed gear trains—Idle gear wheels—Back gear for lathes—Reversing drive for lathe lead screw—Bevel gear reversing train

APPENDIX
Sum curve construction
Trigonometrical relations
Mathematical tables
Answers to Exercises
Index