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Graphs and Groups: Preliminaries

1.1 Graphs and digraphs

In these chapters a graph G = (V(G), E(G)) will consist of two disjoint sets:

a nonempty set V = V(G) whose elements will be called vertices and a set

E = E(G) whose elements, called edges, will be unordered pairs of distinct

elements of V . Unless explicitly stated otherwise, the set of vertices will always

be finite. An edge, {u, v}, u, v ∈ V , is also denoted by uv. Sometimes E is

allowed to be a multiset, that is, the same edge can be repeated more than once

in E. Such edges are called multiple edges. Also, edges uu consisting of a pair

of repeated vertices are sometimes allowed; such edges are called loops. But

unless otherwise stated, it will always be assumed that a graph does not have

loops or multiple edges. The complement of the graph G, denoted by G, has the

same vertex-set as G, but two distinct vertices are adjacent in the complement

if and only if they are not adjacent in G.

The degree of a vertex v, denoted by deg(v), is the number of edges in E(G)

to which v belongs. A vertex of degree k is sometimes said to be a k-vertex.

Two vertices belonging to the same edge are said to be adjacent, while a vertex

and an edge to which it belongs are said to be incident. A loop incident to a

vertex v contributes a value of 2 to deg(v). A graph is said to be regular if

all of its vertices have the same degree. A regular graph with degree equal to

3 is sometimes called cubic. The minimum and maximum degrees of G are

denoted by δ = δ(G) and � = �(G), respectively.

In general, given any two sets A, B, then A−B will denote their set-theoretical

difference, that is, the set consisting of all of the elements that are in A but not

in B. Also, a set containing k elements is often said to be a k-set.

If S is a set of vertices of a graph G, then G−S will denote the graph obtained

by removing S from V(G) and removing from E(G) all edges incident to some

vertex in S. If F is a set of edges of G, then G − F will denote the graph whose
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2 Graphs and Groups: Preliminaries

vertex-set is V(G) and whose edge-set is E(G) − F. If S = {u} and F = {e},

we shall, for short, denote G − S and G − F by G − u and G − e, respectively.

If S is a subset of the vertices of G, then G[S] will denote the subgraph of G

induced by S, that is, the subgraph consisting of the vertices in S and all of the

edges joining pairs of vertices from S.

An important modification of the foregoing definition of a graph gives what

is called a directed graph, or digraph for short. In a digraph D = (V(D), A(D))

the set A = A(D) consists of ordered pairs of vertices from V = V(D) and its

elements are called arcs. Again, an arc (u, v) is sometimes denoted by uv when

it is clear from the context whether we are referring to an arc or an edge. The

arc uv is said to be incident to v and incident from u; the vertex u is said to be

adjacent to v whereas v is adjacent from u. The number of arcs incident from a

vertex v is called its out-degree, denoted by degout(v), while the number of arcs

incident to v is called its in-degree and is denoted by degin(v). A digraph is said

to be regular if all of its vertices have the same out-degree or, equivalently, the

same in-degree. Sometimes, when we need to emphasise the fact that a graph

is not directed, we say that it is undirected.

The number of vertices of a graph G or digraph D is called its order and is

generally denoted by n = n(G) or n = n(D), while the number of edges or

arcs is called its size and is denoted by m = m(G) or m = m(D).

A sequence of distinct vertices of a graph, v1, v2, . . . , vk+1, and edges e1, e2,

. . . , ek such that each edge ei = vivi+1 is called a path. If we allow v1 and

vk+1, and only those, to be the same vertex, then we get what is called a

cycle.

The length of a path or a cycle in G is the number of edges in the path or

cycle. A path of length k is denoted by Pk+1 while a cycle of length k is denoted

by Ck. The distance between two vertices u, v in a connected graph G, denoted

by d(u, v), is the length of the shortest path joining u and v. The diameter of G

is the maximum value attained by d(u, v) as u, v run over V(G), and the girth

is the length of the shortest cycle.

In these definitions, if we are dealing with a digraph and the ei = vivi+1

are arcs, then the path or cycle is called a directed path or directed cycle,

respectively.

Given a digraph D, the underlying graph of D is the graph obtained from

D by considering each pair in A(D) to be an unordered pair. Given a graph G,

the digraph
←→
G is obtained from G by replacing each edge in E(G) by a pair

of oppositely directed arcs. This way, a graph can always be seen as a special

case of a digraph.

We adopt the usual convention of representing graphs and digraphs by draw-

ings in which each vertex is shown by a dot, each edge by a curve joining the
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1.2 Groups 3

corresponding pair of dots and each arc (u, v) by a curve with an arrowhead

pointing in the direction from u to v.

A number of definitions on graphs and digraphs will be given as they are

required. However, several standard graph theoretic terms will be used but not

defined in these chapters; these can be found in any of the references [257] or

[259].

1.2 Groups

A permutation group will be a pair (Ŵ, Y) where Y is a finite set and Ŵ is a

subgroup of the symmetric group SY , that is, the group of all permutations of

Y . The stabiliser of an element y ∈ Y under the action of Ŵ is denoted by Ŵy

while the orbit of y is denoted by Ŵ(y). The Orbit-Stabiliser Theorem states

that, for any element y ∈ Y ,

|Ŵ| = |Ŵ(y)| · |Ŵy|.

If the elements of Y are all in one orbit, then (Ŵ, Y) is said to be a transitive

permutation group and Ŵ is said to act transitively on Y . The permutation group

Ŵ is said to act regularly on Y if it acts transitively and the stabiliser of any

element of Y is trivial. By the Orbit-Stabiliser Theorem, this is equivalent to

saying that Ŵ acts transitively on Y and |Ŵ| = |Y|. Also, Ŵ acts regularly on Y

is equivalent to saying that, for any y1, y2 ∈ Y , there exists exactly one α ∈ Ŵ

such that α(y1) = y2.

One important regular action of a permutation group arises as follows. Let

Ŵ be any group, let Y = Ŵ and, for any α ∈ Ŵ, let λα be the permutation

of Y defined by λα(β) = αβ. Let L(Ŵ) be the set of all permutations λα for

all α ∈ Ŵ. Then (L(Ŵ), Y) defines a permutation group acting regularly on Y .

This is called the left regular representation of the group Ŵ on itself. One can

similarly consider the right regular representation of the group Ŵ on itself, and

this is denoted by (R(Ŵ), Y).

The following is an important generalisation of the previous definitions. If Ŵ

is a group and H ≤ Ŵ, let Y = Ŵ/H be the set of left cosets of H in Ŵ. For any

α ∈ Ŵ, let λHα be a permutation on Y defined by λHα (βH) = αβH. Let LH(Ŵ)

be the set of all λHα for all α ∈ Ŵ. Then (LH(Ŵ), Y) defines a permutation

group that reduces to the left regular representation of Ŵ if H = {1}.

Two permutation groups (Ŵ1, Y1), (Ŵ2, Y2) are said to be equivalent, denoted

by (Ŵ1, Y1) ≡ (Ŵ2, Y2), if there exists a bijective isomorphism φ : Ŵ1 → Ŵ2

and a bijection f : Y1 → Y2 such that, for all y ∈ Y1 and for all α ∈ Ŵ1,

f (α(x)) = φ(α)(f (x)).
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4 Graphs and Groups: Preliminaries

Figure 1.1. Aut(G), Aut(H) are isomorphic but not equivalent

In this case we also say that the action of Ŵ1 on Y1 is equivalent to the action

of Ŵ2 on Y2, and sometimes we denote this simply by Ŵ1 = Ŵ2, when the two

sets on which the groups are acting is clear from the context.

Figure 1.1 shows a simple example of two graphs whose automorphism

groups (to be defined later in this chapter) are isomorphic as abstract groups

but clearly not equivalent as permutation groups since the sets (of vertices) on

which they act are not equal. (See also Exercise 1.7.)

Note in particular that, if (Ŵ1, Y1) ≡ (Ŵ2, Y2), then apart from Ŵ1 ≃ Ŵ2 as

abstract groups, and |Y1| = |Y2|, the cycle structure of the permutations of Ŵ1

on Y1 must be the same as those of Ŵ2 on Y2. However, the converse is not

true; that is, Ŵ1 and Ŵ2 could be isomorphic and the cycle structures of their

respective actions could be the same, but (Ŵ1, Y1) might not be equivalent to

(Ŵ2, Y2) (see Exercise 1.9).

If (Ŵ, Y) is a permutation group acting on Y and Y ′ is a union of orbits of Y ,

then we can talk about the action of Ŵ restricted to Y ′, that is, the permutation

group (Ŵ, Y ′) where, for α ∈ Ŵ and y′ ∈ Y ′, α(y′) is the same as in (Ŵ, Y).

When Y ′ is a union of orbits we also say that it is invariant under the action

of Ŵ because in this case α(y′) ∈ Y ′ for all α ∈ Ŵ and y′ ∈ Y ′. Also, (Ŵ′, Y ′)

is said to be a subpermutation group of (Ŵ, Y) if Ŵ′ ≤ Ŵ and Y ′ is a union of

orbits of Ŵ′ acting on Y .

The following is a useful well-known result on permutation groups whose

proof is not difficult and is left as an exercise (see Exercise 1.10).

Theorem 1.1 Let (Ŵ, Y) be a permutation group acting transitively on Y. Let

y ∈ Y, let H = Ŵy be the stabiliser of y and let W be Ŵ/H, the set of left cosets

of H in Ŵ. Then (Ŵ, Y) is equivalent to (LH(Ŵ), W).

If (Ŵ, Y) is not transitive, and O is the orbit containing y, then (LH(Ŵ), W)

is equivalent to the action of Ŵ on Y restricted to O.

In the context of groups and graphs we shall need the very important idea of

a group acting on pairs of elements of a set. Thus, let (Ŵ, Y) be a permutation
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1.2 Groups 5

group acting on the set Y . By (Ŵ, Y × Y) we shall mean the action on ordered

pairs of Y induced by Ŵ as follows: If α ∈ Ŵ and x, y ∈ Y , then

α((x, y)) = (α(x), α(y)).

Similarly, by (Ŵ,
(

Y
2

)

) we shall mean the action on unordered pairs of distinct

elements of Y induced by

α({x, y}) = {α(x), α(y)}.

These ideas will be developed further in a later chapter.

In later chapters we shall also need the notions of k-transitivity and primitiv-

ity of a permutation group. In order to study permutation groups in more detail

one has to dig deeper into the concept of transitivity. Suppose, for example,

that Y is the set {1, 2, 3, 4, 5} and Ŵ is the group generated by the permutation

α = (1 2 3 4 5). Then clearly the permutation group (Ŵ, Y) is transitive because

for any i, j ∈ Y there is some power of α which maps i into j. But there is no

power of α which, say, simultaneously maps 1 into 5 and 2 into 3. That is, not

every ordered pair of distinct elements of Y can be mapped by a permutation

in Ŵ into any other given ordered pair of distinct elements. We therefore say

that the permutation group (G, Y) is not 2-transitive.

More generally, a permutation group (Ŵ, Y) is said to be k-transitive if, given

any two k-tuples (x1, x2, . . . , xk) and (y1, y2, . . . , yk) of distinct elements of Y ,

then there is an α ∈ Ŵ such that

(α(x1), α(x2), . . . , α(xk)) = (y1, y2, . . . , yk).

Thus, a transitive permutation group is 1-transitive. Also, (Ŵ, Y) is said to be

k-homogeneous if, for any two k-subsets A, B of Y , there is an α ∈ Ŵ such that

α(A) = B, where α(A) = {α(a) : a ∈ A}.

Finally, let (Ŵ, Y) be transitive and suppose that R is an equivalence relation

on Y , and let the equivalence classes of Y under R be Y1, Y2, . . . , Yr. Then

(Ŵ, Y) is said to be compatible with R if, for any α ∈ Ŵ and any equiv-

alence class Yi, the set α(Yi) is also an equivalence class. For example, if

Y = {1, 2, 3, 4} and Ŵ is the group generated by the permutation (1 2 3 4), then

(Ŵ, Y) is compatible with the relation whose equivalence classes are {1, 3} and

{2, 4}.

Any permutation group is clearly compatible with the trivial equivalence

relations on Y , namely, those in which either all of Y is an equivalence class or

when each singleton set is an equivalence class. If these are the only equiva-

lence relations with which (Ŵ, Y) is compatible, then the permutation group is

said to be primitive. Otherwise it is imprimitive.
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6 Graphs and Groups: Preliminaries

If (Ŵ, Y) is imprimitive and R is a nontrivial equivalence relation on Y with

which the permutation group is compatible, then the equivalence classes of

R are called imprimitivity blocks and their set Y/R is an imprimitivity block

system for the permutation group (Ŵ, Y).

It is an easy exercise (see Exercise 1.14) to show that a 2-transitive permu-

tation group is primitive.

We shall also need some elementary ideas on the presentation of a group in

terms of generators and relations.

Let Ŵ be a group and let X ⊆ Ŵ. A word in X is a product of a finite number

of terms, each of which is an element of X or an inverse of an element of X.

The set X is said to generate Ŵ if every element in Ŵ can be written as a word

in X; in this case the elements of X are said to be generators of Ŵ. A relation

in X is an equality between two words in X. By taking inverses, any relation

can be written in the form w = 1, where w is some word in X.

If X generates Ŵ and every relation in Ŵ can be deduced from one of the

relations w1 = 1, w2 = 1, . . . in X, then we write

Ŵ = 〈X|w1 = 1, w2 = 1, . . . 〉.

This is called a presentation of Ŵ in terms of generators and relations. The

group Ŵ is said to be finitely generated (respectively, finitely related) if |X|

(respectively, the number of relations) is finite; it is called finitely presented,

or we say that it has a finite presentation, if it is both finitely generated and

finitely related.

It is clear that every finite group has a finite presentation (although the con-

verse is false). Simply take X = Ŵ and, as relations, take all expressions of the

form αiαj = αk for all αi, αj ∈ Ŵ. In other words, the multiplication table of Ŵ

serves as the defining relations.

It is well to point out that removing relations from a presentation of a group

in general gives a larger group, the extreme case being that of the free group

which has only generators and no relations.

The simplest free group is the infinite cyclic group that has the presentation

〈α〉

with just one generator and no defining relation, whereas the cyclic group of

order n has the presentation

〈α|αn = 1〉;

this group is denoted by Zn.

The group with presentation

〈α, β〉
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1.3 Graphs and groups 7

is the infinite free group on two elements. The dihedral group of degree n is

denoted by Dn. It has order 2n and also has a presentation with two generators:

〈α, β|α2 = 1, βn = 1, α−1βα = β−1〉.

Determining a group from a given presentation is not an easy problem. The

reader who doubts this can try to show that the presentations

〈α, β : αβ2 = β3α, βα2 = α3β〉

and

〈α, β, γ : α3 = β3 = γ 3 = 1, αγ = γα−1, αβα−1 = βγβ−1〉

both give the trivial group. We shall of course make a very simple use of stan-

dard group presentations where these difficulties do not arise. The book [159]

is a standard reference for advanced work on group presentations.

The reader is referred to [147, 222] for any terms and concepts on group

theory that are used but not defined in these chapters and, in particular, to [49,

62] for more information on permutation groups.

1.3 Graphs and groups

Let G, G′ be two graphs. A bijection α : V(G) → V(G′) is called an isomor-

phism if

{u, v} ∈ E(G) ⇔ {α(u), α(v)} ∈ E(G′).

The graphs G, G′ are, in this case, said to be isomorphic, and this is denoted by

G ≃ G′. Similarly, if D, D′ are digraphs, then a bijection α : V(D) → V(D′) is

called an isomorphism if

(u, v) ∈ A(D) ⇔ (α(u), α(v)) ∈ A(D′),

and in this case the digraphs D, D′ are also said to be isomorphic, and again

this is denoted by D ≃ D′.

If the two graphs, or digraphs, in this definition are the same, then α is said

to be an automorphism of G or of D. The set of automorphisms of a graph or a

digraph is a group under composition of functions, and it is denoted by Aut(G)

or Aut(D).

Note that an automorphism α of G is an element of SV(G), although it is its

induced action on E(G) that determines whether α is an automorphism. This

fact, although clear from the definition of automorphism, is worth emphasising

when beginning to study automorphisms of graphs.
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8 Graphs and Groups: Preliminaries

Figure 1.2. No automorphism permutes the edges as (12 23 34)

For example, for the graph in Figure 1.2, the permutation of edges given by

(12 23 34) is not induced by any permutation of the vertex-set {1, 2, 3, 4}.

The only automorphisms for this graph are the identity and the permutation

(14)(23), which induces the permutation (12 34)(23) of the edges in the graph.

The question of edge permutations not induced by vertex permutations will

be considered in some more detail later in this chapter.

The process of obtaining a permutation group from a digraph can be reversed

in a very natural manner. Suppose that (Ŵ, Y) is a group of permutations acting

on a set Y . Let A be a union of orbits of (Ŵ, Y×Y). Clearly, the digraph D whose

vertex-set is Y and whose arc-set is A has Ŵ as a subgroup of its automorphism

group. It might, however, happen that Aut(G) is larger than Ŵ. Moreover, if the

pairs in A are such that, for every (u, v) ∈ A, (v, u) is also in A, then replacing

every opposite pair of arcs of D by a single edge gives a graph G such that

Ŵ ⊆ Aut(G).

This and other ways of constructing graphs or digraphs admitting a given

group of permutations will be studied in more detail in Chapter 4.

Certain facts about automorphisms of graphs and digraphs are very easy to

prove and are therefore left as exercises:

(i) Aut(G) = Aut(G);

(ii) Aut(G) = SV(G) if and only if G or G is Kn, the complete graph on n

vertices;

(iii) Aut(Cn) = Dn.

Also, let α be an automorphism of G and u, v vertices of G. Then,

(iv) deg(u) = deg(α(u));

(v) G − u ≃ G − α(u);

(vi) d(u, v) = d(α(u), α(v)), where d(u, v) is the distance between u and v.

Also, if u is a vertex in a digraph D and α is an automorphism of D, then

(vii) degin(u) = degin(α(u)) and degout(u) = degout(α(u)).

If u and v are vertices in a graph G and there is an automorphism α of G

such that α(u) = v, then u and v are said to be similar. If G − u ≃ G − v, then

u and v are said to be removal-similar. Property (v) tells us that if two vertices

are similar, then they are removal-similar. The converse of this is, however,
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1.3 Graphs and groups 9

false, as can be seen from the graph shown in Figure 1.3. Here, the vertices

u, v are removal-similar but not similar. Such vertices are called pseudosimi-

lar. Similar, removal-similar and pseudosimilar edges are analogously defined:

Two edges ab, cd of G are similar if there is an automorphism α of G such

that α(a)α(b) = cd. We shall be studying pseudosimilarity in more detail in

Chapter 5.

Sometimes we ask questions of this type: how many graphs (possibly of

some fixed order n) are there? The answer to this question depends heavily on

how we consider two graphs to be different.

In general, if the order of a graph G is n, we can think of its vertices as

being labelled with the integers {1, 2, . . . , n}. Two graphs G and H of order n

so labelled are called identical or equal as labelled graphs (written G = H) if

ij ∈ E(G) ⇔ ij ∈ E(H).

(Compare this definition with that of isomorphic graphs.) Obviously, identical

graphs are isomorphic, but the converse is not true. For example, the graphs in

Figure 1.4 are isomorphic but not identical.

Counting nonisomorphic graphs is, in general, much more difficult than

counting nonidentical graphs. For example, there are four nonisomorphic graphs

on three vertices but eight nonidentical ones. These are shown in Figures 1.5

and 1.6, respectively.

Figure 1.3. A pair of pseudosimilar vertices

Figure 1.4. Isomorphic but nonidentical graphs

Figure 1.5. The four nonisomorphic graphs of order 3
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10 Graphs and Groups: Preliminaries

Figure 1.6. The eight nonidentical graphs of order 3

Counting nonisomorphic graphs involves consideration of group symme-

tries. For more on this the reader is referred to [103].

1.4 Edge-automorphisms and line-graphs

Although we shall be dealing mostly with Aut(G) and its realisation as the

permutation group (Aut(G), V(G)), let us briefly look at other related groups

associated with G. In this section we shall assume that G is a nontrivial graph,

that is, its edge-set is nonempty.

An edge-automorphism of a graph G is a bijection θ on E(G) such that two

edges e, f are adjacent in G if and only if θ(e), θ(f ) are also adjacent in G. The

set of all edge-automorphisms of G is a group under composition of functions,

and it is denoted by Aut1(G).

The concept of edge-automorphisms can perhaps be best understood within

the context of line-graphs. The line-graph L(G) of a graph G is defined as

the graph whose vertex-set is E(G) and in which two vertices are adjacent if

and only if the corresponding edges are adjacent in G. An automorphism of

L(G) is clearly an edge-automorphism of G and (Aut1(G), E(G)) is equivalent

to (Aut(L(G), V(L(G))). In this section we shall give the exact relationship

between Aut1(G) and Aut(G), that is, between the automorphism groups of G

and L(G).

As we described earlier, any automorphism α of G naturally induces a bijec-

tion α̂ on E(G) defined by α̂(uv) = α(u)α(v). It is an important (and easy to
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