

STATISTICS

STATISTICS

SECOND EDITION OF 'A SECOND COURSE IN STATISTICS'

ROBERT LOVEDAY

M.Sc. (Sheffield), F.I.S., F.I.M.A.

CAMBRIDGE
AT THE UNIVERSITY PRESS
1971

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316606940

© Cambridge University Press 1961

The edition © Cambridge University Press 1969

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition 1961 Reprinted 1965, 1966 Second edition [metric] 1969 Reprinted 1971 First paperback edition 2016

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-60694-0 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Preface		<i>page</i> xi	
1	LOCATION AND DISPERSION		
1	Location or central tendency	1	
2	Change of origin and unit	2	
3	Variance. Standard deviation	3	
4	Change of origin and unit	4	
5	Dispersion or variability	5	
6	Exercises	6	
7	From randon sample to parent population	8	
8	Large samples	10	
9	Exercises	10	
10	Frequency distribution with unequal group intervals	10	
11	Histogram	11	
12	Frequency distribution with equal group intervals	12	
13	Mean of frequency distribution	13	
14	First moments	13	
15	Variance and standard deviation of a frequency distribution	14	
16	Change of origin and unit	15	
17	Second, third and fourth moments	15	
18	Exercises	16	
2	THE NORMAL DISTRIBUTION		
19	The normal probability curve	21	
20	Negative values of x	21	
21	The graph of the function	21	
22	The area under the curve	21	
23	Exercises using Simpson's rule	22	
24	The area under the graph to the left of a given ordinate	23	
25	A(x) for negative values of x	23	
26	The mean and the standard deviation	24	
27	How to construct a normal frequency distribution when given it mean and its standard deviation	s 25	
28	The histogram	26	
29	Exercises	26	
30	An example in which it is assumed that the variability of production can be controlled	n 27	
		v	

31	An example in which the mean is adjusted, the variability remainin constant	g <i>page</i> 28
32	Exercises	29
3	PROBABILITY	
33	Casting a die	30
34	Playing cards	30
35	Tossing a coin	30
36	Meaning of probability	30
37	Definition of probability	31
38	Success and failure	32
39	Addition rule	32
40	Independent events	34
41	Conditional probabilities	34
42	Examples	35
43	Exercises	36
44	A posteriori probabilities	38
45	-	39
46	•	40
4	PROBABILITY DISTRIBUTIONS	
47	The symbol $\binom{n}{r}$ or ${}^{n}C_{r}$	41
48	The factorial notation $n!$ or $ n $	41
49	Selecting and rejecting	42
50	The use of $\binom{n}{r}$ in examples on probability	42
51	Experiments with playing cards	43
52	The number of ways of selecting like things	44
53	Examples	45
54	Exercises	47
5	THE BINOMIAL DISTRIBUTION	
55	Throwing six dice	49
56	The binomial expansion of $(q+p)^n$	49
57	Exercises	50
58	Tossing five coins	51
59	Exercise	51
60	The sampling-bottle	51
61	Exercises	53
62	Sampling in industry	53
63	Examples	53
64	Exercises	56
vi		

65 66	Verification that the mean of the binomial distribution is <i>np</i> The mean and variance of the binomial distribution	page	56 57
67	How to estimate the proportion of black balls in a sampling-bottle		58
68	Estimation of the proportion of defective items in a bulk	,	59
69	Exercises		59
0)	LACICISES		J)
6	THE POISSON DISTRIBUTION		
70	Introductory		60
71	Exercise		62
72	The derivation of the Poisson distribution		62
73	The mean and variance of the Poisson distribution		63
74	An example in which p is small and n is large		64
75	A traffic example		64
76	Exercises		64
7	THE χ^2 -DISTRIBUTION		
77	The null hypothesis		67
78	The use of χ^2 for testing normality		67
79	The calculation of χ^2		68
80	The number of degrees of freedom, ν		68
81	The acceptance or rejection of the null hypothesis		69
82	More precise interpretation of the P values		69
83	A distribution which is not normal		70
84	Exercises		71
85	Testing a binomial distribution		72
86	Exercises		73
87	Testing a Poisson distribution		73
88	A distribution may conform to both the binomial and the Poisson	1	
00	laws		74
89	Exercises		75
8	THE USE OF χ^2 IN TESTING		
	CONTINGENCY TABLES		
90	Introductory experiment. Throwing a single die		76
91	An experiment with playing cards		77
92	Contingency tables		77
93	An example from an engineering workshop		77
94	Expected frequencies in a given ratio		78
95	An example from genetic theory		79
96	An example illustrating Yates's correction when $\nu = 1$		79
97	Exercises		80
98	A 2×2 contingency table		81
99	Experiments using coloured dice		82
			vii

100	Exercises	page 83
101		
102	Exercises	85
9 5	SAMPLES AND SIGNIFICANCE	
103	Sample estimates of population values	89
104	Two-tail probability	90
105	The frequency distribution of means of samples	91
106	Standard error and confidence limits of large samples	93
107	Use of the t-distribution for small samples	93
108	Exercises	94
109	The significance of a single mean (large samples)	94
110	Example	95
111	Exercises	95
112	The significance of a single mean (small samples)	95
113	Exercises	97
114	The variance of the sums = the sum of the variances. The variance of the differences = the sum of the variances	e 97
115	Experiment with two coloured dice	98
116	Three or more dice	99
117	Example	99
118	Exercises	100
119	$Var (a_1x_1 + a_2x_2 + + a_nx_n) = a_1^2 var x_1 + a_2^2 var x_2 + + a_n^2 var x_n$	101
120	Example	102
121	The significance of the difference between the means of two large samples	e 102
122	Example	103
123	Exercises	104
124	The significance of the difference between the means of two small samples	1 105
125	Example	106
126	Exercises	107
120	LACICISES .	107
10	QUALITY CONTROL	
127	Control of a given dimension	112
128	Control of the fraction defective	112
129	The value of random sampling	112
130	The estimation of the standard deviation from the mean range of samples of n observations	f 113
131	Example	113
132	A quality-control chart for means	113
133	Exercise	115
134	A quality-control chart for ranges	116
viii		

	CONTENTS	
135	Exercise pag	e 117
136	Allowable width of control limits when tolerance limits are specified	117
137	Exercise	118
138	Control chart for fraction defective	118
139	Exercise	120
11	METHOD OF LEAST SQUARES	
140	A bivariate distribution	121
141	The scatter diagram: direct correlation	121
142	Inverse correlation	122
143	Absence of correlation	122
144	How to calculate the equation of the least squares line of regression of y on x	122
145	The formal derivation of the normal equations	126
146	The regression line passes through the mean of the array	127
147	The regression coefficient	127
148	The line of regression of x on y	128
149	The two lines of regression in one diagram	129
150	Dichotomy	130
151	Exercises	130
12	CORRELATION BY PRODUCT MOMENTS	
152	The coefficient of correlation r_{xy}	136
153	The calculation of r_{xy}	137
154	The coefficient of correlation and the regression lines for grouped data	139
155	The significance of r_{xy}	142
156	Exercises	142
13	CORRELATION BY RANKS	
157	The coefficient of rank correlation	144
158	The formula for the coefficient of rank correlation	144
159	The derivation of the formula for the coefficient of rank correlation	145
160	Method of ranking equal values of a variate	146
161	Kendall's coefficient of rank correlation $ au$	147
162	Exercises	151
14	ANALYSIS OF VARIANCE CALCULATIONS	
163	Significance of variance ratio	154
164	Example of a variance ratio which is significant	154
165	Example in which neither F nor t are significant	155
166	Exercise	156
167	Single factor analysis of variance	156
		ix

168	Better n	nethod of calculating the mean squares	page 1:	59
169			• 0	50
170	-		16	60
171	Two-fac	ctor analysis of variance	17	71
172		nethod of calculating the mean squares	16	64
173			16	66
174 When the residual-mean-square is significantly greater tha		her of		
	the be	etween-mean-squares	16	56
175	Exercise	28	16	57
15 MISCELLANEOUS EXERCISES			16	59
Ansv	vers to ex	rercises	17	79
Glos	sary		18	36
App	endix		19	95
Tables A1		Values of $y = \frac{1}{\sqrt{(2\pi)}} e^{-\frac{1}{2}x^2}$	19)5
	A 2	Values of $A(x) = \frac{1}{\sqrt{(2\pi)}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{4}} dt$	19	96
	A3	Rules for determining ν when applying the χ^2 -test	19	8
	A4	Percentage points of the χ^2 -distribution	19	9
	A 5	Percentage points of the t-distribution	20	Ю
	A6	e^{-x} (for use with the Poisson distribution)	20)1
	A7	5 per cent points of the F-distribution	20)2
	A8	$2\frac{1}{2}$ per cent points of the F-distribution	20)3
Inde	x		20)5

PREFACE

The object of this volume is to establish firmly the bridge between the elementary treatment given in *A First Course in Statistics* and the rigorous treatment given in more advanced University courses.

The keyword of A First Course in Statistics is observation. The uninitiated student is unable to extract ideas from Statistics until he has learnt the common methods of classifying and representing data. He has to learn what meaning can be attached to the terms commonly used in Statistical Analysis. In a first course the idea of significance should be avoided and all differences at this stage should be absolutely blatant.

In this course, however, the important idea is *probability*. At this stage the student must be able to decide how much *confidence* he can place in his results; whether the small differences he observes are *significant* or not.

The opening chapter on location and dispersion makes it possible to begin this course without having previously read the *First Course*. In other words, this volume is complete in itself. The normal distribution is introduced in chapter 2 because experience shows that, immediately after they have become acquainted with *frequency distributions*, students feel an urgent need to know something about the *mathematical model* which fits so many of them so well. The brief treatment of probability in chapter 3, which includes Bayes' theorem, is sufficient to lead naturally to probability distributions in general and to the binomial and Poisson distributions in particular.

Chapters 7, 8 and 9 deal with the use of χ^2 and t-tables for testing significance and a short account of Quality Control follows in chapter 10. A treatment of regression by the method of least squares and of correlation coefficients (including dichotomy, Spearman's ρ and Kendall's τ) is given in chapters 10–13 and the final chapter covers the use of F-tables for the analysis of variance.

The glossary at the end of the book is of interest in that it not only summarises the terms and formulae introduced in the earlier part of the text but it also extends them. Thus, by reference to the glossary, a forward look can be taken to ideas left open for exploration in a more advanced treatise.

1 July 1969 R.L.

хi