INDEX

(The more important of several references are indicated in heavy type.)

<p>| Absolute alcohol, 97, 98 | Acetone, distinguished from ethyl alcohol, 183 |
| Acetal, 154, 159, 162, 426 | Acetone, produced from ethyl alcohol, 471, 472 |
| Acetaldehyde, chlorination, 161 | Acetone, uses, 186 |
| Acetaldehyde, constitution, 155 | Acetone cyanohydrin, 184 |
| Acetaldehyde, from fermentation of hexoses, 468, 470 | Acetone phenylhydrazine, 184 |
| Acetaldehyde, in preparation of n-butyl alcohol, 472 | Acetone sodium bisulphite, 183 |
| Acetaldehyde, reduction, 99 | Acetone, substituted derivatives, 376 |
| Acetaldehydecyanohydrin, cyanhydrin (lactonitrile), 157, 314, 363, 364 | Acetonitrile (methyl cyanide), 199 |
| Acetaldehyde oxide (acetaldoxime), 159 | Acetophenone (methylphenyl ketone), 77, 108, 115, 186, 187 |
| Acetaldehyde p-nitrophenylhydrazone, 161 | Acetophenone oxime, 189 |
| Acetaldehyde phenylhydrazones, 161 | Acetophenone phenylhydrazone, 189 |
| Acetaldehyde semicarbazone, 160 | Acetophenone pinacol (ß- dioxy-ß-diphenylbutane), 188 |
| Acetaldehyde sodium bisulphite, 470 | Acetophenone, sodium derivative, 190 |
| Acetaldoxime (acetalddehyde oxide), 160 | Acetoxime, 184 |
| Acetamide, 203, 209, 210, 211, 212, 216, 250 | Acetyl, 207 |
| Acetamide, N-substituted, 209 | Acetyl derivatives, 208 |
| Acetanilide, 190, 270, 271, 273 | Acetyl oxide (acetonylhydride), 297 |
| Acetic acid, 50, 88, 104, 138, 156, 179, 192, 198, 200, 203, 219, 212, 230, 310, 355, 359, 375, 386 | p-Acetilaminophenol (phenacetin), 271 |
| Acetic acid, calcium salt, 198, 386 | Acetylation, 241, 451 |
| Acetic acid, constitution, 199, 216 | Acetylbenzene (acetophenone), 186 |
| Acetic acid, dissociation constant, 237, 317 | Acetyl chloride, 187, 207, 208, 217, 241, 305 |
| Acetic acid, esters, 210 | Acetylethol, 261 |
| Acetic acid, lead salts, 204 | Acetyldiphenylamine, 291 |
| Acetic acid, potassium salts, 202 | Acetylfumigic acid (pyruvic acid), 365 |
| Acetic acid, properties, 201 | Acetylsalicylic acid, 132 |
| Acetic acid, purification, 201 | Acetylene, 2, 27, 45, 48, 155, 237, 295, 297 |
| Acetic acid, salts, 179, 203, 204, 205, 208, 215 | Acetylene, constitution, 27, 47, 48 |
| Acetic acid, series, 192 | Acetylene in coal gas, 50 |
| Acetic acid, substitution derivatives, 376 | Acetylene in production of acetaldehyde, 99 |
| Acetic acid, synthesis, 199 | Acetylene, properties, 47 |
| Acetic anhydride, 173, 179, 207, 209, 210, 241 | Acetylene from copper acetylened, 51 |
| Acetosatic acid, 179, 368, 369 | Acetylene dibromide (sym-dibromo-ethylen), 48 |
| Acetone, 50, 88, 106, 108, 109, 111, 179, 180, 189, 203, 368, 369, 375, 386 | Acetylene dichloride (sym-dichloroethylen), 49 |
| Acetone, 210, 241 | Acetylene tetram bromide (sym-tetra bromoethane), 48 |
| ‘Acetone bodies’, 179, 368 | Acetylene tetraochloride (sym-tetra chloroethane), 48, 49 |
| Acetone, catalytic reduction, 107 | Acetyl eny alcohol (propionic alcohol), 117 |
| | Acetyle ne radical, 117 |</p>
<table>
<thead>
<tr>
<th>INDEX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>518</td>
<td>INDEX</td>
</tr>
<tr>
<td>Ack, Lorenz (synthesis of uric acid)</td>
<td>488</td>
</tr>
<tr>
<td>Acid amides, 212</td>
<td></td>
</tr>
<tr>
<td>Acid anhydrides, 306, 245</td>
<td></td>
</tr>
<tr>
<td>Acid chlorides, 206</td>
<td></td>
</tr>
<tr>
<td>Acids, 245</td>
<td></td>
</tr>
<tr>
<td>Acid hydrolysis, 375</td>
<td></td>
</tr>
<tr>
<td>Acid (acyl) radicals, 207</td>
<td></td>
</tr>
<tr>
<td>Acidine, 306</td>
<td></td>
</tr>
<tr>
<td>Acrolein (acyclic aldehyde), 117, 226, 302, 386</td>
<td></td>
</tr>
<tr>
<td>Acrolein aniline, 302</td>
<td></td>
</tr>
<tr>
<td>Acrolein resins, 226</td>
<td></td>
</tr>
<tr>
<td>α-Acrolein, 151, 391, 444</td>
<td></td>
</tr>
<tr>
<td>Acrylic acid, 192, 226, 227, 229, 230, 311, 366</td>
<td></td>
</tr>
<tr>
<td>Acrylic aldehyde (acrolein), 117, 226</td>
<td></td>
</tr>
<tr>
<td>Acrylic compounds, 52</td>
<td></td>
</tr>
<tr>
<td>N-Acyl derivatives of amino acids, 315, 318</td>
<td></td>
</tr>
<tr>
<td>Acyl groups, 451</td>
<td></td>
</tr>
<tr>
<td>Acyl radicals, 207</td>
<td></td>
</tr>
<tr>
<td>Adenine, 308, 409</td>
<td></td>
</tr>
<tr>
<td>Adipic acid, 358</td>
<td></td>
</tr>
<tr>
<td>Adonitol, 408, 412</td>
<td></td>
</tr>
<tr>
<td>Adrenaline, 323, 324</td>
<td></td>
</tr>
<tr>
<td>d-Adrenaline, 324</td>
<td></td>
</tr>
<tr>
<td>Aglucone, 447, 448</td>
<td></td>
</tr>
<tr>
<td>Aglycone, 446, 446, 447, 450</td>
<td></td>
</tr>
<tr>
<td>Ajowan oil, 133</td>
<td></td>
</tr>
<tr>
<td>Alanine (α-amino propionic acid), 219, 228, 314, 320, 344, 345, 303</td>
<td></td>
</tr>
<tr>
<td>Alanine (α-anhydride), 311</td>
<td></td>
</tr>
<tr>
<td>Alanine, copper derivative, 313, 315</td>
<td></td>
</tr>
<tr>
<td>Alanine, dissociation constants, 317</td>
<td></td>
</tr>
<tr>
<td>α-Alanine and β-alanine, 310</td>
<td></td>
</tr>
<tr>
<td>d-Alanine, 320, 321</td>
<td></td>
</tr>
<tr>
<td>d-Alanine, 320, 346</td>
<td></td>
</tr>
<tr>
<td>Alanlycine, 328</td>
<td></td>
</tr>
<tr>
<td>Albumin, 321</td>
<td></td>
</tr>
<tr>
<td>Alcohol, name, 85</td>
<td></td>
</tr>
<tr>
<td>Alcohol, tables, 99</td>
<td></td>
</tr>
<tr>
<td>Alcoholic fermentation, 466, 470</td>
<td></td>
</tr>
<tr>
<td>“Alcoholic Fermentation”, by (Sir) A. Harden, 447</td>
<td></td>
</tr>
<tr>
<td>Alcoholic hydroxyl groups, determination of, 352</td>
<td></td>
</tr>
<tr>
<td>Alcoholic hydroxyl groups, replacement by iodine, 102</td>
<td></td>
</tr>
<tr>
<td>Alcoholic liquids, 98</td>
<td></td>
</tr>
<tr>
<td>Alcohols, 85, 245</td>
<td></td>
</tr>
<tr>
<td>Alcohols, production from primary aliphatic amines, 252</td>
<td></td>
</tr>
<tr>
<td>Alcohols, synthesis from aldehydes, 496</td>
<td></td>
</tr>
<tr>
<td>Alcohols, synthesis by Grignard reaction, 499</td>
<td></td>
</tr>
<tr>
<td>Alcohol-water mixtures, 99</td>
<td></td>
</tr>
<tr>
<td>Aldehyde, characteristic group, 142</td>
<td></td>
</tr>
<tr>
<td>Aldehyde, name, 142</td>
<td></td>
</tr>
<tr>
<td>Aldehyde ammonia, 154, 156</td>
<td></td>
</tr>
<tr>
<td>Aldehyde form of glucose, 430</td>
<td></td>
</tr>
<tr>
<td>Aldehydes, 235, 355</td>
<td></td>
</tr>
<tr>
<td>Aldehydes and ketones, 160</td>
<td></td>
</tr>
<tr>
<td>Aldehydes as reducing agents, 105</td>
<td></td>
</tr>
<tr>
<td>Aldehydes distinguished from ketones, 109</td>
<td></td>
</tr>
<tr>
<td>Aldehydes, unsaturation properties, 142, 143</td>
<td></td>
</tr>
<tr>
<td>Aldehydrol form of glucose, 430</td>
<td></td>
</tr>
<tr>
<td>Aldodiose, 353</td>
<td></td>
</tr>
<tr>
<td>Aldohexose, 391, 442, 443, 445</td>
<td></td>
</tr>
<tr>
<td>Aldohexose converted into aldopentose, 424</td>
<td></td>
</tr>
<tr>
<td>Aldohexoses, 416, 417, 418, 436</td>
<td></td>
</tr>
<tr>
<td>Aldohexoses, d-series, 421</td>
<td></td>
</tr>
<tr>
<td>Aldol, 108, 221</td>
<td></td>
</tr>
<tr>
<td>Aldol in production of n-butyl alcohol, 472</td>
<td></td>
</tr>
<tr>
<td>Aldopentose, 418</td>
<td></td>
</tr>
<tr>
<td>Aldopentoses, 408, 410, 413, 436</td>
<td></td>
</tr>
<tr>
<td>Aldosones, isomerism among, 410</td>
<td></td>
</tr>
<tr>
<td>Aldose, 391</td>
<td></td>
</tr>
<tr>
<td>Aldoses, 353</td>
<td></td>
</tr>
<tr>
<td>Aldotetrose, 393</td>
<td></td>
</tr>
<tr>
<td>Aldotetroses, isomerism among, 396</td>
<td></td>
</tr>
<tr>
<td>Aldotriose, 390, 391</td>
<td></td>
</tr>
<tr>
<td>Alicyclic compounds, 52</td>
<td></td>
</tr>
<tr>
<td>Aliphatic amines, 292</td>
<td></td>
</tr>
<tr>
<td>Aliphatic ethers, 136</td>
<td></td>
</tr>
<tr>
<td>Aliphatic nitro compounds, 128</td>
<td></td>
</tr>
<tr>
<td>Alkalil fusion, 120</td>
<td></td>
</tr>
<tr>
<td>Alkaloids, 292</td>
<td></td>
</tr>
<tr>
<td>Alkaloids, definition, 493</td>
<td></td>
</tr>
<tr>
<td>Alkoxyl groups, determination, 139</td>
<td></td>
</tr>
<tr>
<td>Alkyl, 22</td>
<td></td>
</tr>
<tr>
<td>Alkyl and aryl oxides, 134</td>
<td></td>
</tr>
<tr>
<td>Alkyl bromides, preparation, 103</td>
<td></td>
</tr>
<tr>
<td>Alkyl-hydroxyamines, 251</td>
<td></td>
</tr>
<tr>
<td>Alkyl groups, 451</td>
<td></td>
</tr>
<tr>
<td>Alkyl iodides, 293</td>
<td></td>
</tr>
<tr>
<td>Alkyl pyrroles, 294</td>
<td></td>
</tr>
<tr>
<td>N-Alkyl pyrroles, 293</td>
<td></td>
</tr>
<tr>
<td>Alkylamines, separation, 504</td>
<td></td>
</tr>
<tr>
<td>Alkylation, 451</td>
<td></td>
</tr>
<tr>
<td>Allene, 53</td>
<td></td>
</tr>
<tr>
<td>Allene type, 349</td>
<td></td>
</tr>
<tr>
<td>Allose, 419, 436</td>
<td></td>
</tr>
<tr>
<td>Allose, constitution, 421</td>
<td></td>
</tr>
<tr>
<td>Alloxan (mesoxyl urea), 483, 489, 491</td>
<td></td>
</tr>
<tr>
<td>Alloxantin, 491</td>
<td></td>
</tr>
<tr>
<td>Allyl alcohol, 116, 117, 227, 388, 389</td>
<td></td>
</tr>
<tr>
<td>Allyl iodide, 54, 389</td>
<td></td>
</tr>
<tr>
<td>Allylene (methylacylencylene), 53</td>
<td></td>
</tr>
<tr>
<td>a-(or 2)-Allylypridine, 301</td>
<td></td>
</tr>
<tr>
<td>Altrose, 410, 436</td>
<td></td>
</tr>
<tr>
<td>Altrorse, constitution, 421</td>
<td></td>
</tr>
<tr>
<td>Aluminium carbide (or methanide), 14, 494</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Aluminium chloride as catalyst, 70
Aluminium ethylate, 158, 215
Aluminium methanide, 14, 494
Aluminium, organo derivatives, 501
Aluminium, resolution of externally compensated compounds of, 350
Amides, 245, 309
Amides, distinguished from amino acids, 316
Amnido group, 197
Amines (substituted ammonias), 197, 210, 245
Amines, aliphatic, 246
Amines, aliphatic primary, 252
Amines, aromatic, 246
Amines, aromatic primary, 265
Amines, characteristic reactions, 249
Amines, isomeric, 248
Ammoniacal sulphonic acid, 248
Amino acids, 205, 269, 309
Amino acids, neutral, basic and acidic, 310
 α-Amino acids, 310, 312
 β-Amino acids, 311
 γ- and δ-Amino acids, 311
Amino acids, distinguished from amides, 316
Amino acids, estimation, 317
 α-Amino acids, synthesis, 312
Amino group, 197, 309
Aminoacetic acid (glycine), 205, 235, 241, 258, 310, 318, 354
Aminoacetic acid, dissociation constants, 317
 p-Aminoazobenzene, 280, 281
Aminobenzene (aniline), 265
 p-Aminobenzoic acid, 270
 p-Aminobenzenesulfonic acid (sulphanilic acid), 269
 o-Aminobenzoic acid (anthranilic acid), 329
 m-Aminobenzoic acid, 329
 p-Aminobenzoic acid, 329
 α-Amino-n-butyr acid, 310
 β-Amino-n-butyr acid, 310
 γ-Amino-n-butyr acid, 310, 311
 α-Aminoisocaproic acid (leucine), 326
 α-Amino-carboxymethylpropionic acid (glutamic acid), 327
 α-Amino-carboxypropionic acid (aspartic acid), 327
 α-Aminocinnamic acid, 322
 1-Amino-4-dimethylaminobenzene (dimethyl-p-phenylenediamine), 287
 α-Amino-β-dimethylpropionic acid (valine), 326
 Aminoethane (monoethylamine), 250
 Aminoformic acid, 474
 α-Aminoglutaric acid (glutamic acid), 327
 α-Amino-3-guanidinvaleric acid (arginine), 485
 α-Amino-β-hydroxypropionic acid (serine), 321
 2-Aminohydroxyaminine (guanine), 492
 C-Aminomalonylurea (uramid), 483, 489
 α-Aminomandelic acid, 336
 Aminomethane, 250
 α-Amino-β-methyl-β-ethylpropionic acid (isoleucine), 326
 Aminoxydol, 327
 2-Amino-6-oxypurine (guanine), 492
 p-Aminophenol, 267, 268
 o-Aminophenylacetic acid, 336
 o-Aminophenylhydroxycetic acid, 336
 α-Aminopropionic acid (alanine), 215, 228, 310, 314, 320, 344
 α-Aminopropionic acid, dissociation constants, 317
 β-Aminopropionic acid, 228, 310, 311
 β-Amino-n-propylalanine (lysine), 327
 α-Amino-n-propylpropionic acid (leucine), 326
 6-Aminopurine (adenine), 492
 α-(or β)-Aminopryridine, 300
 Aminosuccinio acid (aspatic acid), 326
 α-Amino-thiolpropionic acid (cysteine), 321
 Aminotoluene (toluidines), 283
 α-Aminovaleric acid (valine), 326
 β-Amino-n-valeric acid, 311
 Ammonia type, 245
 Ammoniacal liquor, 56
 Ammoniacal solution of silver oxide, 105
 Ammonium acetate, 205, 211
 Ammonium cyanate, 476, 484
 Ammonium formate, 195
 Ammonium radicals, 246
 Ammonium thioxyacetate, 484
 Amphetamine, 212, 269
 Amphoteric compounds, 309, 317
 Amygdalae, 449
 Amygdalin, 165, 449
 i-Amyl acetate, 216
 Amyl alcohol, 112
 Amyl alcohol, commercial, optical activity of, 112
 Amyl alcohol, isomerotary, 469
 isoAmyl alcohol, 469
 i-Amyl alcohol (3-methyl-n-butyl alcohol), 112
 n-Amyl alcohol (pentanol), 112
 Amylene hydrate (dimethylethylcarbinol), 112
 Amylopectin, 458
 Amylose, 458
 Anethole, 176, 177
 Anil, 265
 Aniline, 237, 254, 265, 271, 288, 289, 382, 383
 Aniline, properties, 267
 Aniline poisoning, 268
INDEX

Aniline, tests, 268
Aniline acetate, 270
Aniline arsenate, 270
Aniline black, 268
Aniline hydrochloride, 265, 268, 274, 284, 288
Aniline sulphate, 268
Animal charcoal, 292
Anisaldehyde, 177
Anisaldehyde (p-methoxybenzaldehyde), 176
Anisaldoximes, 177
Anisoid, oil of, 176
Anisic acid, 177
Anisole (methylphenyl ether), 129, 132, 141, 177
Anisyl alcohol, 177
Anthrancene, 77, 81
Anthracene tetradechedride, 82
Anthranilic acid, 329, 332, 334, 339, 340
Anthraquinone, 82, 83
Antimony, organo derivatives of, 278, 501
Antipyrine, 279, 371
Antioxygènes, 167
Apoxyane, 467
Apparatus for preparation of organic compounds, 512
Arabinose, 152
Arabinose, 410–413, 418
dl-Arabinose, 413
d-Arabinose, d(-)-arabinose, 421, 424
d (+)-Arabinose from d (+)-glucose, 424
d-Arabitol, 412
Araro, optical activity of quartz crystals, 341, 402
Arbutin, 447
‘Architecture of the molecule’, 3, 12, 512
Arginine, 485
Argol, 397
Armstrong, E. F., enzymatic hydrolysis of monomethylglycosides, 428
Armstrong, H. E., constitution of benzene, 61
Aromatic aldehydes, 164
Aromatic amino acids, 328
Aromatic antimonials, 278
Aromatic arsenic, 270, 278
Aromatic compounds, 32
Aromatic ethers, 141
Aromatic hydrocarbons, 278
“The Arrangement of Atoms in Space”, by J. H. van ‘t Hoff, 343
Arsenic, alkyl and aryl derivatives of, 500
Arsenic, resolution of externally compensated compounds of, 350
Arsenicals, aliphatic, 202
Arsenic acids, prepared by diazo reaction, 278
Arsphenamine, 270
Artificial resin, 226
Artificial silk, 460
Aryl and alkyl oxides, 135
Aryl iodides, 293
Ascending of a homologous series, 252
Asparagus, 327
Aspartic acid (aminosuccinic acid), 326
Aspirin, 132
Assimilation in plants, 145
Asymmetric alcohol, 442, 119, 344
Atomic numbers of elements (table), 515
Atomic weights of elements (table), 515
Atoxy, 270
Atrolectic acid, 189
Audibert’s process, methyl alcohol, 89
Auxochrome, 281
Azaeleic acid, 231
Azo dye-stuffs, 281
Axobenzene, 267
Axo-dyes, 280, 287
Axoxybenzene, 267
B. aceti, 200
B. acidi lactici, 304
Bayer, A. von, assimilation in plants, 152
— constitution of benzene, 61
— indole from indigotin, 335
— indole from oxindole, 335
— isatin, 335
— strain theory, 40
— syntheses of indigotin, 244, 334, 336
— uric acid investigation, 488
‘Balsam of Tolu’, 235
Baly, E. C. C., photosynthesis of carbohydrates, 152, 153
Barbier, P., magnesium and methyl iodide as a synthetic reagent, 498
Barbitone (veronal), 482
Barbitone soluble, 483
Barbituates, 482
Barbituric acid, 481, 483, 488
Barbital acid, sodium salt (barbitone soluble), 483
Barger, G., dl-thymoxine, 323
Bart, H., reaction, production of aromatic arsanic acids, 278
Basarow, synthesis of urea, 475
Bagliss, (Sir) W. M., “Nature of Enzyme Action”, 447
Béchamp, reaction of aniline with arsanic acid, 270
Beckmann, rearrangement, 190
Bee’s wax, 113
Beer, 96, 98
Beet sugar, 451, 453
INDEX

Benedict's method of estimating reducing sugars, 464
Benzal, 170
Benzalacetone, 186
Benzalacetone oxime, 186
Benzalacetone phenylhydrazone, 186
Benzalacetophenone, 189
Benzalanilide, 272
Benzal chloride, 72, 166, 167
Benzaldehyd, 114, 147, 165, 166, 170, 173, 237, 355, 449
Benzaldehyd cyanohydrin, 168, 171
Benzaldehyd phenylhydrazone (benzyliden phenylhydrazone), 170
Benzaldehyd phenylhydrazones, isomerio, 170
Benzaldehyd sodium bisulphite, 166, 167
Benzaldioximes, 169
Benzamid, 241, 271
Benzanilide, 272, 289
Benzone, 51, 56, 57, 58, 234, 237, 306
Benzone from anilide, 278
Benzone from benzoic acid, 238
Benzone from toluid, 238
Benzone-azo-2-amino-p-toluid, 280
Benzone-azo-4-methyl-2-aminobenzene, 280
Benzone hexabromide, 59
Benzone hexachloride, 59
Benzonesulphonic acid, 59, 120, 138, 235, 237, 277
Benzonesulphonic acid, barium salt, 59
Benzonesulphonyl chloride, 207, 240
Benzenoid compounds, 52
Benzidam (anilide), 265
Benzidine, 268
Benzidine transformations, 268
Benzil, 172
Benzoic acid (monocarboxybenzene), 63, 73, 114, 115, 167, 192, 234, 235, 241, 329
Benzoic acid, dissociation constant, 237
Benzoic acid, salts, 73, 170, 236, 237
o-Benzoic acid sulphonamide, 240
Benzoic anhydride, 207, 241
Benzoic o-sulphinimide (saccharin), 240
Benzoin, 171
Benzonitrile (phenyl cyanide), 237, 242, 277
Benzophenone (diphenyl ketone), 108, 187
α-or (2 : 3)-Benzopyridine (quinoline), 302
β-or (3 : 4)-Benzopyridine (isoquinoline), 305
Benzoquinone monoxime, 124
Benzotrichloride, 238
Benzoyl group, 338
Benzoyl radical, 236
dl-N-Benzoylalanine, 320
d- and L-N-Benzoylalanines, 320
Benzoylanilide, 272, 289
Benzoylation, 239, 241
Benzoyl chloride, 207, 238, 241, 253, 285
Benzoyldiphenylamine, 289
Benzoylformic acid, 188
Benzoylglycine (N-benzoylglycine), hippuric acid, 235, 239, 315, 318, 319
N-Benzylophenylalanine, 322
Benzyl, 78
Benzyl alcohol, 113, 114, 132, 166, 167, 237
Benzylamine, 283
Benzylbenzene (diphenylmethane), 77, 78
Benzyl benzoate, 235
Benzylearninol (phenylethyl alcohol), 114, 165
Benzyl chloride, 72, 114, 236
Benzylidene, 170
Benzylideneacetone, 186
Benzylideneacetophenone, 189
Benzylideneanilide, 272
Benzylidene phenylhydrazone, 170
Berthelot, M., benzene from acetylene, 52
— formation of acetylene, and its reactions, 47, 48
— synthesis of acetic acid, 290
Bertrand, G., estimation of reducing sugars, 484
Beryllium, organo derivatives, 501
Beryllium, resolution of externally compensated compound of, 350
Berzelius, J. J., on Faraday's discovery of benzene, 96
— on investigation of 'oil of bitter almonds', 236
Betaine, 238, 262, 315
Betaine, constitution, 258
Betaine formula of amino acids, 316
Bicarburett hydrogen (acetylene), 50
Bicarburetted hydrogen (ethylene), 27
Biod. J. J., optical activity, 341, 345, 399
— on Pasteur's resolution of racemic acid, 404
Bismuth, organo compounds, 501
Bitter almond, 446
Bireut, 478
Bireut reaction, 328
Bleaching powder, preparation of chloroform, 164, 181
Blood, benzidine test, 268
Boiling point, determination, 508
Bone, W. A., combustion of hydrocarbons, 144
— production of acetylene, 47
Bone, W. A. and Coward, H. F., synthesis of methane, 13

© in this web service Cambridge University Press www.cambridge.org
INDEX

Bone, W. A. and Jordan, D. S., synthesis of methane, 13
Bone black, 292
Bone oil, 297, 299
Boron alkyls, 495
Boron, resolution of externally compensated compound of, 350
Boron triphenyl, 500
Brandy, 96
Bromine, test for combined, 5
N-Bromotricyclohexane, 213
Bromobenzene, 277
Bromofluorine (tribromomethane), 104
Bromoperidol (nitrobenzofuran), 128
2-Bromopropane (i-propyl bromide), 108
α-Bromonaphthyl (iodoethyl), 210, 363
d-α-Bromonaphthyl, 365
β-Bromonaphthyl, 227, 228
p-Bromonaphthyl, 365
Buchner, E., fermentation, 466
Büchner funnels, 505
Buckley, G. B., lead tetraethyl, 501
Butadiene (1:2) or monomethylallene, 54
Butadiene (1:4), 54
Butanes, 22, 109
n-Butane (n-propylmethane, methyl ethylene), 22, 44, 391
i-Butane (isopropylmethane, 2-methylpropane, isopropylmethane), 22, 86
Butane acids, 221
Butanol (1), n-butyl alcohol, 110
Butanol (2), methylmethylecarbinol, 110
Bulger, A. M., polymerisation of formaldehyde to sugars, 151
n-Butyl alcohol (n-propylcarbinol), 87, 140, 170, 470, 471
sec.-Butyl alcohol, 110, 496
tert.-Butyl alcohol (trimethylcarbinol), 87, 496
n-Butylcarbinol (n-amyl alcohol), 112
di-sec.-Butylcarbinol, 344, 345, 346
tert.-Butyl chloride, 111
n-sec.-Butyl iodide, 392
tert.-Butyl iodide, 495
Butylenes, 46
i-Butylene (asym.-dimethylethylene), 111
n-Butyraldehyde, 110
i-Butyraldehyde, 110
n-Butyric acid, 110, 221, 229, 230, 310, 368, 471
n-Butyric acid, calcium salt, 221
i-Butyric acid, 110, 221
n-Butyrolactam, 331
γ-Butyrolactam (pyrrolidone), 311
Butyrophenone, 187
Cacodyl, 202
Cacodyl bromide, 202
Cacodyl chloride, 202
Cacodyl iodide, 202
Cacodyl oxide, 202
Cacodyl sulphide, 202
Cade, L. C., production of cacodyl compounds, 202
Cadmium, organo derivatives, 501
Caffeine, 492, 493
Calciferol (until recently identified as the antirachitic vitamin D), 225
Calcium acetylide (acetylide), calcium carbide, 46, 491
Calcium carbide, 16, 46, 50, 494
Calcium cyanamide, 16, 17, 477
Calcium and calcium oxide for dehydration, 491
Camphor, 134
Camphor, determination of molecular weights, 807
Cane sugar (sucrose), 96, 151, 364, 422, 451, 453
Cannizzaro, S., reaction with formaldehyde, benzaldehyde, etc., 147, 170, 468
Cauterous (rubber), 54
Carbamic acid, 474
Carbamic acid, ammonium salt, 474, 475
Carbamide, 474
Carbolic acid, 386
Carboline, 386
Carbonyl compounds, 386
Carboxydrates, 151, 353, 450
“Carbohydrates”, by E. F. and K. F. Armstrong, 429
Carbolic acid, 119
Carbon, test for combined, 3
Carbonic acid, derivatives, 473
Carbon monoxide, relation to formic acid, 193
Carbon monoxide, synthesis of formates, 193
Carbon ‘skeletons’, 1, 2
Carbon suboxide, 359
Carbon tetrachloride, 16, 89, 473
Carbonyl chloride, 152, 258, 473
Carbonyls, 494
Carboxy or carboxyl group, 73, 94, 191, 309
β-Carboxylic acid, 327
Carboxybenzene (benzoic acid), 73
Carboxyethane (propionic acid), 218
Carboxyl group, meta-directing, 238
Carboxyless, 468
Carboxylic acids, 94
Carboxylic acids, synthesis by Grignard reaction, 500
β-Carboxymethylic acid, 327
α-Carboxyphosphonic acid, (salicylic acid), 131
α-Carboxyphenacetic acid, 304
γ-(or 4-)carboxypyridine (γ-nicotinic acid), 305
Carburetted hydrogen (methane), 13
Carbonylaminos (oxygenides), 254
Cassie, 133
INDEX

| Carvacrol, 134 |
| Casein, 322, 324 |
| Cassia, oil of, 172 |
| Catalyst, copper, nickel, 99 |
| Catalyst, platinum black, 200 |
| Catalyse, halogen carriers, 59 |
| Catalytic oxidation, ethyl alcohol, 155 |
| Catalytic processes, 137 |
| Catechol (o-dihydroxybenzene), 65, 323 |
| Cellobiose, 400 |
| Cellulose, 456, 459, 460, 462 |
| Cellulose acetates, 460 |
| Cellulose nitrate, 460 |
| Cellulose xanthates, 460 |
| Cerebrose (galactose), 433 |
| Cetyl alcohol, hexadecanol, 113 |
| Cetyl palmitate, 113 |
| Chapman, A. C., synthesis of diphenylamines, 289 |
| Chapman, D. L. and Holt, A., production of formaldehyde, 144 |
| Characterisation of organic compounds, acetyl etc., derivatives, 207, 208 |
| de Chardonnet, E., artificial silk process, 460 |
| Chelate structure, 374 |
| Chemical constitution, 3 |
| “Chemistry of urea”, by E. A. Werner, 480 |
| Chemotherapy, 278 |
| Cheryx, M. E., glycerol and fats, 385 |
| Chloral, 150, 181, 181, 400 |
| Chloral ammonia, 163 |
| Chloral hydrate, 163, 164, 355, 400 |
| Chloral potassium bisulphite, 163 |
| Chlorine reaction with methane, 16 |
| Chlorine, tests for combined, 5 |
| Choraoacetic acid, 205, 206 |
| ω-Chloroacetoepheno, 188, 339 |
| γ-Chloroacetylacteol, 324 |
| Chloroaecyl chloride, 225, 327 |
| N-Chloroacetylglucolglycin, 327 |
| Chloroaurates, 247 |
| Chloroauric acid and chloroausrates, 11 |
| Chlorobenzene, 277 |
| m-Chlorobenzoic acid, 238 |
| β-Chloroisoacetic acid, 229 |
| 10-Chloro-5:10-dihydrophenarsazine, 291 |
| β-Chloroethyl alcohol (glycol chlorhydrin), 261 |
| Chloroform (trichloromethane), 16, 89, 104, 184, 181, 182, 193, 206, 216, 254, 294 |
| Chloroformic acid, 473 |
| dl-Chloriodonmethane-sulphonic acid, 347 |
| Chlorosatin, 337 |
| Chlorophyll, 3, 292 |
| Chloropricin (nitrochloriform), 128 |
| Chloroplatinates, 247 |
| Chloroplatinic acid and chloroplatinates, 11 |
| 2-Chloropropane (i-propyl chloride), 108 |
| α-Chloropropionic acid, 218, 363 |
| β-Chloropropionic acid, 218, 227, 228 |
| β-Chloropryridine, 294 |
| Chlorosulphonic acid, 206 |
| m-Chlorotoluene, 72 |
| o-Chlorotoluene, 72 |
| p-Chlorotoluene, 72 |
| Cholesterol, 225 |
| Cholesteryl acetate and benzoate, 225 |
| Choline, 260, 261, 309, 523 |
| Choline, synthesis, 261 |
| Chromium, organo derivatives of, 501 |
| Chromium, resolution of externally compensated compound of, 350 |
| Chromophore, 281 |
| Cider, 96 |
| Cinchomeronic acid, 305 |
| Cinchonine d-tartrate, 406 |
| Cinchonine l-tartrate, 406 |
| Cinnamamide, 242 |
| Cinnamic acid, 117, 172, 173, 242, 244 |
| Cinnamic acid, isomerism of, 173 |
| Cinnamic acid dibromide, 173, 243 |
| Cinnamic (cinnaaryl) alcohol, 117 |
| Cinnamaldehyde, 172 |
| Cinnamon, oil of, 172 |
| Cinnamyl alcohol (cinnamic aldehyde), 172 |
| Cis-isomers, 41 |
| Citric acid, 309, 471 |
| Citric acid, sodium salt in Benedict’s reagent, 404 |
| Claus, A., constitution of benzene, 61 |
| Closed chain compounds, 52 |
| Coal gas, 56 |
| Coal gas, acetylene in, 46, 50 |
| Coal gas, benzine in, 58 |
| Coal tar, 56 |
| Coal tar, acridine in, 306 |
| Coal tar, aniline in, 265 |
| Coal tar, anthracene in, 81, 82 |
| Coal tar, cresols in, 132 |
| Coal tar, naphthalene in, 78 |
| Coal tar, phanathrene in, 53 |
| Coal tar, phenol in, 119 |
| Coal tar, pyrole and pyridine in, 292 |
| Coal tar, quinoline and isoquinoline in, 301, 304 |
| Cobalt, resolution of externally compensated compound of, 350 |
| Coke, 56 |
| Coke, S. W., isolation of tryptophan, 324 |
| Combustion or oxidation, 6 |
| Composition of gaseous hydrocarbons, determination of, illustrated in case of ethylene, 33 |
INDEX

α-Compounds, 339
Condensation, 149, 159, 505
Conine, 300, 301
Conium masculum, 300
Conjugate double linkages, 53
Constant boiling binary mixtures, 141
Constant boiling ternary mixtures, 141
Constitution of benzene, 60
Constitution of the molecule, 12
"Constitution of the Sugars", by W. N. Haworth, 429
Co-ordinate link, 267
Copper (cuprous) acetylidenide (acetyl-
ide), 50
Copper derivative of alanine, 313, 315
Copper derivatives of α-amino acids, 315
Copper, organo derivatives, 500
Cyanogen, resolution of externally com-
 pensated compounds of, 350
Cordus, first preparation of diethyl ether, 137
Corks and india-rubber stoppers, 514
'Coupling', 280, 281
Cozymase, 467
Cracking, 24
Creatine (lactam of creatinine), 319, 485, 486
Creatinine, 486
Cresol, 486
Cresols (methylhydroxybenzenes), 119, 130
m-Cresol, 132, 133, 289
α-Cresol, 132, 134
p-Cresol, 132
Criteria of purity of organic compounds, 506 et seq.
Crotonaldehyde, 158, 172, 229
Crotonaldehyde in production of n-butyl alcohol, 472
Crotonic acids, 228, 229, 230
cis-Crotonic acid, 297
i-Crotonic acid, 299
trans-Crotonic acid, 367
Crum-Brown, A. and Gibson, J., rule of
orientation, 129
Crystallisation, 505
Crystallographic study of organic com-
 pounds, 512
Crystals, geometrical study of, 401
Crystals, optically active, 341
Cyamidine, 477, 483, 484, 485
Cyanic acid, 476
Cyanic acid, amide of (cyamidine), 477
Cyanic acid, ammonium salt, 476
Cyanide, 193
Cyanides (nitriles), 197
Cyano aromatic compounds produced by Sandmeyer's reaction, 277
Cyanoacetic acid, sodium salt, 358
Cyanoen, 356
Cyano (aniline), 265
α-Cyanomethylanthranilic acid, sodium salt, 339
Cyanophoric glycosides, 449
β-Cyanopyridine, 299
Cyanuric acid, 478
Cyclic compounds, 52
Cyclobutane (tetramethylene), 43, 44
Cyclohexane (hexamethylene), 44, 59, 80
Cyclohexanol (hexahydrophenol), 123, 225
Cyclocitrate, 44
Cycloparaffin derivatives, stereoisomer-
 isms of, 44
Cycloparaffins, 43
Cyclopentane (pentamethylene), 44
Cyclopropane (trimethylene), 43, 44
p-Cymene, 74, 75, 133, 134
Cystamine, 148
Cystine, α-amino-β-thiolpropionic acid, 321
Cystine, di-(α-amino-β-thiolpropionic acid), 321, 322
L-Cystine, 322
'D.' series of monosaccharides, 412
Dalton, J., methane and ethylene, 13, 27
Davis, E., discovery of acetylene, 50
Decahydronaphthalene, 79
Decahydroquinoline, 303
Dehydrating catalysts, 137
Denatured ethyl alcohol, 90
Descending a homologous series, 252
Description of a new organic compound, 512
Desiccators, 505
Dessicants, preparation of malonic acid, 358
Determination of alkoxyl groups, 139
Dextrin, 451, 456, 468, 459
Dextrorotatory substances, 341
Dextrose, former name of glucose, 422
Diacetanilide, 271
Diacylurea, 480
Diacylurea, 480
Dial, 482
Dialkylamides, 256
Diallyl, 54
C-Diallylbarbituric acid (Dial), 482
Diallyl tetrabromide (1 : 2 : 5 : 6-tetra-
bromohexane), 54, 396
Dialuric acid, 491
1 : 4-Diaminobenzene (p-phenylene dia-
 mine), 249
α-Diamino-α-caproic acid (lysine), 327
3 : 3’-Diamino-4 : 4’-dihydroxyarsenophenyl benzene and hydrochloride, 270
pp’-Diaminodiphenyl, benzidine, 268
Diaminomonoarboxylic acids, 327
dl-Diaminopropionoheptane, an externally
INDEX

compensated disymmetric compound, 330
Di-(a-amino-β-thioproionic acid), cystine, 321
α,β-diamino-γ-valeric acid (ornithine), 327, 485
Diastase, 451, 458, 459
Diastereoisomeric esters, 347
Diastereoisomeric salts, 346, 407
Diastereoisomeres or diastereoisomers, 346, 407
o-, m- and p-Diazines, 307
1 : 3-Diazenes, 488
Diazocompounds, reduction of, 276
Diazoreaction or diazotisation, 273, 274, 275
Diazooaminobenzene, 280
Diazooaminocompounds, 280
Diazobenzene chloride, 274
Diazobenzene-p-sulphonic acid, 282
Diazobenzene-p-toluidide, 280
Diazonium compounds, constitution of, 274
Diazotates, 275
Diazotisation, 273
Dibromacetic acid, 335
1 : 4-Dibromobutane, tetramethylethylene bromide, 43
sym-Dibromomethane, ethylene bromide, 35
unsym-Dibromomethane, ethylidene bromide, 49
sym-Dibromomethylene (acyetylene dibromide), 48
2 : 3-Dibromo-3-phenyl-α-propyl alcohol, 117
1 : 2-Dibromopropane, propylene bromide, 53
1 : 3-Dibromopropene, trimethylene bromide, 43, 297
αβ-Dibromopropionic acids, 227
Dibromostearic acid, 230, 231
dl-Dibromosuccinic acid, 397
Dicarboxybenzenes, phthalic acids, 64, 74
o-Dicarboxybenzenes, phthalic acid, 305, 330
αβ-(or 2 : 3)-Dicarboxy pyridine (quino line acid), 303
βγ-(or 3 : 4)-Dicarboxy pyridine (cinchon eronic acid), 305
Dichloroacetal, 162
Dichloracetic acid, 205, 206, 355
αβ-Dichlorobutyric acid, 229
ββ′-Dichlorodithyl sulphide (mustard gas), 38, 39
sym-Dichloroethane, ethylene chloride, 34
unsym-Dichloroethane, ethylidene chloride, 49
Dichloroethanones, 19
sym-Dichloroethylene, 49
Dichloromethane, methylene chloride, 16
1 : 2-Dichloropropene, 386
ββ′-Dichloropropene, 181
αβ-Dichloropropionic acid, 227
Dichlorosquino line, 305
Dichlorotoluenes, 72
1 : 3-Dicyanopropene, 297
1 : 1-Diethoxyethane, acetol, 159
Diethylamine, 254, 256, 264
Diethylaniline, 255
C-Diethylbarbituric acid (veronal), 482
Diethylether, 112
Diethyl ether (ether), 30, 102, 136, 137, 138, 215
Diethyl malonate, 482
C-Diethynalonylurea, 482
Diethylmonobromogold, 501
Diethylnitrosoamine, 256
Diethyl oxalate, 357
N-Diethyloxyacetic acid ethyl ester, 263, 284
Diethylxamidine, 253, 263
Diethyl sulphate, 29, 102, 138
Diformyl, glyoxal, 354
Dihexacyglycine, 327
αβ-Dihalogen propionialdehydes, 227
Di halogenopropionic acids, 227
Dihydric alcohols, 351
Dihydric alcohols (glycols), synthesis by Grignard’s reaction, 500
Dihydroxyacetone, 390, 391, 444
Dihydroxybenzenes, 64, 65, 486
p-Dihydroxybenzene, 447
1 : 4-Dihydroxybutane, 377, 378
ββ′-Dihydroxydiethyl sulphide (thiodiglycol), 39
βγ-Dihydroxy-βγ-diphenylbutane, 188
sym-Dihydroxyethane (ethyleneglycol), 38
1 : 2-Dihydroxyethane (ethylene glycol), 351, 385
Dihydroxymalonic acid, 390
1 : 5-Dihydroxyacetone (trimethylene glycol), 358, 362, 363, 366
αβ-Dihydroxypropionic acid, 469
Diiodoacetyl, 338
Diiodoacetone, 181
β-[3 : 5-dioido-4-(3′ : 5′-dioido-4-hydroxyphenoxy)-phenyl]-α-amino pro pionic acid (thryoxine), 323
2 : 5-Diketo-3-methyliperazone, 328
α-Diketone, 311
2 : 5-Diketopiperazine, 310, 311, 327
αβ-Diketopyrrolidine, 331
N-Dimethylacetamidone, 256
Dimethylacetate, 221
Dimethyloxyacyle, 53
Dimethylamine, 248, 254, 256, 258, 320
INDEX

p-Dimethylaminobenzene, 281
4-Dimethylaminobenzene-4-sulfonic acid (helianthine or methyl orange), 282

Dimethylaniline, 254, 281, 282, 284, 287
2:4-Dimethylaniline (or 2:4-xylidine) hydrochloride, 287

N-Dimethylbenzamide, 257

Dimethylbenzenes (xylene), 69, 70

ββ′ (or 2:3) Dimethylbutane, 23

Dimethylcarbinol, i-propyl alcohol, 80, 106, 115

Dimethylidichloromethane, 259
3-Dimethyl-2,5-diketopiperazine (alanine anhydride), 311

1:3-Dimethyl-2:6-dioxypyridine, theophylline, 493

3:7-Dimethyl-2:6-dioxypyridine, theobromine, 493

Sym-Dimethyl-diphenylethylene glycol, 188

Dimethyl ether, 136

Dimethylcarbinol (amylene hydrate), 112

Sym-Dimethylethylene, 45

Unsym-Dimethylethylene (i-butylene), 45, 111

Dimethylethylmethane (2-methyl-2-butane), 22, 112

N-Dimethylglycine, 315

Dimethylketone, acetone, 108

Dimethylnitrosoamine, 256

Dimethyl oxalate, 357

N-Dimethyloxamic acid ethyl ester, 257

Dimethyloxamide, 253

Dimethylphenylcarbinol, 116

N-Dimethyl-p-phenylenediamine, 281, 287

ββ′-DImethylpropene (tetramethylenemethane), 22, 405

2:2-Dimethyl-α-propyl alcohol, 112

Dimethyl racemate, diacetyl derivative, 398

Dimethyl sulphate, 91, 92, 93, 285

1:3-Dimethylxanthine, theophylline, 403

3:7-Dimethylxanthine, theobromine, 493

Dinitrobenzene, 58

Dinitrobenzenes, 64, 65

2-Dinitrobenzenes, 266

ω-Dinitrodiphenylacetylene, 244, 337

2:4-Dinitrophenol, 125, 126

2:6-Dinitrophenol, 125, 126

Dinitrophenols, 125

Dinitrotartaric acid, 399

Diolefines, 53

Dioxirene, 335, 336

2-Dioxypyridine, xanthine, 487

Dioxytartaric acid, 399

Dipeptide, 327, 328

Diphenyl, phenylbenzene, 77

N-Diphenylacetamide, 291

Diphenylacetylene, 77

Diphenylamine, 283, 288

Diphenylamine hydrochloride, 290

N-Diphenylbenzamide, 289

Diphenylcarbinol, 115

Diphenyl ether, 141

Symp-Diphenylethlenes, 76

Sym-Diphenylglycol, 172

Sym-Diphenylhydrazine, hydrazobenzene, 287

Diphenylketone, benzophenone, 108

Diphenylmethane (benzylbenzene), 77, 78

Diphenyluratoamine, 290

Diphenyl oxide, 141

Dipheny lurrea, 481

Dippel’s oil, 292

Di-primary alcohol, 351

Dipropargyl, 54, 60

Di-i-propyl, 290

C-Di-propylbarbituric acid (propanal), 482

Disazo dyes, 282

Disaccharides, 416, 417, 449, 450

Disaccharides, isomerism among, 451

Disaccharides, non-reducing, 450

Disaccharides, reducing, 450

Dissociation constants of fatty acids, primary aliphatic amines and amino acids, 317

Disymmetry, 350

Distillation at ordinary pressure, 508

Distillation under reduced pressure, 510

Dithio acids, synthesis by Grignard’s reaction, 500

Divinyl ether, 140

“Dix années dans l’histoire d’une thèorie”, by J. H. van’t Hoff, 343

Double bond or linkage, 26, 34, 143

Double linkage, detection of, 37

Drying agents for desiccators, 506

Drying agents for reduced pressure, 504

 Dulcitol, 415, 421, 434

Dumas, J. B., anthracene in coal tar, 81

Dumas, J. B., chlorine in acetic acid, 205

Duppa, B. F., synthesis of racemic and mesoartaric acids, 397

Duppa, B. F. and Perkin (Sir) W. H., synthesis of glycine, 318

Dutch liquid, 94

Dyeing, 282

Dye-stuffs, 473

Dynamite, 388

Dynamite, 388

Dynamite, 188
INDEX

Egg albumin, 321
Ehrlich, P., discovery of aotxyol, etc., 270
— on fermentation, 470
Eilott, A., translation of van ‘t Hoff’s “Arrangement of Atoms in Space”, 343
Elaidic acid, 232
Electronic formulae, 139, 259, 267
Electronic theory of valency, 374
Ellis, C., “Chemistry of Synthetic Resins”, 154
Empirical formula, 9
Emulsin, 165, 428, 446, 452, 453
Enantiomers, 346
Enantiomorphism, 348, 400, 401
Enantiomorphism of crystals, 401, 402
Engelhardt, sarcocatic acid, 341
Engler, C., origin of petroleum, 24
English process, manufacture of methyl alcohol, 89
Enolic form, 359
Enzyme action, 447
“Nature of Enzyme Action”, by (Sir) W. M. Bayliss, 447
Enzyme hydrolysis, 446
Enzymes, 332, 333, 364, 428, 446, 448, 457, 466, 469, 470, 475, 479
“Enzymes”, by J. B. S. Haldane, 447
Epimerisation, 425
Equilibrium constant, 214
Erdmann, H., isatin from indigo, 335
Ergosterol, 225
Ergosteryl acetate, 225
Erlenmayer, E., constitution of naphthalene, 78
Erythritol, 391, 392, 393, 396
4-n- and l-Erythritol, 392
Erythrityl acetate (tetracetylerythritol), 392
Erythrityl nitrate (tetranitrate of erythritol), 392
Erythrose, 393
Essential oil of bitter almonds, 165
Ester, 29, 92
Ester-acid, 353
Ester-amide, 257
Ester formation, 214, 215
Esterification, 214
Esters, 213
Esters, general method for preparation, 215
Esters of isocyanic acid, 254
Estimation of sugars, 462
Ethanal, 154
Ethane, 2, 17, 18, 26, 292, 251
Ethane (methylmethane), 86
Ethane tricarboxylic acid, 378
Ethane tricarboxylic acid-diethyl ester, 378
Ethanol, 96, 154
Ether, diethyl ether, 17, 137, 139
Ether, isomeric with butyl alcohols, 140
Ethers, 135, 136, 245
Ethers of salicylaldehyde, 175
Ethyl acetate, 158, 159, 209, 211, 214, 225, 309
Ethyl acetate, properties, 216
Ethylacetic acid, n-butyric acid, 221
Ethyl acetoacetate, 360, 368, 369, 371, 375
Ethyl acetoacetate, enol or a- and keto or β-forms, 370, 372
Ethyl acetoacetate, an equilibrium mixture, 373
Ethyl acetoacetate, ‘chelate’ structure, 374
Ethyl acetoacetate, constitution, 372
Ethyl acetoacetate, copper derivative, 374
Ethyl acetoacetate as a synthetic reagent, 375
Ethylacetylene, 53
Ethyl alcohol, from acetylene, 99
Ethyl alcohol, catalytic oxidation, 155
Ethyl alcohol, constitution, 28
Ethyl alcohol, dehydration, 29, 31
Ethyl alcohol, distinguished from methyl alcohol, 104
Ethyl alcohol, ethanol, methylcarbinol, 86, 96, 102, 138, 154, 155, 159, 162, 200, 251, 366, 465, 466, 467, 468, 469, 470, 473
Ethyl alcohol, isomeric with dimethyl ether, 139
Ethyl alcohol, properties, 99
Ethylbenzene, 68, 76
Ethyl benzenesulphonate, 138
Ethyl benzoate, 237
Ethyl bromide (monobromoethane), 46, 100, 101, 102
Ethylbutylenes, 45
Ethylcarbinol, n-propyl alcohol, 86, 106
Ethyl carbonate, 474
Ethyl chloride (monochloroethane), 19, 100, 102
Ethyl chloroformate, 473
Ethyl β-chloropropionate, 377
Ethyl cinnaminate, 242
Ethyl cyanide (propionitrile), 218, 254
Ethyl cyanocetate, 360, 362, 377
Ethyl α,α-dibromoacetoacetate, 373, 374
Ethyl α,α-dibromo-β-keto-n-butyrate, 374
Ethyl dihydrogen phosphate, 31
Ethylene, 2, 27, 50, 50, 101, 137, 138, 226, 263, 366
Ethylene, anaesthetic, 32
Ethylene, composition, 32
Ethylene, constitution, 27, 40
Ethylene from coal gas, 98
Ethylene, properties, 32
INDEX

Ethylene, reaction with bromine, 35
Ethylene, reaction with sulphuric acid, 37
Ethylene, regulated oxidation, 144
Ethylene bromide (sym-dibromo-ethane), 35, 46, 293, 352, 378
Ethylene bromhydrin, 37
Ethylene chloride (sym-dichloroethane), 19, 34, 49
Ethylene chlorohydrin, 37, 38, 366
Ethylene cyanide, 293, 378
Ethylene derivatives, isomerism among, 41
Ethylene glycol, 1:2-(or sym-)dihydroxyethane, 36, 351, 362
Ethylene oxide, 38, 155, 158, 261
Ethylene series of hydrocarbons, 27
Ethylaline or ethanolic linkage, 34
Ethyl hydrogen sulphate, 29, 37, 98, 101, 137
Ethyl hydrogen sulphate, salts, 101
Ethylidenel bromide (unsym-dibromo-ethane), 49
Ethylidene chloride (unsym-dichloro-ethane), 19, 49, 157
Ethylidenel grouping, 170, 342
Ethyl iodide, 101, 103, 138, 137, 139, 215, 474
Ethyl isocyanate, 254
Ethyl malonate, 359, 361, 375, 377
Ethylmethane (propane), 80
Ethyl monochloroacetate, 377, 378
Ethyl oxalate, 257, 263, 357
C-Ethylphenylbarbituric acid (garden, luminal, phenobarbital), 482
Ethylphenyl ether, phenetole, 129
Ethyl radical, 501
Ethyl thoriate, 32
Ethyl urethane, 475
Externally compensated acid, 346
Externally compensated base, 347
Faraday, M., benzene, discovery and composition of, 56 — napththalene, composition of, 78
Fats, 220, 222, 385
Fats, hydrolysis, 368
Fats, phosphorus containing, 260
Fatty acid, 260
Fatty acids, 192
Fatty acids, oxidation of, 368
von Fehling, H., volumetric estimation of sugars, 463
Fehling’s reagent, 464
Fehling’s solution or reagent, 146, 155, 170, 279, 464
Fehling’s solution, not reduced by glycojen, 456
Fehling’s solution, not reduced by starch, 458
Fehling’s solution, reduced by inulin, 462
Fenton, H. J. H., reduction of carbon dioxide to formaldehyde, 145, 152
Fermentation, 96, 179, 306, 465, 466, 467
Fermentation, butyric acid, 221
Fermentation of hexoses, 465 et seq.
Fermenting complex, 467
Fernbach, A., ethylene bacillus, 179
Ferrie chloride, chlorination catalyst, 161
Ferrie chloride, reaction with phenols, 119
Fischer, Emil, x-aceose, 151
— adene, 492
— amino acids and peptides, 312, 327
— monomethylglycosides, 426, 427
— phenylhydrazine, 279
— purine alkaloids, 493
— uric acid synthesis, 488
Fitty, R., diphenyl, 77
— naphthalene and 4-naphthol, 79
— reaction, 69, 75
Flameless combustion of methyl alcohol, 144
Flascheim, B., substitution in aromatic compounds, 130
Formaldehyde, 17, 37, 93, 94, 144, 145, 307, 355, 445
Formaldehyde, estimation of amino acids, 317
Formaldehyde, methylating agent, 259
Formaldehyde, reaction with ammonium chloride, 258
Formaldehyde, reducing properties, 146
Formaldehyde, polymerisation, 149
Formaldehyde sodium bisulphite, 339
Formaldehydes, uses, 153
Formaldixone, 149
Formalin, 145, 146
Formamide, 197
Formanilide, 271
Formic acid, 93, 94, 190, 192, 195, 221, 230, 357, 365, 388, 389
Formic acid, an aldehyde, 197
Formic acid, constitution, 192, 197
Formic acid, decomposition, 195
Formic acid, reducing agent, 197
Formic acid, 94, 104, 183, 193, 195, 196, 197, 203, 356
Formose, 151, 445
Formylaldehydylamine, 306
dl-Formylhydroxacetatic acid, 390
Fractionating column, 509
Fractionation triangle, 510
Francland, (Sir) E., hydrocarbon radicals, 501
— organo-metalllic compounds, 494, 495

© in this web service Cambridge University Press www.cambridge.org
INDEX

Free rotation about a single bond, 40
Friedel, C., synthesis of glycerol, 385
Friedel, C. and Crafts, J. M., reaction using aluminium chloride, 70, 187
Friesche, aniline from anthranilic acid, 334
— assigned name to aniline, 265
Fructofuranose, 455
α- and β-Fructofuranose, 438
Fructopyranose, 455
α- and β-Fructopyranose, 438
Frucosans, 456
Fructosate, 437, 438
Fructosazine, 437
Fructose, d(-)-fructose, 151, 391, 421, 422, 424, 437, 438, 440, 441, 442, 443, 444, 454, 456, 462
dl-Fructose, 391, 465
γ-Fructose, 455
Fructoside, 455
β-Fructoside, 455
Fructosone, 441
d(-)-Fructosone, 442
Fumaric acid, 381, 382, 383, 397
Functional groups, 309
Furan, 355, 379, 429
Furanose forms, monosaccharides, 429
Furfural, 413, 444
Fusel oil, 105, 468, 469
α- and β-Galactofuranose, 434
α- and β-Galactopyranose, 434
Galactosans, 456
Galactose, d-galactose, d(+)-galactose, 364, 415, 419, 421, 433, 436, 450, 453, 456, 465
β-Galactose, 453
β-Galactoside, 453
Gall stones, cholesterol, 225
Garden, naphthalene in coal tar, 78
Gardner(C-ethylphenylbarbituric acid), 482
Gattermann, L., preparation of benzaldehyde, 107
— decomposition of diazo compounds by copper, 277
Gelatin, 314
General formula, 24
Gentiobiase, 449, 450
Gentiobioside of mandelonitrile (amyl- dalin), 449
Geometrical isomerism, 342
Gerhardt, O. F., phenol, 119
Gerrard, A. W., distillation of sugars, 446
Geuther, A., ethyl acetocetate, 369
Gibson, C. S., ββ'-dichlorodiethyl sulfide (mustard gas), 39
— resolution of an externally compensated disymmetric compound, 350
Gibson, J. and Cram- Brown, A., rule of orientation, 129
Glass joints, 514
Glucose, saccharin, 240
α- and β-Glucose, 431
d-Gluconic acid, d(+)-gluconic acid, 423, 425, 443
d-Gluconic acid, nitrile of (gluconitrile), 424
d-Glucosonolactone (lactone of d(+)-gluconic acid), 425
α- and β-Glucopyranose, 430, 431, 438
α- and β-Glucopyranose units, 460
α-Glucopyranose-β-fructofuranose (sucrose), 455
Glucosans, 456
Glucosate, 437
Glucosazine, 452
Glucose, constitution, 420
Glucose in blood, 425
α- and β-Glucose, 426, 428, 429, 430, 431, 452
α- and β-(-)-Glucose, 431
β-Glucose-4,β-galactoside, β-lactose, 453
α-Glucose-4,α-glucoside, α-maltose, 452
Glucose phenylhydrzone, 424
Glucoside, 332, 455
Glucoside, definition, 445
Glucosides, 422, 447
Glucosides, synthetic, 428
α-Glucoside, 452
β-Glucoside, 445, 447, 448, 455
β-Glucoside of mandelonitrile-β-glucoside (amylgladin), 449
β-Glucosides, 446
Glucosone, 441, 442
Glucuronic acid, d-gluconic acid, 423, 449, 450
Glu, 314
Glutamic acid (α-aminoglutaric acid), 327, 470
Glutaric acid, 358, 377
Glyceraldehyde, 444
dl-Glyceraldehyde, 390, 391
Glyceric acid, 369
dl-Glyceric acid, 390
Glycerides (fats), 222
Glycerol, 37, 116, 220, 226, 260, 302, 357, 385, 386, 389, 391, 468, 469
Glycerol, fermentation, 468, 470
Glyceroz α-chlorohydrin, 387
Glycerol β-chlorohydrin, 387
Glycerol αz'-dichlorohydrin, 387
Glycerol αβ-dichlorohydrin, 387
34
INDEX

Glycerol dioleate, 388, 389
Glycerol monooleate, 388, 389
Glycerol monostearate, 388, 389
Glycerophosphates, 388
Glycerophosphoric acid, 290, 261
Glycerol, 390, 391, 444
Glyceryl acetyl, tripalmitate, 220, 225, 386
Glyceryl n-butyrate, tributyryl, 221, 225
Glyceryl esters, 220
Glyceryl iodide, 389
Glyceryl monophosphate, 388
Glyceryl (tri)chioride, 1 : 2 : 3-trichloro-2-propene, 387
Glyceryl (tri)nitrate, 387, 388, 389
Glyceryl (tri)oleate, triolein, 225
Glyceryl (tri)palmitate, tripalmitin, 222, 225
Glyceryl (tri)stearate, tristearin, 222, 225
Glycine (aminoacetic acid), 205, 235, 241, 258, 310, 312, 314, 318, 354
Glycine (ammonium chloride), 2 : 5-diketopiperazine, 311
Glycine, dissociation constants, 317
Glycine ethyl ester and hydrochloride, 315
Glycine, salts, 315
Glycocon, glycine, 314, 318
Glycojen (liver starch), 451, 456, 457, 459
Glycojen, constitution, 457
Glycojenase, 457
Glycol (β-hydroxyethyl alcohol), 36, 262, 351, 352, 353, 354, 385
Glycolic acid synthesis by Grignard’s reaction, 506
Glycolaldehyde, glycocolic acid, 391
Glycol chlorhydrin (ethylene chlorhydrin), 291, 352, 366
Glycol diacetate, 352
Glycol monoacetate, 352
Glycolic acid, 205, 319, 353, 354, 355, 365, 436
Glycollic aldehyde, 353
Glycolide, 354
Glycose, 445, 449
Glycosides, 428, 445, 446, 447, 451
α-Glycosides, 446
β-Glycosides, 446, 453
β-Glycosides, 446
Glycyglycine, 327
Glyxal, 307, 308, 353, 354
Glyxaline, 307, 353, 354, 486
Glyxine, 354
Glyoxal acid (glyoxalic acid), 206, 353, 355
Gold, organo derivatives, 501
Grape sugar, 422
Griess, J. P., diazo reaction, 273
Grignard, V., organo-magnesium compounds as synthetic reagents, 498
Grignard’s reagent, constitution, 498
Grignard’s reagents and their applications, 498 et seq.
Guainidine, 484, 485, 492
Guainidine carbonate, 484
Guainidine nitrate, 484
Guainidine picrate, 485
Guainidine thioaeonate, 484
Gulberg and Wage, Law of mass action, 214
Gullo, 419, 420, 436
Gum benzoin, 235, 236
Haemin, 3
Haemoglobin, 292
Hair, 214
Hallane, J. B. S., “Enzymes”, 447
Halogen, tests for combined, 5
Halogen carriers, 59, 72
Halogeno-aromatic compounds, produced by Sandmeyer’s reaction, 277
β-Halogenopropionic acids, 366
Hantzsch-Werner hypothesis, 169, 189
Hard soap, 223
Harden, (Sir) A., “Alcoholic Fermentation”, 447
— fermentation, 466, 467
Harington, C. R., synthesis and resolution of dl-thyroxine, 323
— constitution of monosaccharides, 413
— constitution of sucrose, 455
— investigation of glycogen, 457
— investigation of starch, 459, 460
— pyranose formulae of monosaccharides, 429
— synthesis of amygdalin, 449
Heating baths, 512
Helianthene, methyl orange, 282
Heliotropin, 178
Hemihedral crystal faces, 400, 404
Hemihedral development, 401
Hemimellitene, 67
n-Heptane, 44
Herschel, (Sir) J., optical activity of quarts, 402
Heterocyclic, 38, 52
Heterocyclic compounds, 371, 379, 487
Heterocyclic series, 292
Hexacetyl dulcitol, 416
Hexacetyl d-mannitol, 416
Hexacetyl d-sorbitol, 416
Hexabromobenzene, 59
Hexachloroacetone, 181
Hexachlorobenzene, 59
Hexachloroethane, 20
Hexacontane, 23
<table>
<thead>
<tr>
<th>INDEX</th>
<th>531</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexadecane, 113</td>
<td></td>
</tr>
<tr>
<td>Hexadecanol, cetyl alcohol, 113</td>
<td></td>
</tr>
<tr>
<td>Hexadiene (1, 5), 54</td>
<td></td>
</tr>
<tr>
<td>Hexahydric alcohol, 415, 443</td>
<td></td>
</tr>
<tr>
<td>n-Hexahydric alcohols, 414</td>
<td></td>
</tr>
<tr>
<td>Hexahydrophenol, cyclohexanol, 123</td>
<td></td>
</tr>
<tr>
<td>Hexahydropridine, piperidine, 298, 300</td>
<td></td>
</tr>
<tr>
<td>Hexahydrotoluene, methylcyclohexane, 73</td>
<td></td>
</tr>
<tr>
<td>Hexamethylene, cyclohexane, 43, 44, 59</td>
<td></td>
</tr>
<tr>
<td>Hexamethylenetramine, hexamine, 148</td>
<td></td>
</tr>
<tr>
<td>Hexamine, 148</td>
<td></td>
</tr>
<tr>
<td>n-Hexane, 23, 44, 414</td>
<td></td>
</tr>
<tr>
<td>n-Hexitols, 414</td>
<td></td>
</tr>
<tr>
<td>Hexonic acid, 443</td>
<td></td>
</tr>
<tr>
<td>Hexose, 415, 469, 470</td>
<td></td>
</tr>
<tr>
<td>Hexosephosphate, 467</td>
<td></td>
</tr>
<tr>
<td>Hexoses, 467</td>
<td></td>
</tr>
<tr>
<td>Hexoses, 413, 416, 424, 465</td>
<td></td>
</tr>
<tr>
<td>tert.-Hexyl alcohol, methylthiethylcarbinol, 497</td>
<td></td>
</tr>
<tr>
<td>Hippuric acid, N-benzoylglycine, 235, 239, 318, 319</td>
<td></td>
</tr>
<tr>
<td>Histamine, 307, 325, 326</td>
<td></td>
</tr>
<tr>
<td>Histidine, 307, 325, 326</td>
<td></td>
</tr>
<tr>
<td>von Hofmann, A. W., formaldehyde, 144</td>
<td></td>
</tr>
<tr>
<td>— identity of aniline from various sources, 265</td>
<td></td>
</tr>
<tr>
<td>— preparation of primary amines, 212, 213, 250, 292</td>
<td></td>
</tr>
<tr>
<td>— preparation of aliphatic amines, 249</td>
<td></td>
</tr>
<tr>
<td>— preparation of diphenylamine, 288</td>
<td></td>
</tr>
<tr>
<td>— preparation of isoanilines, 254</td>
<td></td>
</tr>
<tr>
<td>— sealed tube reaction, 262, 294</td>
<td></td>
</tr>
<tr>
<td>Holt, A., see Chapman, D. L., 144</td>
<td></td>
</tr>
<tr>
<td>Homocyclic, 52</td>
<td></td>
</tr>
<tr>
<td>Homologous series, 23, 27</td>
<td></td>
</tr>
<tr>
<td>Homologous series, ascending and descending of, 292</td>
<td></td>
</tr>
<tr>
<td>Homologues, 23</td>
<td></td>
</tr>
<tr>
<td>Homophthalimide (imide of o-carboxy-phenylacetic acid), 304</td>
<td></td>
</tr>
<tr>
<td>Honey, 451</td>
<td></td>
</tr>
<tr>
<td>Hopkins, (Sir) F. G., tryptophan, 324</td>
<td></td>
</tr>
<tr>
<td>— uric acid, 491</td>
<td></td>
</tr>
<tr>
<td>Horn, 321</td>
<td></td>
</tr>
<tr>
<td>Human hair, cystine from, 321</td>
<td></td>
</tr>
<tr>
<td>Hydroacrylic acid, 228, 342, 362, 363, 366</td>
<td></td>
</tr>
<tr>
<td>Hydroazobenzene, 267, 268</td>
<td></td>
</tr>
<tr>
<td>Hydrobenzamidine, 171</td>
<td></td>
</tr>
<tr>
<td>Hydrobenzoin (sym-diphenylglycol), 172</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons, aliphatic, 13-55</td>
<td></td>
</tr>
<tr>
<td>Hydrocarbons, synthesis by Grignard’s reaction, 499</td>
<td></td>
</tr>
<tr>
<td>Hydrochloroauric acid, 247</td>
<td></td>
</tr>
<tr>
<td>Hydrochloroplatic acid, 247</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanmamic acid, 243, 244</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanmamic acid, 173</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanic acid, 50</td>
<td></td>
</tr>
<tr>
<td>Hydrogen, test for combined, 3</td>
<td></td>
</tr>
<tr>
<td>Hydrogen, weight of 1 litre, 515</td>
<td></td>
</tr>
<tr>
<td>Hydrolysis, 117, 215</td>
<td></td>
</tr>
<tr>
<td>Hydrolytic agents, 312</td>
<td></td>
</tr>
<tr>
<td>Hydroquinone (quinol), p-dihydroxybenzene, 65, 167, 447</td>
<td></td>
</tr>
<tr>
<td>Hydroxyacetic acid, glycollic acid, 205, 319, 355, 437</td>
<td></td>
</tr>
<tr>
<td>Hydroxyacetone, 469</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxy acids, 354, 365</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxy acid, 367</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxyacetoxybenzene, 281</td>
<td></td>
</tr>
<tr>
<td>n-Hydroxybenzaldehyde, 174, 178</td>
<td></td>
</tr>
<tr>
<td>n-Hydroxybenzaldehyde phenylhydrazone, 178</td>
<td></td>
</tr>
<tr>
<td>o-Hydroxybenzaldehyde, salicylaldehyde, 165, 174</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybenzaldehyde, 174, 175, 176, 177</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybenzaldehyde phenylhydrazone, 176</td>
<td></td>
</tr>
<tr>
<td>m-Hydroxybenzaldoxime, 178</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybenzaldoxime, 176</td>
<td></td>
</tr>
<tr>
<td>o-Hydroxybenzoic acid, salicylic acid, 131, 132, 175</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybenzoic acid, 177</td>
<td></td>
</tr>
<tr>
<td>Hydroxybenzoic acids, 133</td>
<td></td>
</tr>
<tr>
<td>o-Hydroxybenzyl alcohol, salicylic alcohol, saligenin, 154, 175, 448</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybenzyl alcohol, 154</td>
<td></td>
</tr>
<tr>
<td>1-Hydroxybutane, n-butyl alcohol, 110</td>
<td></td>
</tr>
<tr>
<td>2-Hydroxybutane (methylthethylcarbinol), 110</td>
<td></td>
</tr>
<tr>
<td>Hydroxybutanes, 85</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybutyric acid (β-hydroxy-n-butyreric acid), 158, 179, 345,</td>
<td></td>
</tr>
<tr>
<td>367, 368, 369</td>
<td></td>
</tr>
<tr>
<td>p-Hydroxybutyric acid, 346</td>
<td></td>
</tr>
<tr>
<td>l-β-Hydroxybutyric acid, 344, 367, 368, 369</td>
<td></td>
</tr>
<tr>
<td>a-Hydroxyisobutyric acid, 184</td>
<td></td>
</tr>
<tr>
<td>1-Hydroxy-2 : 3-dibromopropane (2 : 3-dibromopropyl alcohol), 117</td>
<td></td>
</tr>
<tr>
<td>β-Hydroxyethyl alcohol, glycol, 262</td>
<td></td>
</tr>
<tr>
<td>Hydroxyethyl cyanide, 365</td>
<td></td>
</tr>
<tr>
<td>Hydroxyformic acid, carbonic acid, 473</td>
<td></td>
</tr>
<tr>
<td>Hydroxyhydroquinone (1 : 2 : 4-trihydrobenzene), 67</td>
<td></td>
</tr>
<tr>
<td>β-Hydroxyindole, indoxyl, 296</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl group, 28</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl group, ortho-para-directing, 129</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl (alcoholic) group, replacement by iodine, 102</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl groups, estimation, 352</td>
<td></td>
</tr>
<tr>
<td>Hydroxyl groups, estimation by Grignard’s reaction, 499</td>
<td></td>
</tr>
<tr>
<td>Hydroxylamine hydrochloride, 159</td>
<td></td>
</tr>
<tr>
<td>Hydroxymethylfurural, 444</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

1-Hydroxy-2-methylpropene, i-propylcarbinol, 110
2-Hydroxy-2-methylpropene, tert.-butyl alcohol, 111
2-Hydroxy-1-methyl-4-isopropylbenzene, carvacrol, 134
3-Hydroxy-1-methyl-4-isopropylbenzene, thymol, 133
β-Hydroxymonocarboxylic acids, 366
Hydroxynitrobenzenes, nitrophenols, 64, 65
β-p-Hydroxyphenyl-α-aminopropionic acid (tyrosine), 322
1-Hydroxypropene, α-propyl alcohol, 106
2-Hydroxypropene, i-propyl alcohol, 106
α-Hydroxypropionic acid, lactic acid, 219, 228, 342, 362, 367
dl-α-Hydroxypropionic acid, dl-lactic acid, 320
β-Hydroxypropionic acid, hydroacrylic acid, 228, 342, 362, 386
Hydroxypropurines, 487
Hydroxypropurines, tautomerism of, 487, 490
Hydroxypruvic acid, 390
Hydroxytricarballylic acid, citric acid, 471
2-Hydroxy-1 : 2 : 3-tricarboxypropene, citric acid, 471
Hyponone, 187
Hyppobromous acid, reaction with ethylene, 37
Hyppochlorous acid, reaction with ethylene, 37
Hyppoxanthine, 6-oxypurine, 487, 492
Identification of organic compounds, 506
Identity of organic compounds, 511
Idose, 419, 420, 436
Illuminants, 25
Iminazole, glyoxaline, 307
β-Iminazolyethylamine, histamine, 326
Imino group, 294
Iminodiacetic acid, 313
Indemulsin, 332, 448
Indean, 332, 338, 448
Indean (urinary), 296
Indigo (π-indigo), 265, 296, 330, 332, 333, 339, 448
Indigo from urine, 335
Indigo-brown, 333
Indigo (e. indigo), 333, 334, 337, 338, 340, 448
Indigo, constitutional formula, 336
Indigo-white, 338, 339
Indigo-yellow, 333
Indirubin, 333
Indole, 285, 324, 325, 335
Indoleacetic acid, 325
β-Indole-α-aminopropionic acid, tryptophan, 324
β-Indoleethyamine, 325
β-Indolepropionic acid, 325
Indophenin reaction, 57, 70
Indoxyl, 296, 332, 333, 338, 448
Indoxyl carboxylic acid, sodium salt, 340
Indoxyl sulphate, 296
Industrial spirit, 97
Ingold, C. K., substitution in aromatic compounds, 130
Inner-ester, 334, 335, 367
Inner-ether, 38
Internal compensation, 395
Iunion, 437, 438, 456, 462
Inversion, 437, 454
Invertase or sucrase, 454
Invert sugar, 454
Iodine, test for combined, 5
Iodine value, 225, 233
Iodobenzene, 277
2-Iodobutane, 392
Iodo compounds, aromatic by diazo reaction, 277
Iodoform, triiodomethane, 104, 182, 369
2-Iodohexane, 415, 435
Iodol, tetraiodopyrrole, 294
2-Iodopropene, 1-propyl iodide, 108
Iridium, resolution of externally compensated compound of, 350
Iron, organo derivatives of, 501
Iron, resolution of externally compensated compound of, 350
Irving, (Str.) J. C., photosynthetic sugar, 152
Isatin, 57, 70, 335, 337
Isatin chloride, 337
Isocyanates, alkyl (isocyanic esters), 251, 254
Isocyanic acid, 478, 480
Isocyanides, alkyl, 251, 254
Isocyanides, carbylamines, 254
Isocyanides, constitution and preparation, 251
Isocyclic, 52
Isocyclic compounds, 487
Isolsacine, 469
Isomeric compounds, 19
Isomerism, 19, 476
Isomerism, aldehydes, 417
Isomerism, aldehydes, 410
Isomerism, disaccharides, 451
Isomerism, ethers and monohydric alcohols, 136
Isomerism, glyceryl esters, 387
Isomerism, ketohexoses, 436
Isomerism, ketopentoses, 410
Isomerism, oximes, 160
INDEX

Isomerism, α-pentitols, 408
Isomerism, pyridine derivatives, 299
Isomerism, quinoline derivatives, 302
Isomerism, substituted ethylene derivatives, 41
Isomers, 19
Isotosobarbituric acid, violuric acid, 483
Isotosomalonylurea, violuric acid, 488
Isoprene, 2-methylbutadiene (1:3), 54
Isoquinoline, 350
Jansen, S. E., and Pope, (Sir) W. J., resolution of dl-diaminospiroheptane, an externally compensated disymmetric compound, 350
Jordan, D. S. and Bone, W. A., production of acetylene, 47
Kekulé, A., constitution of benzene, 60 — synthesis of racemic and mesotartric acids, 397
Keratin, 321
β-Keto-n-butryic acid, acetoacetic acid, 368
Ketohexose, 391, 415, 416, 442, 444, 445
Ketohexose conversion to aldohexose, 444
Ketohexoses, 416, 435, 436
Ketone, definition, 435
Ketone, characteristic group, 108
Ketone, distinguished from aldehyde, 109
Ketone-alcohol, 391
Ketones, 108, 142, 294
Ketones, unsaturation properties of, 142, 143
Ketones, synthesis, 375, 376, 496
Ketonic hydrolysis, 376
β-Ketopalmatic acid, 368
Ketopenose, isomerism among, 410
Ketopentoses, 408
Ketopiperazines, 328
α-Ketopiperidine, 311
α-Ketopyrrolidone, 331
Ketopyrrolidines, pyrrolidines, 311
Ketose, 391
Ketos, 409
β-Ketosteric acid, 368
Ketotetrose, 393
Ketotriose, 390, 391
Kiltani, H., conversion of C₄ aldose to C₅₁ aldose, 418
Kjeldahl, J. G. C. T., determination of nitrogen in organic substances, 8
Knorr, L., constitution of ethyl acetocetate, 372
Kolbe, A. W. H., preparation of salicylic acid, 131
Kolbe, A. W. H., preparation of trichloroacetic acid, 206
— synthesis of malonic acid, 358
Körner, W., orientation of benzene derivatives, 66, 129

"La chimie dans l'espace", by J. H. van 't Hoff, 343
Lactams, 311
γ- and δ-Lactams, 311
Lactic acid, disodium derivative, 365
Lactic acid, sodium salt, 365
Lactic acid, space formula, 344
Lactic acid, synthesis, 342, 363
Lactic acid, zine salt, 364
dl-Lactic acid, 364, 457
dl-Lactic acid, 320, 346, 364, 365, 366
dl-Lactic acid, calcium salt, 365
dl-Lactic acid, resolution, 347
d- and l-lactic acids, 345
l-Lactic acid, 321, 366
Lactide, 365, 367
Lactone of (–)-glucronic acid, 425
Lactone of heaxonic acid, 443
Lactone of dl-(-)-mannonic acid, d-mannolactone, 425
Lactonitrile, 314, 363
Lactosazone, 452
Lactose (milk sugar), 364, 433, 450, 452, 453
β-Lactose, 453
Ladenburg, A., constitution of benzene, 61
— equivalence of hydrogen atoms in benzene, 63
— synthesis and resolution of dl-convine, 300
Laevorotatory substance, 341
Laevulose, former name of fructose, 437
Landolt-Börnstein, "Physikalische Tabellen", 507
Lapworth, A., substitution in aromatic compounds, 130
Laurent, A., anthracene in coal tar, 81
— first production of pure phenol, 119
— isatin from indigo, 355
Law of Mass Action, 214
Law of Multiple Proportions, 2
Laws, E. G. and Siddweck, N. V., isomeric acetalddehyde phenylhydrazones, 161
Lead, organo derivatives, 501
Lead tetraethyl, 501
Lead tetramethyl, 501
Le Bel, J. A., asymmetric carbon atom, 343
INDEX

Le Bel, J. A., asymmetric molecule, 405 — stereoisomerism, 40
Lecithin, 260, 261, 387
Legal, E., test for acetone, 186
Lévy, identification of succinic acid, 377
Leucine, α-aminoisoacaproic acid, 326, 469
isoLeucine, α-amino-β-methyl-β-ethylpropionic acid, 326
Leuco-compounds, 333
Liebermann, C. T., nitroso reaction, 124, 285
von Liebig, J., discovery of chloral, 161 — isolation of sarcosine, 319
von Liebig, J. and Wöhler, F., isomerism of ammonium cyanate and urea, 476 — researches on the radical of benzoic acid, 293
Limpich, H., synthesis of anthracene, 81
Linseed oil, 232, 233
Lipins, 290
Loeoe, O., production of formose, 151
Lowry, T. M., dynamic isomerism, 373 — mutarotation, 420
Lubricants, 25
Luminal, C-ethylphenylbarbituric acid, 482
Lysole, α-t-diamino-γ-caproic acid, 327
Lyxose, 410–413, 419, 434
Magnesium alkyl and aryl halides, 498
Magnesium amalgam for dehydration, 97
Mailhe, A. and Sabater, P., catalytic dehydration of alcohols, 31
Maltland, P. and Mills, W. H., resolution of an externally compensated allene derivative, 349
Malachite green, 178
Maleic acid, 381, 382, 383, 384
Maleic acid, imide of, 331
Maleic anhydride, 381, 383
Maleimide, 331
Malonic acid, 345, 346, 380, 381
l-Malic acid, 344, 381
Malonamide, 481
Malonic acid, 358, 488
Malonic acid, ethyl ester (v. ethyl malonate), 482
Malonic acid, silver salt, 482
Malonylurea, barbituric acid, 481, 482, 483, 488
Malt sugar, maltose, 96
Maltase, 428, 446, 452, 453, 455
Maltose, α-glucose-4-α-glucoside, 423, 451, 452, 457, 458, 459, 460
Maltose phenylhydrazone, 432
Malus, E. L., polarisation of light, 341
Mandelic acid, 108
Mandelonitrile, 449
Mandelonitrile-β-glucose-6-β-glucoside (amygdalin), 449
Mandelonitrile-β-glucoside, 449
Mannose or mannosans, 432, 456
d-Mannitol, d(+)-mannitol, 415, 433, 442, 443
α- and β-Mannofuranose, 433
d-Mannolactone, lactone of d-mannonic acid, 425, 443
d(+)-Mannonic acid, 425, 443
α- and β-Mannopyranose, 433
Mannosaccharic acid, 420
Mannose, d, d(+)-mannose, 415, 418, 424, 432, 433, 436, 437, 440, 441, 442, 443, 465
Mannose, constitution, 420
Mannosone, 441
Margaric acid and barium salt, 223
McMath, A. M. and Read, J., resolution of di-chloroiodomethane-sulphonic acid, 347
Mechanical models, 25
Melissic acid, 113
Melsialy alcohol, myricyl alcohol, 113
Melting point, apparatus, 506
Melting point, determination, 506
Melting point, true and observed, 507
Mendelevi, D. I., suggested origin of petroleum, 24
Mendius’ reaction, preparation of primary aliphatic amines, 251
Mercer, J., mercurisation of cotton, 460
Mercuric acetamide, 212
Mercuric acetylene, 51
Mercury dialkyls, 495
Mercury, organo derivatives, 501
Mesityl oxide, 185
Mesitylene, sym-trimethylenzenes, 53, 67, 185
Mesobilomuscinic acid, 397
Mesorythritol, 392
Meso-groups, 81
Meso-positions, 82
Meso-tartaric acid, 383, 396, 397, 398
Mesoxylic acid, 390
Mesoxylic acid, diaidehyde of, 390
Mesoxylic acid, monaldehyde of, 390
Mesoxylic acid, uride of, 483
Mesoxylurea, alloxan, 483
Meta-compound, 65
Meta-directing substituting group, 129
Metaldehyde, 157
Metallic radicals, tests for combined, 6
Methanol, 144
Methane, 13, 86
Methane, applications of, 16
Methane, constitution, 25
Methane, from cellulose (fermentation), 14
INDEX

Methane, oxidation products, 95
Methane, preparation, 203
Methane, properties, 15
Methane acid, formic acid, 193
Methane dicarboxylic acid, malonic acid, 358
Methane group, 298, 306
p-Methoxybenzaldehyde, anisaldehyde, 176
p-Methoxybenzoic acid, 177
Methoxybenzoic acids, 133
p-Methoxybenzyl alcohol, anisyl alcohol, 177
3-Methoxy-4-hydroxybenzaldehyde, vanillin, 178
1-Methoxy-4-propenylbenzene, anethole, 176
Methyl (radical), 16, 26, 501
Methyl acetate, 199, 216, 218
Methyl alcohol, methanol, carbinol, 17, 80, 88, 144, 148, 248, 284
Methyl alcohol, constitution, 90
Methyl alcohol, direct formation from methane, 192
Methyl alcohol, distinguished from ethyl alcohol, 104
Methyl alcohol, flameless combustion, 144
Methyl alcohol, manufacture, 88
Methyl bromide, 92
Methyl chloride, 16, 89, 91, 92
Methyl crotonyl (methoxotoluenes), 132
Methyl cyanide, acetonitrile, 199, 211, 217, 241
Methyl formate, isomeride with acetic acid, 198
Methyl hydrogen sulphate, 91, 92
Methyl iodide, 17, 92, 136
Methyl isocyanate, 213, 250, 254
Methyl orange, 282
N-Methylacetamide, 253
N-Methylacetonilide, 284
Methyal, 149
N-Methylaminocetic acid, sarcosine, 485
4-Methylaminohydroxyethyl)-1:2-di-hydroxybenzene, adrenaline, 323
Methylanthranilate-ω-sulphonic acid, sodium salt, 339
Methylearbitrun, 447
Methylated ether, 140
Methylated spirit, 90
N-Methylbenzamide, 190, 253
Methylbenzene, toluene, 69
2-Methylbutadiene (1:3), isoprene, 54
β-(or 3-)Methylbutane, 22
2-Methyl-n-butane (dimethylethylmethane), 112
2-Methyl-n-butyl alcohol, 112, 113, 344
3-Methyl-n-butyl alcohol, i-amyl alcohol, 112, 469
α-Methyl-n-butyric acid, methylacetic acid, 222, 301, 500
Methylcarbinol, ethyl alcohol, 86, 96
Methylcarboxybenzenes, toluic acids, 74
Methylene cyclohexane, hexahydrotoluene, 73
dl-Methylene cyclohexylidene-4-acetic acid, 349
Methyldiethylcarbinol, tert.-hexyl alcohol, 497
Methylene (radical), 16
Methylene chloride, 16, 89
Methylenylethyl ether, isomeride with propyl alcohols, 136
Methylenylethyl ketone, 108, 110, 496
Methylenylectacetic acid, 361, 500
Methylethylamine, 241
Methylethylbenzenes, 69
Methylethylcarbinol, 87, 110
Methylethylmalonic acid and ethylester, 361
Methylethylmethane, n-butane, n-propylmethane, 86
N-Methylglycine, sarcosine, 312, 315
Methylglycolxol, 468, 469
N-Methylguanidinocteric acid, creatine, 485
Methylheptadecyl ketone, 223
Methylhexadecyl ketone, 223
Methylhydroxybenzenes, cresols, 132
3-Methyl-3-hydroxyxypentane, tert.-hexyl alcohol, 497
3-(or β-)Methylindole, skatole, 295
3-Methylisoaxazolone, 371
Methylmalonic acid and ethyl ester, 358, 360, 361
Methylenmethane, ethane, 86
Methylenols, cresols, 119
Methylphenyl ether, anisole, 129, 132
Methylphenyl ketone, acetophenone, 108, 186
Methylphenylamine, monomethylamine, 249
2-Methylphenylammonium chloride, α-toluidine hydrochloride, 288
4-Methylphenylammonium chloride, p-toluidine hydrochloride, 288
N-Methylphenylbenzamide, 285
Methylphenylcarbinol, 115, 188
Methylphenylnitrosamine, 285
N-Methylphenyl-α-toluenesulphonamide, 285
2-(or β-)Methylpropane, i-butane, 22
Methyl-α-propyl ether, 140
1-Methyl-4-isopropylbenzene, p-i-propyltoluene, p-cymene, 74
Methyl-α-propylcarbinol, 112
Methyl-α-propyl ether, 140
N-Methylpurines, 493
INDEX

α-(or 2-)Methylpyridine, 298, 299
β-(or 3-)Methylpyridine, 299
γ-(or 4-)Methylpyridine, 299
Methylpyridinium iodide, 298, 299
Methylquinolinium iodide, 303
Methyltri-nitrobenzenes, 68
Meyer, V., βß-dichlorodiethyl sulphide, 39
— indophenin reaction, 57
— stereosomerism, 342
— vapour density determination, 10
Michler, W., Michler’s ketone, 288
Microanalytical methods, 6
Micrococcus, 290
Middle oil, 119
Milk sugar, lactose, 433, 450, 452
Mills, W. H., metallo-coordination compounds, 374
— isoneric oximes, configuration of, 169
— resolution of an externally compensated alene derivative, 349
Mitscherlich, E., benzene from benzoic acid, 298
— crystallography of salts of the tartaric acids, 401, 402
Mixed ether, 135, 141
Mixed melting point for establishing identity of compounds, 511
Mohr, C. F., estimation of reducing sugars, 454
Moss, H., production of calcium carbide, 46
Molasses for preparation of ethyl alcohol (fermentation), 453
Molecular formula, 9
Molecular rotatory power, 345
Molecular weights of amines, 247
Molecular weights of organic acids and bases, 10, 11
Molecular weights, determination, 9
Molecular weights, determination by depression of melting point of camphor, 307
Molisch, H., Molisch’s test for carbohydrates, 444, 455
Monarda punctata, 133
α-Monoaminocarboxylic acids, 326
Monoaaninosphosphateins, 290
Monoozo dyes, 281
Monobenzylamine, 249
Monobromacetaldehyde, 353
Monobromacetonamide, 250
Monobromacetic acid, 318
Monobromobenzene, 59, 291
α-Monobromocinnamic acids, 243
β-Monobromocinnamic acids, 244
Monobromoethane, ethyl bromide, 100
Monomethylamine, vinyl bromide, 41, 46, 49
Monobromomethane, methyl bromide, 92
Monobromoleic acid, 231
Monobromopropanes, 21
dl-Monobromosuccinic acid and anhydride, 380
Monocarboxybenzene, benzoic acid, 63
Monocarboxypropanes, 221
Monochloracetic acid, 90, 205, 318, 340, 353, 358
Monochloroacetone, 181
Monochlorobenzene, 59, 122
β-Monochlorocinnamic acids, 244
Monochloroethane, ethyl chloride, 19, 100
Monochloroethylene, vinyl chloride, 41, 49, 51
Monochloromethane, methyl chloride, 16, 91
Monochloropropylene, 181
dl-Monochlorosuccinic acid, 380, 382
dl-Monochlorosuccinic anhydride, 380
Monooethylamine, 249, 251, 263, 264, 310
Monooethylamine, dissociation constant, 317
Monooethylenes, 481
Monohalogenoethanes, ethyl halides, 102
Monohydric alcohols, 85
Monohydroxyacetic acid, glycollic acid, 353
Monohydroxybenzaldehydes, 174
Monohydroxybenzene, phenol, 63, 85, 486
Monohydroxybenzoic acids, 63
Monohydroxyethane, ethyl alcohol, 85, 96
Monohydroxyethylene, vinyl alcohol, 116
Monohydroxymalonic acid, 390
Monohydroxymethane, methyl alcohol, 85
Monohydroxyphthalalenes, 85
Monohydroxyphenylethanethane, benzylcarbinol, 114
Monohydroxypropanes, 85
Monohydroxypropionic acids, 362
dl-Monohydroxy succinic acid, dl-malic acid, 344, 380
L-Monohydroxy succinic acid, L-malic acid, 344
Monohydroxytoluene, benzyl alcohol, 113
Monoisodomethane, methyl iodide, 92
Monoisodopropanes, 21
Monomethylallene, butadiene (1:2), 54
Monomethylamine, 212, 250, 251, 258, 310, 324
Monomethylamine, dissociation constant, 317
INDEX

Monomethylamine, from p-nitrosomonomethylamine, 286
Monomethylamine, 284, 285, 287
Monomethylamine hydrochloride, 287
Monopentylthylene, propylene, 42, 44
α- and β-Monomethylfructosides, 440
Monomethylglucosides, enzymatic hydrolysis, 428
α- and β-Monomethylglucosides, 426, 427, 428, 440, 444
Mononitrobenzene, 58, 237
Mononitrophenols, 125
Mononitrotoluenes, 71
Monophenylacetylene, 76
Monophenylethylene, styrene, vinylbenzene, 76
Monophenylethylene bromide, styrene bromide, 249
Mono-i-propylamine, 249
Mono-n-propylamine, 249
Monosaccharides, 333, 391, 416, 444, 445, 451, 456
Monosaccharides, reducing power, 465
Monosaccharides, synthesis, 444
Mono-m-tolylamine, m-methylaniline, 1-methyl-3-aminobenzene, 249
Mono-o-tolylamine, o-methylaniline, 1-methyl-3-aminobenzene, 249
Mono-p-tolylamine, p-methylaniline, 1-methyl-4-aminobenzene, 249
Moore’s test for reducing sugars, 444, 454
Mordants, 204, 282
Morphine, 347
Motor spirit, 25
Mouse, C57, alloxogènes, 167 — polymerisation of acrolein, 226
Mucic acid, 421, 434
Müller, H., synthesis of malonic acid, 336
Murexide test for uric acid and urates, 491
Murray-Smith, O., suggested origin of petroleum, 24
Muscarin, G., β2-dichlorodiethyl sulphide, 38, 39
Mutarotation, 426, 428, 430, 432, 433, 438, 450, 451, 452, 454
Mycoderma aceti, 200
Myricyl alcohol, melissyl alcohol, 113
Myricyl palmitate, 113
n-Myristic acid, 368
Naphthalene, 78, 330, 331
Naphthalene, from α-naphthylamine, 277
α-Naphthalene sulphonic acid, 80, 235
β-Naphthalene sulphonamide, 80, 235
α- and β-Naphthoic acids, 192
α-Naphthol, 79, 80

α-Naphthol (Molisch’s reagent), 444
β-Naphthol, 79, 80
α-Naphthylamine, 277
‘Natural gas’, 13, 16, 17
Negative catalysts, 167
Neuberg, C., fermentation, 468, 470
Neurine, 262
Neville, H. A. D. and Pope, (Sir) W. J., resolution of externally compensated selenium compound, 468
New compound, description, 512
Neth, G. S., preparation of ethylene, 31
Nickel carbonyl, 494
Nicotine, 300
Nicotinic acid, β-(or 3-)carboxypyrindine, 299, 304
Isocnicotinic acid, γ-(or 4-)carboxypyrindine, 299, 304
m-Nitroaniline, 266, 272, 273
o-Nitroaniline, 272
p-Nitroaniline, 272
Nitrate, cellulose, 480
Nitration, 58, 125, 127
Nitrations of phenol, 125
Nitro, 193, 356
Nitrotriacetic acid, 313
Nitro group, 58, 267
m-Nitrocatechol, 273
o-Nitrocatechol, 273
p-Nitrocatechol, 273
m-Nitroacetophenone, 190
c-Nitroacetophenone, 190
Nitroanilines (nitranilines), 272
m-Nitrobenzaldehyde, 174, 178
c-Nitrobenzaldehyde, 174
Nitrobenzaldehydes, 243
Nitrobenzene, 265
Nitrobenzene, reduction, 266
m-Nitrobenzoic acid, 238, 329
p-Nitrobenzoic acid, 329
c-Nitrobenzoic acid, 329
p-Nitrosodimethylamine, 336
Nitrosobenzene, bromo, 128
‘Nitrocilulosa’, 460
Nitrochlorobenzene, chloro, 128
m-Nitrocinnamic acid, 243
c-Nitrocinnamic acid, 242
p-Nitrocinnamic acid, 242
p-Nitrocinamic acid dibromides, 244
Nitrocinnamic acids, 174
‘Nitroerythritol’, 392
Nitrogen, tests for combined, 4
Nitrogen, weight of 1 litre, 515
‘Nitroglycerine’, 397
Nitrolim, 477
α-Nitronaphthalene, 80
β-Nitronaphthalene, 80
α-Nitrophenol, 125, 126
p-Nitrophenol, 125, 126
INDEX

Nitrophenols, hydroxynitrobenzenes, 64, 65
α- and β- Nitrophenols, preparation, 125
α-Nitrophenacetic acid, 336
α-Nitrophenacylamine, 244
p-Nitrophenylhydrazine, 161
α-Nitrophenylpropionic acid, 244
p-Nitroso derivatives, 287
Nitrosoamine, 256, 264
Nitrobenzene, 264, 287, 275
p-Nitrosodimethylaniline and hydrochloride, 255, 287
p-Nitrosodimethylaniline, constitution, 287
p-Nitrosodimethylaniline, 286
iso-Nitrososoxindle, 337
p-Nitrosophenol, 124, 255, 286
α-Nitrotoluene, 71, 329
p-Nitrotoluene, 71, 329
n-Nonane, 44
Non-supersposable mirror image, 344, 451
Norrish, R. G. W., action of bromine on ethylene, 35
Nucleic acids, 308
Nucleoproteins, 492
Nucleus, 68

Octaacetyl derivative of sucrose, sucrose octacetate, 454
Octaacetyl derivatives of α- and β-lactones, 452
Octaacetyl derivatives of α- and β-maltose, 451
Octaalkyl and octaacyl derivatives of disaccharides, 451
Octadecapeptide, 328
n-Octane, 44
Oenanthic acid, 223
Oenanthic acid, constitution, 224
Oleic acid, 222, 224, 225, 226, 230, 232, 260, 367
Oleic acid, constitution, 231
Oleic acid, lead salt, 225
Olefinic gas, ethylene, 34
Olefins (ethylene) series of hydrocarbons, 27
Olive oil, 224
Open chain compounds, 52
Optical activity, 113, 341
Optical activity of asymmetric quaternary ammonium compounds, 260
Optical activity of crystals, 401
Organic acids, 94
Organic acids, molecular weights of, 10
"Organic and Biochemistry", by R. H. Pinner, 479
Organic bases, 245
Organic bases, molecular weights of, 11
Organic chemistry, definition, 1
Organic compounds, general properties, 2, 3
Organic compounds, isolation, 502
Organic compounds, purification, 502
Organon-magnesium compounds, 498
Organo-metallic compounds, 3, 494
Organo-metallic compounds, types, 494
Oreganum hirtum, 134
Ornithine, α, β-diamino-n-valeric acid, 227
Ortho-compound, 65
Orthoformic acid, 194
Ortho-meta-directing substituent group, 129
Oxazines, 379, 409, 436
Oxazines, preparation, 409, 410
Oxazines, reducing sugars, 280
Oxime, 441, 442
Oxalic acid, 194, 353, 355, 357, 388, 436, 490
Oxalic acid, esters, 357
Oxalic acid, salts, 356, 357
Oxalic acid series, 231
Oxalic acid, ‘sugar acid’, 356
Oxalylurea, parabanic acid, 483, 489
Oxanonic acid, 357
Oxamide, 357
Oxidae, 333, 448
Oxidation or combustion, 6
Oximes, 124
Oximes, isomeric, 169
Oximes, preparation, 159
Oximinomosoylurea, violuric acid, 483
Oxindole, 335–338
Oxonium compound, 139
Oxyacetylene blowpipe, 48
Oxygen in organic compounds, 3
6-Oxypurine, hypoxanthine, 4
Ozonide, 36

Paired glucuronates, 45
Palmitic acid, 222, 223, 232, 368
Paneth, F., alkyl radicals, 501
Para compound, 65
Parabanic acid, oxalylurea, 483, 489, 490
Paraffin hydrocarbons, paraffins, 24
Paraffin wax, 25
Paraffins, 2
Paraldehyde, 149, 150
Paraldehyde, 157, 158, 301
"Paranaphthaleine", original name for anthracene, 81
"Parataartaric acid", racemic tartaric acid, 398, 400
Pasteur, L., 341, 343, 398
— fermentation, 466, 468
— hemihedrism and optical activity, 402
— mesotartaric acid, 397
— tartaric acids, 400
— salts of tartaric acids, 403
INDEX

Pasteur, L., resolution of externally compensated acids, 347
— first method of resolution of externally compensated compounds, 405
— second method (biological) of resolution of externally compensated compounds, 406
— third method of resolution of externally compensated compounds, 407
— resolution of racemic acid, 403, 404
Payy, F. W., estimation of reducing sugars, 464
Peakey, S. J. and Pope, (Sir) W. J., resolution of externally compensated quaternary ammonium salts, 348
Peakey, S. J. and Pépé, (Sir) W. J., resolution of externally compensated sulphur compound, 348
Peakey, S. J. and Pope, (Sir) W. J., resolution of externally compensated tin compound, 348
Pelargonic acid, 231
Pennsylvania petroleum, 22, 23
Pentabromoaceton, 181
Pentachlorodiethyl ether, 139
Pentachloroethane, 20
Pentacythritol, 343
Pentamethylene, cyclcopentane, 43, 44
Pentamethylenediamine, 297
n-Pentane, 22, 44, 112
Pentane acids, 221
Pentanes, 22
Pentanol, n-amyl alcohol, 112
Pentitols, 408, 409
Pentosans, 436
Pentoses, 408
Peptides, 321
Percentage composition of organic compounds, 8
Percentage of alc. hol, determination of, 99
Perkin, W. H., cyclopentanil, 43
Perkin, W. H. and Pope, (Sir) W. J., resolution of dl-1-methylcyclohexyliden-3-acetic acid, 349
Perkin, (Sir) W. H., synthesis of racemic and mesotartaric acids, 397
— Perkin’s reaction, 173, 174, 242, 243
Perkin, (Sir) W. H. and Duppa, B. F., synthesis of glycine, 318
Peru balsm, 117
Petar’s process, methyl alcohol manufacturer, 88
Petroleum, 24
Petroleum, optically active, 113
Petroleum, possible origin of, 24
Petroleum, refining, 25
Phenacetin, 271, 272
Phenacyl chloride, p-chlorocetophene, 188
Phenanthrene, 77, 83
Phenanthrene tetrahydrodructose, 84
Phenanthrenequinone, phenanthraquinone, 83, 84
p-Phenetidine, p-ethoxyaniline, 271
Phenetole, ethylphenyl ether, 130, 141, 271, 276
Phenobarbitol, C-ethylphenylbarbituric acid, 482
Phenol, monohydroxybenzene, 63, 85, 119, 174, 177, 245
Phenol, an acid, 121, 122, 129, 293
Phenol, compared with a tertiary alcohol, 121
Phenol, cryoscopic determination of molecular weights, 121
Phenol from benzene, 120
Phenol from salicylic acid, 132
Phenol, origin of name, 85
Phenol, oxidation product of benzene, 121
Phenol, properties, 120
Phenol, synthetic, 120
Phenols, 85, 486
Phenols, produced by diazo reaction, 275
Phenol-formaldehyde resins, 153, 154
Phenolphthalein, 330
Phenol o-sulphonic acid, 123
Phenol p-sulphonic acid, 123
Phenyl group, 74, 122
Phenylacetaldehyde, 115, 165
N-Phenylacetamide, acetoanilide, 190, 270
Phenyl acetate, 209
Phenylacetic acid, 115, 234, 243, 336
Phenylacetylene, 186
Phenylacrylic acid, cinnamic acid, 242
dl-Phenylalanine, 242
i-Phenylalanine, 322
Phenylalanine, aminine, 254, 265
Phenylalanmonium chloride, aminine hydrochloride, 265
Phenylaminmonium chlorostannate, 265
Phenylacetic acid, 278
N-Phenylbenzamide, benzyolalanine, 272, 289
Phenylbenzene, diphenyl, 77
N-Phenylbenzimino chloride, 289
N-Phenylbenzimino phenyl ether, 289
N-Phenylbenzimino-m-tollyl ether, 289, 290
Phenyl benzoate, prepared by Schotten-Baumann reaction, 239
Phenylcarbinol, benzyl alcohol, 114
Phenylicloroform, benztrochloride, 236
Phenylisocrotamic acid, 79
INDEX

Phenyldiacetonilide, benzonitrile, 237, 241, 242, 277
Phenyldiazonium chloride, 274
\(\beta \)-Phenyl-\(\alpha \)-dibromopropionic acid, cinnamic acid dibromide, dibromo-cinnamic acid, 173, 243
\(\beta \)-Phenyl-\(\beta \)-dichloroethane, 1-(or \(\alpha \)-phenyl-1-(or \(\alpha \))\(\alpha \))dichloroethane, 180
\(\beta \)-Phenyl-\(\beta \)-dihydroxypropionic acid, 243
1-Benzyl-2:3-dimethyl-5-pyrrozolone, antipyrine, 371
Phenylene, 74
m-Phenylenediamine, 279
p-Phenylenediamine, 279
Phenylenediamine and hydrochloride, 279
Phenylethane, ethylbenzene, 74
1-Phenylethanol, methylphenylcarbinol, 188
Phenylethyl alcohol, benzylecarbinol, 114, 165
N-Phenylethylformamide, formylaniline, formanilide, 271
Phenyliodosazone, 424, 442
\(\beta \)-Phenylglyceric acid, 243
N-Phenyglycine-o-carboxylic acid, sodium salt, 340
Phenyldihydrizine, 161, 170, 278, 279, 409 424, 442
Phenyldihydrizine hydrochloride, 278, 441
Phenyldihydrizine as oxidising agent, 279
Phenyldihydrizones, 279, 436
\(\beta \)-Phenyldihydroxylamine, 266, 267, 268
Phenylosazine of galactose, 434
\(\delta \)-\(\delta \)-Phenylacetic acid, atrolycic acid, acetic acid, 189
Phenylosazone, 433
Phenylmethane, toluene, 74
1-Phenyl-2-methyl-3-pyrrozolone, 371
Phenylosazone of allose and altrose, 419
Phenylosazone of d(-)-fructose, d(+)-glucose and d(+)-mannose, 440
Phenylosazone of galactose, 434
Phenylosazone of galactose and talose, 419
Phenylosazone of glucose and mannose, 418, 441
Phenylosazone of gulose and idose, 419
Phenylosazone of lactose, 453
Phenylosazone of maltose, 432, 451
Phenylosazones, 417, 424, 436
\(\mathrm{\alpha} \)-(or \(\mathrm{\beta} \))-Phenylpropene, \(\mathrm{\alpha} \)-propylbenzene, 75
\(\beta \)-(or \(\beta \))-Phenylpropane, \(\beta \)-propylbenzene, 75
Phenylpropionic acid, 243
Phenylpropionic acid, 118
\(\beta \)-Phenylpropionic acid, hydrocinnamic acid, 243
Phenylsulphonic acid, 278
Phenylsulphonyl chloride, 297
Phenyl-m-tolylamine, 289, 290
N-Phenyl-m-tolylbenzamide, 289, 290
Phloroglucinol, 1:3:5-trihydroxybenzene, 67
Phorone, 185
Phosgene, carbonyl chloride, 182, 288, 473
Phospholipins, 280
Phosphoric acid from choline, 290
Phosphorus, resolution of externally compensated compound of, 350
Phosphorus, test for combined, 6
Phosphorus chlorides, preparation of acid chlorides, 208
Phosphorus oxychloride, applications of, 92, 206
Phosphorus pentachloride, diagnosis of presence of hydroxyl group, 92
Phosphorus trichloride, application of, 92
Photochemical reactions, chloral hydrate, 164
Phthalalene, 330
Phthalic acid, 1:2-dicarboxybenzene, 74, 305
Isophthalic acid, 1:3-dicarboxybenzene, 74
Terphthalic acid, 1:4-dicarboxybenzene, 74
Phthalic anhydride, 330, 331
Phthalimidine, 331
Phthalaldehyde, ethyl ester, 313
Phthalaldehyde, physico-chemical properties of compound, 506, 511
"Physikalische Tabellen", by Landolt-Börnstein, 507
\(\mathrm{\alpha} \)-Picoline, \(\alpha \)-(or \(\beta \))-methylpyridine, 298, 299
\(\beta \)-Picoline, \(\beta \)-(or \(\gamma \))-methylpyridine, 298
\(\gamma \)-Picoline, \(\gamma \)-(or \(\beta \))-methylpyridine, 299
Picolinic acid, \(\alpha \)-(or \(\beta \))-carboxyamidopyridine, 298
Pirates, sensitivity, 127
Pircic acid, 2:4:6-trinitrophenol, 125, 127
Pircic acid, molecular compounds with hydrocarbons, 127
Pircic acid, salts with organic bases, 128
Pinacol, tetramethylethylene glycol, 107, 181
Pinacolone (formerly "pinacoline") or

* The terminal -ise signifies a basic substance, e.g. amine, pyridine, etc.
INDEX

Primary alcohol, oxidation, 109, 143
Primary alcohols, 87, 142
Primary alcohols, synthesis by Grignard's reaction, 499
Primary aliphatic amines, general properties, 253 et seq.
Primary aliphatic amines, identification, 253
Primary aliphatic amines, preparation, 251
Primary amines, 210, 246
Projection formulae, 418
Propane, ethylmethylene, methylthene, 21, 44, 86
Propane acid, propionic acid, 218, 226
Propan (1), n-propyl alcohol, 106
Propan (2), i-propyl alcohol, 106
Propargyl, 54
Propene acid, acrylic acid, 226
Propionic acid, 192, 231
Propionic alcohol, 117
Propionaldelyde, 106, 109, 180, 218, 237
Propionamide, 219
Propionic acid, 106, 218, 226, 230, 310, 360, 301, 362
Propionic acid, constitution, 219
Propionic acid, dissociation constant, 317
Propionic anhydride, 218
Propionitrile, ethyl cyanide, 218, 254
Propionyl chloride, 218
Propiophenone, 187
Proponial, C-dipropylbarbituric acid, 482
i-Propylacetic acid, i-valeric acid, 222
n-Propylacetic acid, n-valeric acid, 222
Propyl alcohol, propanol (1), n-propyl alcohol, ethylcarbinol, 44, 86, 106, 118, 218, 221, 227, 406
i-Propyl alcohol, propanol (2), dimethylcarbinol, 86, 106, 115, 386
n- and i-Propyl alcohols, isomeric with methylthyl ether, 136
n-Propylbenzene, n-(1-)phenylpropane, 69, 75
i-Propylbenzene, β-(2-)phenylpropane, 69, 75
i-Propyl bromide, 108
i-Propylcarbinol, 87, 110
n-Propylcarbinol, n-butyl alcohol, 87, 110
i-Propyl chloride, 108
Propylene, monomethylene, 42, 44, 116, 133, 362, 386
Propylene acid, acrylic acid, 226
Propylene (di) bromide, 1:2-dibromo-propane, 365
Propylene (di)chloride, 1:2-dichloro-propane, 386

'pinaconin', tert.-butylmethyl ketone, 107
Piperidine, hexahydropyridine, 292, 297, 298, 300, 303
Piperine, 300
Piperonal, 178
Planar formulae, 25
Platinum, organo derivatives of, 501
Platinum, resolution of externally compensated compounds of, 350
Platinum trimethyl iodide, 501
Pimmer, R. H., "Organic and Biochemistry", 479
Pliny, sublimation of indigo, 333
Polyacrylic, 52
Polyglycolal, 354
Polyhydric alcohols, 352
Polyoxyethylene, 149, 150
Polyolpeptides, 327, 328
Polyoxazolides, 1, 416, 417, 451, 456
Pope, Sir W. J. and Gibson, C. S., ββ′-dichlorodiethyl sulphide, 39
Pope, Sir W. J. and Janssen, S. E., resolution of dl-diaminospiroheptane, 350
Pope, Sir W. J. and Neville, H. A. D., resolution of externally compensated selenium compound, 348
Pope, Sir W. J. and Peachey, S. J., resolution of externally compensated quaternary ammonium salts, 348
Pope, Sir W. J. and Peachey, S. J., resolution of externally compensated sulphur compound, 348
Pope, Sir W. J. and Peachey, S. J., resolution of externally compensated tin compound, 348
Pope, Sir W. J. and Perkin, W. H., resolution of externally compensated 1-methylicylohexylidene-4-acetic acid, 349
Pope, Sir W. J. and Read, J., resolution of dl-chloriodomethane sulphonic acid, 347
Potassium, 293
Potassium acetate, electrolysis, 202
Potassium acetylenide (acetylide), 50
Potassium alkyls, 495
Potassium ammonyl d-tartrate, tartar emetic, 399
Potassium carbonate, dehydrating agent, 97, 107
Potassium ethylate, 100, 137
Potassium ferricyanide, oxidising agent, 244
Potassium hydrogen tartrate, acetylene from, 50
Potassium metabisulphite, 91
Potassium phenate, 122, 129, 293
Potassium phthalimide, 313, 332
INDEX

Propylene glycol, 1: 2-dihydroxypropane, 362, 363
i-Propyl iodide, 21, 108, 389
n-Propyl iodide, 21
i-Propylmethylene, i-butane, trimethylmethane, 22, 86
n-Propylmethane, methyl ethyl methane, n-butane, 22, 86
dl-2,6-Propylyperidine, dl-conine, 300, 301
d-α-n-Propylyperidine and d-tartrate, 301
l-α-n-Propylyperidine and d-tartrate, 301
p-Isopropyltoluene, p-cymene, 74
Proteins, 292, 321, 322, 326, 327, 328
Proteins, hydrolysis, 312
Pseudoacera, crystrallographic investigation of tartrates, 400
Pseudocumene, 67
Pseudouric acid, 489
Pyralin, 457
Pyruvic acid, T., resolution of dl-lactic acid, 347
Purification of compounds by chemical and physical methods, 504
Purines, 307, 308, 486, 487, 488
Purines, 308, 486
Purpuric acid, 491
Pyman, F. L., synthesis of histidine, 326
Pyran, 414
Pyranose form, arabinose, 414
Pyranose formulas, monosaccharides, 429
Pyridine, 90, 239, 292, 297, 298, 306
Pyridine methiodide, methylpyridinium iodide, 298
Pyridine pircate, 297
Pyridine-β-sulphonic acid, 299
Pyrimidine, 306, 307, 486
Pyrogallol, 1: 2: 3-trihydroxybenzene, 67, 167
Pyrogenic reaction, 78
Pyroglucosic acid, acetic acid, 198
Pyruvic acid, pyruvic acid, 365
Pyroaromatic alcohol, hydroxyacetone, 489
Pyrolyle, 292, 293, 295, 331, 335, 379
Pyrolyle, test for, 293
Pyrolylone, 292, 293, 331
Pyrolylone, 379
α-Pyrolylone, γ-butrylactam, 311, 331
Pyrolylones, 311
Pyrylic acid, 365, 366, 368, 409, 471
Pyrylic acid, fermentation, 468
Qualitative analysis of organic compounds, 6
Quantitative analysis of organic compounds, 6
Quantitative determination of carbon and hydrogen, 6
Quantitative determination of halogen, 8
Quantitative determination of nitrogen, 7
Quantitative determination of sulphur, 8
Quaternary ammonium chlorides, sulphates, chloroacetates, chloroplatinate, 248
Quaternary ammonium compounds, 247
Quaternary ammonium compounds, optically active, 343
Quaternary ammonium hydroxides, 248
Quaternary ammonium iodide, 253
Quaternary ammonium salts, 259
Quaternary ammonium salts, asymmetric and optically active, 347
Quinol, hydroquinone, 1: 4-dihydroxybenzene, 65
Quinoline, 292, 301, 302, 303
Quinolinone, 304
Quinolinic acid, 304
Quinonoid, 283
o-Quinonoid structure, 283
p-Quinonoid structure, 283
Racemic acid, 365, 383, 384, 396, 398
Racemic acid, resolution by Pasteur, 403
Racemic acid, resolution using cinchonine, 403
Racemic acid, sodium ammonium salt, 405
Radicals, free, 501
Rast, K., determination of molecular weight by depression of melting point, 307
Rayon, 469
Read, J., resolution of dl-chloriodo-methanesulphonic acid, 347
Read, J. and Williams, M. M., reaction between ethylene and bromine water, 38
Reducing agents, 265–268
Reducing sugars yield osazones, 279
Reductase, 409
Reflux condenser, 505
Reimer, C. and Tiemann, F., Reimer-Tiemann reaction, 174
Remsen, J., preparation of saccharin, 240
"Researches on Molecular Asymmetry", by L. Pasteur
Resolution (optical) of externally compensated amino acids, 318
Resolution (optical) of externally compensated compounds, 346, 403–407

© in this web service Cambridge University Press
www.cambridge.org
INDEX

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>543</td>
</tr>
</tbody>
</table>

- Resolution (optical) of externally compensated compounds of aluminium, arsenic, beryllium, boron, chromium, cobalt, copper, iridium, iron, phosphorus, platinum, rhenium, ruthenium, silicon, zinc, 350
- Resolution (optical) of dl-a-n-propyl-piperidine, dl-convine, 301
- Resolution (optical) of externally compensated ammonium salts, 347
- Resolution (optical) of racemic acid, 405
- Resorcinol, 1: 3-dihydroxybenzene, 65
- Retger, J., W., method for determining densities, 48
- Rhodium, resolution of externally compensated compound of, 350
- Ribose, 410–412, 419
- Rimini, E., test for formaldehyde, 147
- Robertson, A., synthesis of indican, 448
- Robinson, R., substitution in aromatic compounds, 130
 - investigation of glycosides, 449
- Rochelle salt, in Fehling’s reagent or solution, 464
- Rochellesalt, sodium potassium tartrate, 146, 399
- Rothera, A. C. H., test for acetone, 186
- Rubber, 1
- Rubber, synthetic, 54
- Range, aniline in coal tar, 265
 - phenol in coal tar, 119
- Ruthenium, resolution of externally compensated compound of, 350
- Sabatier, P., catalytic dehydrosis of alcohols, 31
- Saccharate, 454
- Saccharic acid, d-saccharic acid, 420, 423
- Saccharin, 240
- Saccharose, sucrose, 453
- Salicase, 448
- Salicin, 447, 448
- Salicylalcohol, o-hydroxybenzylalcohol, salicylic alcohol, 154, 165, 175, 448
- Salicylaldehyde, o-hydroxybenzaldehyde, salicylic aldehyde, 165, 174, 177
- Salicylaldehyde oxime, 176
- Salicylaldehyde phenylhydrazone, 176
- Salicylaldehyde sodium bisulphite, 175
- Salicylic acid, o-hydroxybenzoic acid, 332, 170, 309, 448, 507
- Saligenin, o-hydroxybenzyl alcohol, salicylic alcohol, 154, 174, 175, 448
- Salvarsan, 270
- Sandmeyer, T., Sandmeyer’s reaction, 277
- Sapofication, 215
- Saponified value, typical esters, 225
- Sarcocolactic acid, d-lactic acid, 341, 364, 366, 457
- Sarconine, N-methylglycine, 312, 315, 319, 320
- Saturated compound, 15, 24, 34
- Savory, obtained oxalic acid from ‘wood-sorrel salt’, 356
- Scheele, C., benzoic acid, 236
 - lactic acid, 341
 - malic acid, 381
 - oxalic acid from cane sugar, 357
 - d-tartaric acid, 397
 - uric acid, 488
 - Schiff, H., Schiff’s bases, 272
 - Schiff’s reagent and reaction, 146, 156, 183, 170
- Schotten, K. and Baumann, E., Schotten-Baumann reaction, 14, 272, 285
- Schützenbach, process for production of vinegar, 200
- Schweinfurt green, 204
- Schee’s reagent for dissolving cellulose, 460
- Sclero-protein, 321
- Secondary alcohols, 87, 108, 109, 142
- Secondary alcohols, oxidation, 108, 143
- Secondary alcohols, synthesis by Grignard’s reaction, 497, 499
- Secondary aliphatic amines, 253, 254, 266
- Secondary amines, 210, 246, 232
- Seignette, P., Rochelle salt, 399
- Semicarbazide, 160
- Semipolar double bond, 267
- Senderens, J. P., catalytic reduction of nitrobenzene, 266
- Separating funnel, 502
- d-, Series of aldohexoses, 421
- Serine, α-amino-β-hydroxypropionic acid, 321
- Sesquiterpene, 54
- Side chain, 68
- Sidgwick, N. V., isomerism of acetaldheyde phenylhydrazones, 161
- Silicon, organo derivatives, 500
- Silicon, resolution of externally compensated compounds of, 350
- Silk, 322, 328
- da Silva, A. J. F., constitution of glycerol, 385
- Silver, organo derivatives of, 500
- Silver acetylene, acetylide, 51
- Silver oxide, ammoniacal solution of, 105
- Simonen, J. L., “The Terpenes”, 507
- Simple ether, 135, 141
- Simpson, (Sir) J., chloroform and ether as anaesthetics, 181, 182
- Single function compounds, 309
- Skatole, 295, 324, 325
INDEX

Skraup, Z. H., synthesis of quinoline, 302
van Slyke, D. D., estimation of ‘amino’ nitrogen, 316
Smiles, S., resolution of externally compensated sulphur compound, 348
Smokeless powder, 388
Soaps, 223
Sodiophenylamine, 290, 291
Sodium ethyl acetoacetate, chelate structure, 374
Sodium acetanilide, 284
Sodium acetate, synthesis, 199
Sodium acetoacetate, 369
Sodium acrylides, acrylides, 50
Sodium alkyls, 495
Sodium p-aminobenzenearsionate, tosyl, 339
Sodium bisulphite, compounds with aldehydes and ketones, 148, 156, 166
Sodium tert.-butylate, 111
Sodium o-cyanomethyl anthranilate, 339
Sodium ethyl acetoacetate, 374
Sodium ethyl malonate, 359
Sodium ethylate, ethoxide, 100, 136, 294
Sodium hydrosulphite, use in vat-dying, 333
Sodium indoxylcarboxylate, 340
Sodium methylate, methoxide, 90, 136, 199
Sodium nitroprusside (nitroso ferri- cyanide) for qualitative analysis, 5, 322, 369
Sodium phenate (phenoxyde), 121, 141, 290
Sodium phenyl carbonate, 131
Sodium N-phenylglycine-o-carboxylate, 340
Soft soap, 223
Soluble starch, 458
Solvents, in common use, 504
Solvents, for extraction, 504
Sorbitol, d-sorbitol, d(-)-sorbitol, 415, 416, 423, 442, 443
Sörensen, S. P. L., estimation of amino acids, 317
Spatial formulae, 25
Specific rotatory power, 345
Spermatozoon Cetacea, 113
Spiraea ulmaria, 174
Spirit, whisky and brandy, 96, 98
Spirit of wine, 96
d,L-Spiro-3:5-dioxan-4:4’-di(phenyl-p-arsenic acid), disymmetric compound, resolution of (Gibson and Levin), 339
Standard conditions in volumetric estimation of sugars, 463

Standardisation of thermometers for determination of melting points, 506
Starch, 96, 422, 437, 456, 457, 458, 459, 460, 470
Starke, 458
Steam distillation, 503
Stearic acid, 222, 223, 225, 226, 230, 368
Stearic acid, barium salt, 223
Stearolic acid, 231
Stereoisomerism, 41, 44
Sterols, 225
Stibonic acids, 278
Stillber, test for, 76
Stilbene, 76
Stirring in chemical reactions, 513
Storax, 117
Strecker, A., synthesis of α-amino acids, 314
Strychnine, 299, 347
Styrene, monophenylethylene, vinylbenzene, 76
Styrene bromide, monophenylethylene bromide, 76
Styrene resins, 76
Substitution, 15
Substitution in aromatic compounds, 128 et seq.
Succinaldehyde, 354
Succinamide, 379
Succinic acid, 358, 377, 378, 469
Succinic acid, fermentation, 468, 470
Succinic acid, halogenated derivatives, 380
Succinic acid, 360
Sucinie anhydride, 379
Succinimide, 292, 331, 379, 380
Succinimide, metallic derivatives, 380
Succinonitrile, ethylene cyanide, 378
Succinase, invertase, 454
Sucroclastic enzyme, 466
Sucrose, cane sugar, 151, 364, 422, 437, 451, 453, 454, 465
Sucrose, constitution, 455
Sucrose, destransference oxidation, 356
Sugar, 353, 391
Sugar alcohol, oxalic acid, 356
Sugars, 149, 309, 353, 408
Sugars, estimation, 462 et seq.
Sulpohalic acid, 276
Sulphobenzoic imide, saccharin, 240
Sulphonation, 59
Sulphonic acid group, 59, 191
Sulphur, tetrasulphur, 5
Sulphur dichloride, reaction with ethylene, 38
Sulphuric acid, oxidising agent, 8, 29
Sulphur chloride, acid chloride, 206
Index

<table>
<thead>
<tr>
<th>Symbol/Word</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols of elements</td>
<td>515</td>
</tr>
<tr>
<td>Symmetry, elements of</td>
<td>401</td>
</tr>
<tr>
<td>‘Synthetic’ phenol</td>
<td>120</td>
</tr>
<tr>
<td>T.N.T., 2 : 4 : 6-trinitrotoluene</td>
<td>68, 71</td>
</tr>
<tr>
<td>Talose, 419, 434, 436</td>
<td></td>
</tr>
<tr>
<td>Talose, constitution</td>
<td>421</td>
</tr>
<tr>
<td>Tartrar emetic, potassium antimonyl tartrate</td>
<td>399</td>
</tr>
<tr>
<td>Tartaric acid, internally compensated, mesotartaric acid</td>
<td>383</td>
</tr>
<tr>
<td>Tartaric acids, 309, 365, 393, 396, 436</td>
<td></td>
</tr>
<tr>
<td>Tartaric acids, optically active</td>
<td>397, 403</td>
</tr>
<tr>
<td>d-Tartaric acid, 301, 396, 398, 400</td>
<td></td>
</tr>
<tr>
<td>dl-Tartaric acid, racemic acid</td>
<td>381, 383</td>
</tr>
<tr>
<td>d-Tartaric acid, salts, 397, 398, 399, 405, 464</td>
<td></td>
</tr>
<tr>
<td>d-Tartaric acid, sodium ammonium salt, crystal form</td>
<td>404, 405</td>
</tr>
<tr>
<td>l-Tartaric acid, 396, 407</td>
<td></td>
</tr>
<tr>
<td>l-Tartaric acid, sodium ammonium salt</td>
<td>405</td>
</tr>
<tr>
<td>l-Tartaric acid, sodium ammonium salt, crystal form</td>
<td>404, 405</td>
</tr>
<tr>
<td>d-Tartaric acid dinitrate, 399</td>
<td></td>
</tr>
<tr>
<td>Tautomeric change</td>
<td>124</td>
</tr>
<tr>
<td>Tautomerism, 373</td>
<td></td>
</tr>
<tr>
<td>Terpenes</td>
<td>24</td>
</tr>
<tr>
<td>“The Terpenes”, by L. J. Simonsen</td>
<td>507</td>
</tr>
<tr>
<td>Tertiary alcohols</td>
<td>88</td>
</tr>
<tr>
<td>Tertiary alcohols, distinguished from primary and secondary alcohols</td>
<td>112</td>
</tr>
<tr>
<td>Tertiary alcohols, oxidation</td>
<td>111</td>
</tr>
<tr>
<td>Tertiary alcohols, synthesis</td>
<td>496, 497</td>
</tr>
<tr>
<td>Tertiary alcohols, synthesis by Grignard’s reaction</td>
<td>499, 500</td>
</tr>
<tr>
<td>Tertiary aliphatic amines</td>
<td>246, 257, 259, 293</td>
</tr>
<tr>
<td>Tertiary aliphatic-aromatic amines</td>
<td>254</td>
</tr>
<tr>
<td>Tertiary, butyl alcohol, tert.-butyl alcohol</td>
<td>111</td>
</tr>
<tr>
<td>Tertiary carbon atom</td>
<td>111</td>
</tr>
<tr>
<td>Tetra-azo dyes, 282</td>
<td></td>
</tr>
<tr>
<td>sym-Tetram bromoethane, acetylene tetra bromide</td>
<td>43, 48</td>
</tr>
<tr>
<td>1 : 2 : 5 : 6-Tetrabromohexane, diallyl tetrabromide, 54, 59, 396</td>
<td></td>
</tr>
<tr>
<td>Tetracetyl erythritol, 392</td>
<td></td>
</tr>
<tr>
<td>Tetrachloro ethyl ether</td>
<td>139</td>
</tr>
<tr>
<td>sym-Tetrachloroethane, acetylene tetrachloride</td>
<td>49</td>
</tr>
<tr>
<td>Tetrachloroethanes</td>
<td>20</td>
</tr>
<tr>
<td>Tetrachloromethane, carbon tetrachloride</td>
<td>16</td>
</tr>
<tr>
<td>Tetradecahydroanthracene</td>
<td>82</td>
</tr>
<tr>
<td>Tetradecahydrophenanthenone</td>
<td>84</td>
</tr>
<tr>
<td>Tetraethylammonium hydroxide</td>
<td>248</td>
</tr>
<tr>
<td>Tetrahydral arrangement</td>
<td>343</td>
</tr>
<tr>
<td>Tetrahydron</td>
<td>25, 343</td>
</tr>
<tr>
<td>Tetrahydrolic alcohols</td>
<td>391, 392</td>
</tr>
<tr>
<td>Tetrahydroxylon-α-toluenes</td>
<td>411</td>
</tr>
<tr>
<td>Tetraiodopropyl</td>
<td>294</td>
</tr>
<tr>
<td>Tetramethylammonium hydroxide</td>
<td>248</td>
</tr>
<tr>
<td>Tetramethylammonium iodide</td>
<td>247</td>
</tr>
<tr>
<td>p-Tetramethyldiaminobenzophenone</td>
<td>288</td>
</tr>
<tr>
<td>and hydrochloride</td>
<td>288</td>
</tr>
<tr>
<td>Tetramethylene, cyclobutane</td>
<td>42-44</td>
</tr>
<tr>
<td>Tetramethylene bromide, 1 : 4-dibromo butane</td>
<td>43</td>
</tr>
<tr>
<td>Tetramethylenediamine and hydrochloride</td>
<td>293</td>
</tr>
<tr>
<td>sym-Tetramethylene</td>
<td>23</td>
</tr>
<tr>
<td>Tetramethyleneglycerol, pinaol</td>
<td>207</td>
</tr>
<tr>
<td>Tetramethylmethane</td>
<td>22, 495</td>
</tr>
<tr>
<td>Tetramethylysilicane</td>
<td>500</td>
</tr>
<tr>
<td>Tetrasaccharides</td>
<td>456</td>
</tr>
<tr>
<td>Thalassium, organomagnesium derivatives</td>
<td>501</td>
</tr>
<tr>
<td>Theine, caffeine</td>
<td>493</td>
</tr>
<tr>
<td>Theobromine, 308, 492, 493</td>
<td></td>
</tr>
<tr>
<td>Theophylline</td>
<td>492, 493</td>
</tr>
<tr>
<td>Thiodiglycol, ββ′-dihydroxydiethyl sulfide</td>
<td>98</td>
</tr>
<tr>
<td>Thiodiphenylamine</td>
<td>291</td>
</tr>
<tr>
<td>Thiol acids, synthesis by Grignard’s reaction</td>
<td>507</td>
</tr>
<tr>
<td>Thionyl chloride, for preparation of acid chlorides</td>
<td>208</td>
</tr>
<tr>
<td>Thiofen</td>
<td>50, 57, 294, 355</td>
</tr>
<tr>
<td>Thiotoles, 70</td>
<td></td>
</tr>
<tr>
<td>Thiourea, 493, 494</td>
<td></td>
</tr>
<tr>
<td>Thiourea nitrate</td>
<td>484</td>
</tr>
<tr>
<td>Thymol, 133</td>
<td></td>
</tr>
<tr>
<td>Thymus vulgaris</td>
<td>133</td>
</tr>
<tr>
<td>Thyrone</td>
<td>325</td>
</tr>
<tr>
<td>Tin, organo derivatives</td>
<td>501</td>
</tr>
<tr>
<td>Tin, resolution of externally compensated compound of</td>
<td>348</td>
</tr>
<tr>
<td>Tin diethyl diiodide</td>
<td>494</td>
</tr>
<tr>
<td>Tin tetramethyld</td>
<td>495</td>
</tr>
<tr>
<td>Tolune, methylbenzene</td>
<td>68, 78, 114, 234, 236</td>
</tr>
<tr>
<td>Toluen, benzene from</td>
<td>238</td>
</tr>
<tr>
<td>Toluen from cresols</td>
<td>132</td>
</tr>
<tr>
<td>Toluen in coal tar</td>
<td>69</td>
</tr>
<tr>
<td>Toluen sulphonic acids</td>
<td>132</td>
</tr>
<tr>
<td>α-Toluen sulphonic acid</td>
<td>71, 235</td>
</tr>
<tr>
<td>p-Toluen sulphonic acid, 71, 235</td>
<td></td>
</tr>
<tr>
<td>p-Toluenesulphonamide</td>
<td>240</td>
</tr>
<tr>
<td>p-Toluenesulphonylamine</td>
<td>272, 316</td>
</tr>
<tr>
<td>p-Toluenesulphonyl chloride</td>
<td>240</td>
</tr>
<tr>
<td>p-Toluenesulphonyl chloride</td>
<td>200, 272, 285</td>
</tr>
<tr>
<td>p-Toluenesulphonylglycine</td>
<td>240</td>
</tr>
<tr>
<td>p-Toluenesulphonylmethylamine</td>
<td>285</td>
</tr>
<tr>
<td>Tolnic acids</td>
<td>182, 234</td>
</tr>
<tr>
<td>α-Tolnic acid</td>
<td>234</td>
</tr>
<tr>
<td>α-Tolnic acid</td>
<td>74, 234</td>
</tr>
<tr>
<td>α-Tolnic acid</td>
<td>74, 234</td>
</tr>
</tbody>
</table>
INDEX

Toluidines, 249, 283, 330
m-Toluidine, 283, 290
p-Toluidine, 280, 283
o-Toluidine hydrochloride, 287, 288
p-Toluidine hydrochloride, 287, 288
Tolylamines, 249
N-m-Tolylbenzimidochloride, 290
N-m-Tolylbenzimophenoxyn ether, 290
Transesterifiers, 41
Triacetin, glyceryl triacetate, glyceryl acetate, 220, 225, 386
n-Triacanone, 23
Tribromomuine, 24, 4:6-tribromoaniline, 268, 269, 276
Tribromobenzenes, 67
1:3:5-Tribromobenzene, 276
Tribromochloroethane, 42
Tribromomethane, bromoform, 104
2:4:6-Tribromophenol, 122
Trubutyrin, glycerol tributyrate, glycerol butyrate, 225
Triacetoxyxylene, 378
Trichloracetal, 162
Trichloroacetaldehyde, chloral, 161
Trichloroacetic acid, 28, 205, 206, 216, 323
Trichloroacetonone, 28
Trichloroacetic acid, 24, 4:6-trichloroanilines, 268
Trichlorocarboxylic acids, 19
Trichloroethylene, ‘Westrosol’, 49
Trichloromethane, chloroform, 16, 104
2:4:6-Trichlorophenol, 122
1:2:3-Trichloropropane, 386, 387, 488
2:6:8-Trichloropurine, 488
Trichloroethylene, 248, 257, 263, 264, 500
Trichloronitromethanes, 128
Trichlorohydroxyl alcohol, glycerol, 220
Trichloroacetates, 67
Trichloroethylene acetic acid, 436
Trichloroxygen, glycerol, 2:3:5-trichloroxypropene, 220, 385
Triiodomethane, iodofurin, 104
2:4:6-Triiodophenol, 123
Trimethylylacetic acid, 222
Trimethylylamine, 240, 249, 257, 261, 262
Trimethylammonium chloride, 258
Trimethylamine, 500
trim-Trimethylbenzene, mesitylene, 53, 183
Trimethylbenzenes, 67, 70
Trimethylcarbinol, tert.-butyl alcohol, 87, 111, 496
1:3:5-
Triethyl-2:6-dioxypurine, caffeine, 493
Triethylene, cyclopropane, 42, 44
Trimethylene bromide, 1:3-dibromo-propane, 43, 297
Trimethylene cyanide, 1:3-dicyanopropane, 297
Trimethylene glycol, 1:3-dihydroxy-propane, 358, 366
Trimethylglycine, betaine, 315
Trimethyl-β-hydroxyethylammonium hydroxide, choline, 260
Trimethyl-β-hydroxyethylammonium iodide, 262
Trimethylmethane, i-propylmethane, i-butane, 96
Trimethylphenylammonium hydroxide, 286
Trimethylphenylammonium iodide, 286
Trimethylvinylammonium hydroxide, neurine, 262
1:3:7-Trimethylxanthine, caffeine, 493
Trimorphism of nematic acid, 174
Trinitrobenzenes, 67
2:4:6-Trinitrophenol, picric acid, 125, 127
Trinitrotoluene, 68
2:4:6-Trinitrotoluene, T.N.T., 68, 71
Triolein, glycerol olate, glycerol trioleate, 222, 224, 225, 230
α-Trioxymethylene, 150, 151
2:6-8-Trioxypurine, uric acid, 487
Tripalmitin, glycerol palmitate, glycerol tripalmitate, 222, 225
Tripeptide, 327
Triphenylamine, 283, 291, 500
1:3:5-Triphenylbenzene, 188
Triphenylcarbinol, 116
Triphenylmethylene, 78
Tripeptide, 282
Trisozoxide of benzene, 59
Tristein, glycerol stearate, glycerol tristearate, 225, 230
Tryptophan, 324
Tryptophan, β-indole-a-aminopropionic acid, 295, 324, 335
l-Tryptophan from casein, 324
Tyrosin, β-p-hydroxyphenyl-a-aminopropionic acid, 322, 323
l-Tyrosin, 322
Unsaponifiable matter, 225
Unsaturated compounds, 24, 34
Unterden, aniline from indigo, 265
Uranil, C-aminoaazonaphthrene, 483, 489
Urea, 153, 327, 474, 475, 476, 479, 481, 482, 483, 485, 489
Urea, constitution, 477
Urea, estimation, 479
Urea, from urine, 476
Urea hydrochloride, 478
INDEX 547

Water-bath, 504
Water gas, 88
Water-gas reaction, 99
Water’ type, 245
Weinmann, production of ethylene from ethyl alcohol and sulphuric acid, 30
Werner, A., Hantzsch-Werner hypothesis, stereoisomerism of oximes, 168
— ‘Chemistry of Urea’, 480
Westron, sym-dichloroethane, 20, 49
Westrosol, trichloroethylene, 49
Whisky, 96
White lead, 204
Williamson, A. W., constitutional formula of diethyl ether, 137
— preparation of diethyl ether, 137, 138
Wine, 96, 98
Willows, J., constitution of stilbenes, 76
— geometrical isomerism, 342
— stereoisomerism of ethylene derivatives, 41
— synthesis of lactic acid, 342
Wöhler, F., preparation of acetylene, 46
— synthesis of urea, 476
Wood, distillation, 88, 198
‘Wood-sorrel salt’, potassium hydroxide oxalate, 356
Wood spirit, methyl alcohol, 198
Wool, 321
Woulfe, P., action of nitric acid on indigo yields picric acid, 127
Wurtz, A., production of hydrocarbons, Wurtz reaction, 22
— synthesis of choline, 261
Xanthine, 2:6-dioxypyridine, 487, 492
Xylenes, dimethylbenzenes, 69
2:4-Xyline, 2:4-dimethylaniline, and hydrochloride, 287, 288
Xylitol, 412
Xylose, 410–412, 419
Yeast juice, prepared by Buchner’s method, 466
Young, W. J. and Harden, (Sir) A., fermentation, 466, 467
Zeisel, S., determination of alkoxyl groups, 140
Zinc, resolution of externally compensated compound of, 350
Zinc, organo derivatives, 500

Urea, hydrolysis, 479
Urea nitrate, 476, 478
Urea oxalate, 476, 478
Urea, oxidation, 479
Urea, properties, 478
Urea, 481
Ureas, 479
Ureides, 481, 482, 483
Urethane (ethylurethane), urethanes, 475
Uric acid, 2:6-8-trioxypurine, 308, 487, 488, 489, 492
Uric acid, constitution, 488
Uric acid, estimation, 491
Uric acid, salts, 490
Uric acid, tautomerism, 487, 490
Pseudo Uric acid, 489
URinary indolene, 296, 338
Urochloric acid, 423, 450
Urotropine, hexamethylenetetramine, 148
Valeric acids, 221
β-Valeric acid, β-propylacetic acid, 222
α-Valeric acid, 222
β-Valeric acid, four monoamino derivatives, 310
δ-Valerolactone, α-ketopiperidine, 311
Valine, α-aminoisovaleric acid, 320
Vanillin, 178
Van’t Hoff, J. H., asymmetric carbon atom, 343, 496
— enantioisomerism of molecules, 348
— Mass Action, 214
— stereoisomerism, 40
Vaseline, 25
Vat-dyeing, 339
Vat-dyes, 333
Vegetable alkaloids, 300
Vegetable ivory, 432
Verdigris, 204
Veronal, C-diethylbarbituric acid, 482
Vinegar, 198
Vinyl alcohol, monohydroxyethylene, 116, 140, 155
Vinyl benzoide, monobromomethylene, 41, 46, 49
Vinyl chloride, monochloroethylene, 41, 51
Vinylacetic acid, 228
Vinylbenzene, styrene, monophenyl-ethylene, 76
Violuric acid, isonitrosoarbituric acid, isonitrosomalonamide, oximino-oxalurea, 483, 488
Viscose, 460
Vitamin D, antirachitic vitamin (until recently identified as calciferol), 225
Walker, (Sir) J., resolution of dl-lactic acid, 347
INDEX

Zinc alkyls, as synthetic agents, 494, 495 et seq.	Zinc diphenyl, zinc phenyl, 501
Zinc alkyl halides, 499	Zinc dipropyl, zinc propyl, 495
Zinc chloride as dehydrating agent, 100	Zinc diisopropyl, zinc isopropyl, 495
Zinc diisoamyl, zinc isoamyl, 495	Zinc ethyl iodide, 494
Zinc diisoamyl, zinc isobutyl, 495	Zinc methyl iodide, 494
Zinc diethyl, zinc ethyl, 495, 501	Zinc phenyl bromide, 501
Zinc diethylate, zinc ethylate, 495	Zinin, N. N., aniline by reduction of nitrobenzene, 265
Zinc dimethyl, zinc methyl, 495	Zymase, 466, 467