CAMBRIDGE MONOGRAPHS IN
EXPERIMENTAL BIOLOGY

No. 4

EDITORS:
M. ABERCROMBIE, P. B. MEDAWAR
GEORGE SALT (General Editor)
M. M. SWANN, V. B. WIGGLESWORTH

THE
PHYSIOLOGY OF DIAPAUSE
IN ARTHROPODS
THE SERIES

1 V. B. WIGGLESWORTH: The Physiology of Insect Metamorphosis.
2 G. H. BEALE: The Genetics of Paramaecium aurelia.
4 A. D. LEES: The Physiology of Diapause in Arthropods.

Other volumes in preparation

To refer the hybernation of insects to the mere direct influence of cold, is to suppose one of the most important acts of their existence given up to the blind guidance of feelings which in the variable climates of Europe would be leading them into perpetual and fatal errors... It is not, we may rest assured, to such a deceptive guide that the Creator has entrusted the safety of so important a part of his creatures.

W. KIRBY and W. SPENCE, An Introduction to Entomology (1815)
THE

PHYSIOLOGY OF DIAPAUSE
IN ARTHROPODS

BY

A. D. LEES

M.A., PH.D.

Agricultural Research Council,
Unit of Insect Physiology, Cambridge

CAMBRIDGE
AT THE UNIVERSITY PRESS
1955
CONTENTS

ACKNOWLEDGEMENTS page vii

LIST OF FIGURES ix

1 INTRODUCTION 1
 Definition of diapause and quiescence. The diapause stages.
 Stages of arrest in embryonic diapause.

2 THE ENVIRONMENT AND THE ONSET OF DIAPAUSE 12
 The influence of photoperiod on the onset of diapause. The
 response to constant and changing photoperiods. The
 sensitivity to illumination; spectral sensitivity. The site of
 photoreception. The mode of action of the cycle of illumina-
 tion. Temperature and the onset of diapause. Stages of
 development sensitive to photoperiod and temperature.
 The effect of diet on the onset of diapause. The influence
 of age and other maternal characters.

3 THE INHERITANCE OF DIAPAUSE 40
 The effect of the environment on insects with obligatory
 diapause. The genetics of diapause in Bombbyx mori. Diapause
 as a racial character in other insects. Selection for an en-
 vironmental response.

4 THE ENVIRONMENT AND THE TERMINATION OF DIAPAUSE 50
 The temperature requirements for diapause development:
 the range and optimum. The duration of diapause. The
 period of sensitivity to low temperature. Evidence for
 multiple thermal reactions. Photoperiod and other factors.
 The termination of diapause by chemical and other means.
Contents

5 THE ROLE OF WATER IN THE ARREST OF GROWTH
 Water and the control of embryonic growth in the Orthoptera. The prolongation of dormancy by water lack in larval and adult insects. The arrest of growth by partial dehydration. The arrest of growth by total dehydration.

6 DIAPAUSE AND QUIESCENCE IN PARASITIC INSECTS
 The influence of the host on the growth of the parasite. Mechanism of the response to the host. Independent response of parasite and host to the environment. The influence of the parasite on the diapausing host.

7 METABOLIC ADJUSTMENT IN THE DORMANT INSECT
 The accumulation of reserves during the prediapause period. The level of activity in the dormant insect. The rate of respiration. The utilization of the reserves during diapause. Mechanisms of cellular respiration in relation to growth and diapause. The control of metabolism.

8 THE HUMORAL CONTROL OF DIAPAUSE
 The humoral regulation of diapause in *Bombyx*. The mechanism of diapause in the egg. The humoral control of diapause in larvae and pupae. The endocrine centres responsive to chilling. The humoral control of imaginal diapause. The environment and the programme of endocrine activity. Theories of diapause.

9 DIAPAUSE AND PHENOLOGY

REFERENCES 133

INDEX 149

vi
ACKNOWLEDGEMENTS

Without the many stimulating discussions I have enjoyed with Dr T. O. Browning and Prof. Carroll M. Williams the planning of the present monograph would have proved more difficult. I am also indebted to Mr E. O. Pearson for the data contained in Fig. 14, to Dr E. H. Slifer for the sketch upon which Fig. 16 is based and to Dr H. E. Hinton for the loan of Fig. 18. Many authors have also permitted me to refer to unpublished work. This debt is acknowledged in the text. Finally, my thanks are due to Dr C. B. Goodhart for his kindness in translating many Russian papers.

A. D. L.

Cambridge
November, 1954
LIST OF TEXT-FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Embryonic development in Gryllus commodus (after Brookes)</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Diapausing embryos of various insects (after Umeya)</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>The effect of photoperiod on the incidence of diapause in four species of Lepidoptera</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>The influence of different cycles of illumination on the induction of diapause in Aceronyctea ruminis (after Danilyevsky)</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>The influence of the cycle of illumination on the induction of diapause in the mite Metatetranychus ulmi (after Lees)</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Chart showing the combinations of light and darkness which produce more than 50% of diapausing individuals</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>The combined action of temperature and photoperiod on the induction of diapause</td>
<td>30</td>
</tr>
<tr>
<td>8</td>
<td>The effect on the incidence of pupal diapause of exposing the different larval instars of Antheraea pernyi to typical long, short or 'intermediate' photoperiods (after Tanaka)</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>Diagram illustrating the shift in the response to temperature in different races of Bombyx mori</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td>Charts showing the incidence and intensity of diapause in a line of Loautia migratoria selected for freedom from diapause (after Le Berre)</td>
<td>48</td>
</tr>
<tr>
<td>11</td>
<td>The influence of temperature on diapause development and morphogenesis in Austroicetes cruciata (after Andrewartha)</td>
<td>51</td>
</tr>
<tr>
<td>12</td>
<td>The influence of temperature on the rate of termination of diapause in Bombyx mori (after Muroga)</td>
<td>52</td>
</tr>
<tr>
<td>13</td>
<td>Histograms showing the thermal requirements for diapause development and for morphogenesis in four species of saturniid moths (after Danilyevsky)</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>The influence of temperature on the duration of the pupal stage in Diparopsis castanea (after Pearson)</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>The effect of different temperature treatments on the completion of diapause in Bombyx mori (after Muroga)</td>
<td>62</td>
</tr>
</tbody>
</table>
List of Text-figures

16 Diagram showing the disposition of the extra-embryonic membranes at the posterior pole of the egg of *Melanoplus differentialis* just before the entry into diapause (after Slifer)
 page 71

17 Water uptake and water lack in relation to embryonic development in certain grasshoppers and locusts
 73

18 *Polyopedilum vanderplanki* (after Hinton). Larva dried for over three years and the same twenty minutes after immersion in water
 79

19 The life cycle of the parasite *Trichogramma cacaeciae* when developing in the eggs of a univoltine host, *Caecicia rosana*, and in those of a multivoltine host, *Mamestra brassicae* (from Salt, after Marchal)
 85

20 Respiratory quotient and oxygen consumption of the egg of *Melanoplus differentialis* during embryonic development (after Boell)
 90

21 Oxygen consumption of *Deilephila euphorbiae* during pupal development (after Heller)
 91

22 Cyanide-stable and cyanide-sensitive respiration in *Melanoplus differentialis*
 95

23 Form and structure of the eggs of the mite *Petrobia latens*
 121

24 The life cycle of the mite *Metatetranychus ulmi* in relation to day length (after Lees)
 122

25 The influence of day length and temperature on the incidence of diapause in the second annual generation of *Polychrosis botrana* in southern Russia (after Komarova)
 124