Basic Computation and Programming with C

Undergraduate students of engineering and computer science will come across detailed coverage of the fundamentals of computation and programming in C language, in this textbook. Essential concepts including operators and expressions, input and output statements, loop statements, arrays, pointers, functions, strings and pre-processor are described in a lucid manner. For better comprehension of the concepts, the book is divided into three parts: Fundamentals of Computer, Programming with ‘C’ and Technical Questions.

A unique feature of the book is ‘Learn by Quiz – Questions/Answers’, which has questions designed through confidence-based-learning methodology. This helps readers to identify right answers with adequate explanation and reasoning as to why the other options are wrong. Plenty of computer programs and review questions are interspersed throughout the text.

The book can also be used as a self-learning book by beginners in Computer Programming.

Subrata Saha is Head of the Department of Computer Applications, Techno India Hooghly, West Bengal. His areas of interest include object oriented languages, image processing and cryptography.

Subhodip Mukherjee is Head of the Department of Computer Applications, Techno India College of Technology, Kolkata. His areas of interest include object oriented languages, software engineering, computer architecture and database management systems.
Basic Computation and Programming with C

Subrata Saha
Subhodip Mukherjee
To my father Late Kamal Krishna Saha and to my mother Geetasree Saha for what I am today.

— Subrata Saha

To my mother who sacrificed all sorts of entertainment for my education during my school life and to my father Professor S. G. Mukherjee whose addiction to books and simple living inspired me to be a teacher.

— Subhodip Mukherjee
Contents

List of Figures xiii
List of Tables xv
Preface xvii
Acknowledgments xix

Part A: Fundamentals of Computer

1. Computer-History, Classification and Basic Anatomy 1
 1.1 Generations of Computer 1
 1.2 Classification of Computers 4
 1.3 Basic Anatomy of a Computer 8
 1.4 Von Neumann Architecture 9
 1.5 Memory Classification and Hierarchy 10
 1.6 Input and Output Devices 10

2. Introduction to Number System and Logic Gates 14
 2.1 Introduction 14
 2.2 Base of a Number System 14
 2.3 Reason behind Using Binary Number System 15
 2.4 Conversion among Different Bases 16
 2.5 Similarities between Number Systems of Different Bases 19
 2.6 Addition of Two Numbers 19
 2.7 Signed Binary Numbers 21
 2.8 ASCII (American Standard Code for Information Interchange) 24
 2.9 Logic Gates and Boolean Algebra 25
 2.10 Gates (Logic Gates) 25
 2.11 Basic Gates 26
 2.12 Universal Gates 28

3. Introduction to System Software and Operating Systems 31
 3.1 Introduction to Assembler 31
 3.2 Introduction to Compiler 32
 3.3 Introduction to Operating System 34
Contents

4. Algorithms and Flow Chart 40
 4.1 Flow Chart 40

PART B: Programming in 'C'

5. Introduction to C 49
 5.1 Generations of Programming Languages 50
 5.2 History of C Language 51
 5.3 Why is C so Popular? 52
 5.4 Position of C in the Generations of Languages 53

6. Constants, Variables and Data Types 58
 6.1 C Character Set 58
 6.2 Constants 58
 6.3 Keywords and Identifiers 61
 6.4 Variables and Data Types 61
 6.5 Storage Type Qualifier 64

7. Operators and Expressions 74
 7.1 Operators in C 74
 7.2 Expressions 82
 7.3 Precedence and Associativity 85

8. Input and Output Statement 98
 8.1 Formatted I/O Functions 98
 8.2 Unformatted I/O Functions 108
 8.3 General Structure of a C Program 109
 8.4 First C Program 110
 8.5 Executing a C Program 111
 8.6 Executing from UNIX Environment 113
 8.7 Developing a Program 113
 8.8 Programming Examples 115

9. Branching Statement 132
 9.1 If Statement 132
 9.2 Conditional Operator 143
 9.3 Switch Statement 144
 9.4 Goto Statement 148
 9.5 Programming Examples 148

10. Loop Statements 171
 10.1 While Statement 172
 10.2 Nested Loop 177
 10.3 Test Your Progress 178
 10.4 For Statement 179
 10.5 Test Your Progress 185
 10.6 Do-while Statement 186
 10.7 Break Statement 187
 10.8 Use of Goto 189
Contents

10.9 Continue Statement 190
10.10 Test Your Progress 191
10.11 Programming Examples 191

11. Array 224
11.1 What is an Array? 224
11.2 Declaration of an Array 224
11.3 Initializing Arrays 225
11.4 Accessing Elements of an Array 228
11.5 Sorting 232
11.6 Searching 240
11.7 Two Dimensional Array 242
11.8 Multidimensional Array 245
11.9 Programming Examples 247

12. String Handling 268
12.1 String 268
12.2 Overcoming the Limitation with the Help of Scanset 273
12.3 scanf() and sprintf() Function 278
12.4 Character Handling Functions 280
12.5 String Handling Functions 289
12.6 Two-Dimensional Array of Characters 294
12.7 Programming Examples 296

13. Function 320
13.1 Why Function 320
13.2 Calling a Function 323
13.3 Types of Function Arguments 324
13.4 Array as Function Argument 326
13.5 Function Prototype 328
13.6 Passing Multidimensional Array as Function Argument 331
13.7 Storage Class 332
13.8 Multi-file Programs 337
13.9 Recursion 339
13.10 Advantage and Disadvantage of Recursion 343
13.11 Implementation of Some Standard Library Functions 343
13.12 Programming Examples 345

14. Pointer 367
14.1 Pointer 367
14.2 Array and Pointer 371
14.3 Pointer Arithmetic 372
14.4 Array vs Pointer 375
14.5 Pointer and Function 376
14.6 Pointer and String 380
14.7 Function Returning Pointer 381
14.8 Pointers and Multidimensional Arrays 383
14.9 Array of Pointers 384
14.10 Dynamic Memory Allocation 390
14.11 Function Pointer 393
14.12 Returning a Two Dimensional Array from Function 394
14.13 Dangling Pointer 396
14.14 Implementation of Some Standard Library Functions 397
14.15 Advantages of Pointer 399
14.16 Interpreting Complicated Pointer Declarations 400
14.17 Programming Examples 401

15. Structure 416
15.1 Structure 416
15.2 Structure Initialization 418
15.3 Arrays of Structures 422
15.4 Nested Structures 425
15.5 Structures and Functions 427
15.6 Function Returning Structure 428
15.7 Structures and Pointers 431
15.8 Bit Fields 434
15.9 Programming Examples 442

16. File 461
16.1 What is a File? 461
16.2 Processing a File 462
16.3 Input-Output Operations on Files 464
16.4 More File Functions 473
16.5 Command Line Arguments 477
16.6 Programming Examples 479

17. Bitwise Operators 507
17.1 Bitwise & Operator 508
17.2 Bitwise | Operator 511
17.3 Bitwise ^ Operator 512
17.4 ~ Operator 514
17.5 Left Shift Operator 515
17.6 Right Shift Operator 517
17.7 Programming Examples 518

18. Preprocessors 528
18.1 #define Directive 528
18.2 Macros with Arguments 529
18.3 Nesting of Macro 531
18.4 Multiline Macro 531
18.5 Macro vs. Function 532
18.6 #undef Directive 532
18.7 #include Directive 532
18.8 Conditional Compilation Directive 533
18.9 Additional Directives 536
18.10 Predefined Macros 537
18.11 Programming Examples 538
19. **Linked List** 546
 19.1 Linked List 547
 19.2 Advantages of Linked List 547
 19.3 Types of Linked List 547
 19.4 Implementation of Singly Linked List 548
 19.5 Operations on Singly Linked List 550
 19.6 Inserting a New Element in a Linked List 553
 19.7 Applications of Singly Linked List 568
 19.8 Disadvantages of Linked List 572
 19.9 Programming Examples 572

Part C: Technical Questions for Interview

Model Question Set-1 581
Answer to Model Question Set-1 584

Model Question Set-2 586
Answer to Model Question Set-2 589

Model Question Set-3 591
Answer to Model Question Set-3 594

Model Question Set-4 596
Answer to Model Question Set-4 599

Model Question Set-5 602
Answer to Model Question Set-5 605

Appendix:

I. Common Questions and Answers 607
II. ASCII Characters 630
III. Some Useful Library Functions 635
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.1</td>
<td>ENIAC</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.2</td>
<td>Transistor</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 1.3</td>
<td>Components of a computer</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 1.4</td>
<td>Common bus architecture</td>
<td>9</td>
</tr>
<tr>
<td>Fig. 1.5</td>
<td>Keyboard.</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 1.6</td>
<td>USB and PS/2 ports</td>
<td>11</td>
</tr>
<tr>
<td>Fig. 1.7</td>
<td>Scanner</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.8</td>
<td>Microphone</td>
<td>12</td>
</tr>
<tr>
<td>Fig. 1.9</td>
<td>Printers</td>
<td>13</td>
</tr>
<tr>
<td>Fig. 2.1</td>
<td>Addition process</td>
<td>20</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>Sequential circuit</td>
<td>25</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>NAND as universal gate</td>
<td>28</td>
</tr>
<tr>
<td>Fig. 3.1</td>
<td>Process for producing executable file</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 3.2</td>
<td>Parse tree of a sentence</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 3.3</td>
<td>A sample window</td>
<td>36</td>
</tr>
<tr>
<td>Fig. 4.1</td>
<td>Flowchart of finding maximum of three numbers</td>
<td>41</td>
</tr>
<tr>
<td>Fig. 8.1</td>
<td>Steps of compilation and execution</td>
<td>112</td>
</tr>
<tr>
<td>Fig. 9.1</td>
<td>Flowchart of if statement</td>
<td>133</td>
</tr>
<tr>
<td>Fig. 9.2</td>
<td>Flowchart of if–else statement</td>
<td>134</td>
</tr>
<tr>
<td>Fig. 9.3</td>
<td>Flow chart to find the largest number among three inputted numbers</td>
<td>137</td>
</tr>
<tr>
<td>Fig. 10.1</td>
<td>Entry controlled loop</td>
<td>171</td>
</tr>
<tr>
<td>Fig. 10.2</td>
<td>Exit controlled loop</td>
<td>172</td>
</tr>
<tr>
<td>Fig. 10.3</td>
<td>Flow chart to illustrate while statement</td>
<td>173</td>
</tr>
<tr>
<td>Fig. 11.1</td>
<td>Allocation of memory for character array</td>
<td>226</td>
</tr>
<tr>
<td>Fig. 11.2</td>
<td>Allocation of memory for integer array</td>
<td>227</td>
</tr>
<tr>
<td>Fig. 11.3</td>
<td>Conceptual view of a two dimensional array</td>
<td>242</td>
</tr>
<tr>
<td>Fig. 11.4</td>
<td>Accessing elements in a two dimensional array</td>
<td>243</td>
</tr>
<tr>
<td>Fig. 14.1</td>
<td>Memory map of variable allocation</td>
<td>368</td>
</tr>
<tr>
<td>Fig. 14.2</td>
<td>Address calculation for the elements of 2D array</td>
<td>383</td>
</tr>
<tr>
<td>Fig. 14.3</td>
<td>Memory map of above example</td>
<td>385</td>
</tr>
<tr>
<td>Fig. 14.4</td>
<td>Memory map of array of pointer to string</td>
<td>386</td>
</tr>
<tr>
<td>Fig. 15.1</td>
<td>Memory map of structure variable</td>
<td>417</td>
</tr>
</tbody>
</table>
Fig. 15.2 Array of structure 423
Fig. 15.3 Initialized array of structure s 423
Fig. 15.4 Sharing of memory location by the members of a union 437
Fig. 17.1 << operation 516
Fig. 17.2 >> operation 517
Fig. 19.1 Different type of linked list 548
Fig. 19.2 Representation of a singly linked list in memory 550
Fig. 19.3 Inserting a node at the beginning of a list 554
Fig. 19.4 Inserting a node at the end of a list 556
Fig. 19.5 Inserting a node after 2nd node 557
Fig. 19.6 Inserting a node before 3rd node 557
Fig. 19.7 Deletion of first node from a list 559
Fig. 19.8 Deletion of last node from a list 560
Fig. 19.9 Deletion of an intermediate node from a list 562
Fig. 19.10 Representation of a polynomial using linked list 568
Tables

<p>| Table 2.1 | Powers of 2 | 17 |
| Table 2.2 | Binary values of decimal numbers | 17 | |
| Table 2.3 | Similarity of different base | 19 |
| Table 2.4 | ASCII values | 24 |
| Table 3.1 | Some DOS commands | 35 |
| Table 3.2 | Some UNIX commands | 37 |
| Table 4.1 | Flowchart symbols | 42 |
| Table 6.1 | C character set | 58 |
| Table 6.2 | Keywords in C | 61 |
| Table 6.3 | Basic data types in C | 62 |
| Table 6.4 | Size and range of data types on 16 bit machine | 62 |
| Table 7.1 | Arithmetic operators and their role | 75 |
| Table 7.2 | Shorthand assignment operators and their equivalent statement | 77 |
| Table 7.3 | Relational operators | 79 |
| Table 7.4 | Logical operators | 80 |
| Table 7.5 | Bitwise operators | 81 |
| Table 7.6 | Conversion rules | 83 |
| Table 7.7 | The precedence of operators and their associativity | 86 |
| Table 8.1 | Escape sequences | 99 |
| Table 8.2 | Conversion specifiers | 100 |
| Table 8.3 | Minimum width specifiers | 102 |
| Table 8.4 | Flag specifiers | 104 |
| Table 8.5 | Conversion specifier that are used with flag specifiers | 104 |
| Table 8.6 | Size modifiers with their conversion specifier | 105 |
| Table 8.7 | Examples of size modifiers | 106 |
| Table 16.1| File opening mode | 462 |
| Table 16.2| Reference positions | 474 |
| Table 17.1| Bitwise operators | 507 |
| Table 17.2| Bitwise & operation on individual bits | 508 |
| Table 17.3| Illustration of bitwise & operation showing bit pattern | 508 |
| Table 17.4| Bitwise | operation on individual bits | 511 |
| Table 17.5| Illustration of bitwise | operation showing bit pattern | 511 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 17.6</td>
<td>Bitwise ^ operation on individual bits</td>
<td>512</td>
</tr>
<tr>
<td>Table 17.7</td>
<td>Illustration of bitwise ^ operation showing bit pattern</td>
<td>513</td>
</tr>
<tr>
<td>Table 17.8</td>
<td>Bitwise ~ operation on individual bits</td>
<td>515</td>
</tr>
<tr>
<td>Table 17.9</td>
<td>Illustration of left shift operation showing bit pattern</td>
<td>516</td>
</tr>
<tr>
<td>Table 17.10</td>
<td>Illustration of right shift operation showing bit pattern</td>
<td>517</td>
</tr>
<tr>
<td>Table 18.1</td>
<td>Predefined macros</td>
<td>537</td>
</tr>
</tbody>
</table>
Preface

The C programming language is one of the most, academically as well as industrially, important programming languages in the world. It was unveiled in 1972 and since then, with gradual enhancements and enrichments, it has successfully established itself as a powerful language for programming microcontrollers, operating systems and various commercially significant software packages. Having unique features like block structure, stand alone functions and a rich set of keywords with very few restrictions, it is aptly regarded as the ‘Mother Language’ among programming languages. Hence it is necessary for every programmer to learn and, often, use C.

About the Book

Today, in any corner of the world, there is a necessity to learn computer programming for people to survive in any industry. All students do not possess technical background and therefore find learning C programming difficult. Keeping a strong focus on industrial requirements and the limitations of students from non-technical backgrounds, we have written this new book on C programming to enable students of non-technical as well as technical backgrounds learn this marvelous programming language in a completely new way.

This book is completely different from other popular C programming books available in the market. It teaches programming to someone who wants to learn how to program in C for the first time in his/her life with no programming knowledge at all. In other words, this book on C programming is for absolute beginners of programming but at the same time it outclasses several other C programming books in the market with its coverage. Although targeted at complete beginners, this book covers many advanced concepts in C programming and enables a non-programmer to develop into a competitive C programmer ready to face job interviews on C.

Structure of the Book

- This book is written presuming that the reader is not strong in English. All the explanations in each chapter are offered in simplest English to enable any reader to correctly understand a concept.
Each chapter contains appropriate examples. It ends with a ‘Learn by Quiz – Questions/Answers’, having multiple choice questions with their respective answers (with clarifications) to ensure understandability.

In order to make the presentation visually interactive for students, neat labeled diagrams are provided wherever necessary. For each topic, the explanations are clear and concise, avoiding verbosity as much as possible.

Each programming topic is presented with an exercise set consisting of a large number of solved C programs. Each such solved program is presented with WHYs and HOWs for each new or next statement of a program.

This book also includes a rich collection of commonly asked as well as most probable, new C programming interview solved questions and programs with step-by-step explanations to enable a student to be successful in an interview.

Students, we have prepared this book for you using a unique teaching approach based on our academic learnings so that it looks least intimidating and most interesting. We are sure that after studying this new book on C programming, those of you for whom C programming has been a source of sorrow will now find in it joy and fun. Though every attempt has been made to avoid errors, we will be grateful to our readers if they bring to our notice any oversight they find. If the content design and organization of this book meets all the expectations and requirements of our students, then only can this book be considered a worthwhile accomplishment.
Acknowledgments

I thank my, beloved, students for their constant motivation which made me write this book despite the availability of many best-selling C programming books in the market. My students are extremely fond of and fascinated by my ‘teaching from the ground up’ style and their demand inspired me to author this amazingly simple C book which is aimed at non-programmers or absolute beginners. My heartiest thanks to them.

I would like to thank T. K. Ghosh, Chief Executive Director of Techno India Group for providing me the platform to teach so many young minds.

I want to thank M. K. Chakraborty for his constant support and inspiration.

I would also like to thank Subir Hazra, my friend and ex-colleague, who helped us in preparing the ‘Learn by Quiz - Questions/Answers’ section.

Most important, heartiest thanks to my family specially my wife Sriparna Saha and my beloved daughter Shreya for their support, encouragement, quite patient and unconditional love which helped, conclude the book.

Finally, I would like to thank all the reviewers of this book for their critical comments and suggestions. I convey my gratitude to Rachna Sehgal and the entire editing team at Cambridge University Press, India for their great work.

Subrata Saha

Thanks to T. K. Ghosh (Chief Executive Director) who found in me suitability to be the head of three departments of a Techno India Group college. He gave me the opportunity to prove myself, to be a good teacher to thousand of students.

Thanks to my teacher Professor Ranjan Dasgupta (Head, Computer Science, NITTTR-Kolkata) who gave me the confidence to write a book.

Thanks to my ex-colleague Professor Sumana Chakraborty who participated actively in discussions to freeze the table of contents of this book.

Subhodip Mukherjee