Steve Dobbs, Jane Miller and Julian Gilbey

Cambridge International AS and A Level Mathematics:

Statistics 2

Coursebook

Revised Edition

CAMBRIDGE

Cambridge University Press 978-1-316-60042-9 — Cambridge International AS and A Level Mathematics: Statistics 2 Coursebook Steve Dobbs , Jane Miller , Julian Gilbey Frontmatter <u>More Information</u>

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

Information on this title: education.cambridge.org

© Cambridge University Press 2016

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002 Second edition 2016

Printed in the United Kingdom by Latimer Trend

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-60042-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

.....

NOTICE TO TEACHERS IN THE UK

It is illegal to reproduce any part of this work in material form (including photocopying and electronic storage) except under the following circumstances: (i) where you are abiding by a licence granted to your school or institution by the Copyright Licensing Agency;

(ii) where no such licence exists, or where you wish to exceed the terms of a licence, and you have gained the written permission of Cambridge University Press;(iii) where you are allowed to reproduce without permission under the provisions of Chapter 3 of the Copyright, Designs and Patents Act 1988, which covers, for example, the reproduction of short passages within certain types of educational anthology and reproduction for the purposes of setting examination questions.

Past paper examination questions throughout are reproduced by permission of Cambridge International Examinations.

Cambridge International Examinations bears no responsibility for the example answers to questions taken from its past question papers which are contained in this publication.

The exam-style questions, answers and commentary in this title are written by the author and have not been produced by Cambridge International Examinations.

Image credits: Coverplainpicture/Westend61/Mandy Reschke; Chapter 1 Victor Tongdee/Shutterstock; Chapters 2, 3, 8 agsandrew/Shutterstock; Chapter 4 sakkmesterke/Shutterstock; Chapter 5 Nongkran_ch/Getty Images; Chapter 6 gremlin/Getty Images; Chapter 7 DaniiMelekhin/Getty Images

Contents

Introduction			vi
1	The Poisson distribution		1
	1.1	The Poisson probability formula	2
	1.2	Modelling random events	5
	1.3	The variance of a Poisson distribution	8
	1.4	Practical activities	10
	1.5	The Poisson distribution as an approximation to the binomial distribution	12
	1.6	The normal distribution as an approximation to the Poisson distribution	14
2	Line	ar combinations of random variables	20
	2.1	The expectation and variance of a linear function of a random variable	21
	2.2	Linear combinations of more than one random variable	24
	2.3	Linear relations involving more than one observation of a random variable	26
	2.4	Linear functions and combinations of normally distributed random variables	28
	2.5	The distribution of the sum of two independent Poisson variables	30
3	Cont	inuous random variables	35
	3.1	Defining the probability density function of a continuous random variable	36
	3.2	The median of a continuous random variable	44
	3.3	The expectation of a continuous random variable	47
	3.4	The variance of a continuous random variable	48
4	Samp	pling	56
	4.1	Populations and samples	57
	4.2	Choosing a random sample	58
	4.3	The sampling distribution of the mean	62
	4.4	The central limit theorem	67
	4.5	Practical activities	70
	4.6	The distribution of \overline{X} when $X_1, X_2,, X_n$ have	
		a N (μ, σ^2) distribution	71

Contents

5	Estir	nation	77
	5.1	Unbiased estimates	78
	5.2	Proof that $S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$ is an unbiased estimator of σ^2	86
	5.3	The concept of a confidence interval	88
	5.4	Calculating a confidence interval	89
	5.5	Different levels of confidence	92
	5.6	Confidence interval for a large sample	95
	5.7	Confidence interval for a proportion	97
	5.8	Practical activities	100
6	Нур	othesis testing: continuous variables	103
	6.1	An introductory example	104
	6.2	Null and alternative hypotheses	104
	6.3	Critical values	106
	6.4	Standardising the test statistic	111
	6.5	Large samples	114
	6.6	An alternative method of carrying out a hypothesis test	117
	6.7	Alternative approaches to interpreting data	119
	6.8	Practical activities	119
7	Нур	othesis testing: discrete variables	123
	7.1	Testing a population proportion	124
	7.2	Testing a population proportion for large samples	127
	7.3	Testing a population mean for a Poisson distribution	129
	7.4	Practical activities	131
8	Erro	rs in hypothesis testing	137
	8.1	Type I and Type II errors	138
	8.2	Type I and Type II errors for tests involving the normal distribution	139
	8.3	Type I and Type II errors for tests involving the binomial distribution	144
	8.4	Type I and Type II errors for tests involving the Poisson distribution	149

Contents

Practice exam-style papers164Normal distribution function167Answers168Index179		
Normal distribution function167Answers168Index179	Revision exercise	158
Answers 168 Index 179	Practice exam-style papers	164
Index 179	Normal distribution function	167
	Answers	168
Formulae 181	Index	179
	Formulae	181

Introduction

Cambridge International Examinations Cambridge Advanced Level Mathematics has been written especially for the 2002 Cambridge International Examinations syllabus. There is one book corresponding to each syllabus unit, except that units P2 and P3 are contained in a single book. This book is the second Probability and Statistics unit, S2.

The syllabus content is arranged by chapters which are ordered so as to provide a viable teaching course. A few sections include important results that are difficult to prove or outside the syllabus. These sections are marked with a vertical coloured bar in the section heading, and there is usually a sentence early on explaining precisely what it is that the student needs to know.

Some paragraphs within the text appear in *this type style*. These paragraphs are usually outside the main stream of the mathematical argument, but may help to give insight, or suggest extra work or different approaches.

Graphic calculators are not permitted in the examination, but they can be useful aids in learning mathematics. In the book the authors have noted where access to graphic calculators would be especially helpful but have not assumed that they are available to all students.

The authors have assumed that students have access to calculators with built-in statistical functions.

Numerical work is presented in a form intended to discourage premature approximation. In ongoing calculations inexact numbers appear in decimal form like 3.456..., signifying that the number is held in a calculator to more places than are given. Numbers are not rounded at this stage; the full display could be either 3.456 123 or 3.456 789. Final answers are then stated with some indication that they are approximate, for example '1.23 correct to 3 significant figures'.

Most chapters contain Practical activities. These can be used either as an introduction to a topic, or, later on, to reinforce the theory. Two Practical activities, in Sections 4.5 and 5.4, require access to a computer.

There are also plenty of exercises, and each chapter ends with a Miscellaneous exercise which includes some questions of examination standard. There is a Revision exercise, and two Practice exam-style papers. In some exercises a few of the later questions may go beyond the likely requirements of the examination, either in difficulty or in length or both. Some questions are marked with a vertical coloured bar, which indicates that they require knowledge of results outside the syllabus.

Cambridge University Press would like to thank Cambridge International Examinations for permission to use past paper examination questions.

The authors thank Cambridge International Examinations and Cambridge University Press for their help in producing this book. However, the responsibility for the text, and for any errors, remains with the authors.

Steve Dobbs and Jane Miller, 2002

Introduction

Introduction to the revised edition

This revised edition has been prepared to bring this textbook in line with the current version of the Cambridge International Examinations specification. Most of the original edition has been left unchanged to assist teachers familiar with the original edition; this includes section numbers, question numbers and so on. A new starred section has been added at the end of Chapter 6 (Hypothesis testing) with a brief discussion of two different schools of thought on statistical inference.

The other major change in this edition is the replacement of all of the older OCR examination questions in the exercises by more recent Cambridge International Examinations questions. This will be of benefit to students preparing for the current style of examination questions. In order to maintain the numbering of the other questions, the newer questions have been slotted in to the exercises. While this has inevitably meant some loss of order within the miscellaneous exercises, this was felt to be more than compensated by the preservation of the original numbering. In a couple of cases, an insufficient number of past paper questions were available to replace the existing questions, and so the exercises have been slightly shortened. In Chapter 8, there are many recent examination questions and so the miscellaneous exercise has been extended to include illustrative examples. Further past papers can, of course, be requested from Cambridge International Examinations. In addition to this, there were also six examples within the text based on such questions; these have been replaced by new examples. (Specifically, they are Examples 4.2.1, 5.6.1, 6.4.1, 6.5.2, 6.6.1 and 8.2.3.)

All questions and answers taken from Cambridge International Examinations past papers have been clearly referenced. All other questions and answers have been written by the authors of this book.

The editor of this edition thanks Cambridge International Examinations and Cambridge University Press, in particular Cathryn Freear and Andrew Briggs, for their great help in preparing this revised edition.

Julian Gilbey

London, 2016