Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

COUNTEREXAMPLES IN MEASURE AND INTEGRATION

Often it is more instructive to know 'what can go wrong' and to understand 'why a result fails' than to plod through yet another piece of theory. In this text, the authors gather more than 300 counterexamples – some of them both surprising and amusing – showing the limitations, hidden traps and pitfalls of measure and integration. Many examples are put into context, explaining the relevant parts of the theory, and pointing out further reading.

The text starts with a self-contained, non-technical overview on the fundamentals of measure and integration. A companion to the successful undergraduate textbook *Measures, Integrals and Martingales*, it is accessible to advanced undergraduate students, requiring only modest prerequisites. More specialized concepts are briefly summarized at the beginning of each chapter, allowing for self-study as well as supplementary reading for any course covering measures and integrals. For researchers, the text provides ample examples and warnings as to the limitations of general measure theory.

RENÉ L. SCHILLING is Professor of Probability Theory at Technische Universität Dresden. His research focuses on stochastic analysis and the theory of stochastic processes.

FRANZISKA KÜHN is Research Assistant at Technische Universität Dresden, where she finished her Ph.D. in 2016. She is interested in the interplay of probability theory and analysis, with a focus on jump processes and non-local operators.

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

COUNTEREXAMPLES IN MEASURE AND INTEGRATION

RENÉ L. SCHILLING Technische Universität Dresden

FRANZISKA KÜHN Technische Universität Dresden

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter More Information

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

> www.cambridge.org Information on this title: www.cambridge.org/9781316519134 DOI: 10.1017/9781009003797

> > © René L. Schilling and Franziska Kühn 2021

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2021

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

ISBN 978-1-316-51913-4 Hardback ISBN 978-1-009-00162-5 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

Contents

	Preface po		
	User'	s Guide	XXV
	List of Topics and Phenomena		
1	A Pa	norama of Lebesgue Integration	1
	1.1	Modern Integration. 'Also zuerst: Was hat man unter	
		$\int_{a}^{b} f(x) dx$ zu verstehen?'	1
	1.2	The Idea Behind Lebesgue Integration	4
	1.3	Lebesgue Essentials – Measures and σ -Algebras	6
	1.4	Lebesgue Essentials – Integrals and Measurable Functions	10
	1.5	Spaces of Integrable Functions	13
	1.6	Convergence Theorems	17
	1.7	Product Measure, Fubini and Tonelli	21
	1.8	Transformation Theorems	24
	1.9	Extension of Set Functions and Measures	27
	1.10	Signed Measures and Radon–Nikodým	29
	1.11	A Historical Aperçu From the Beginnings Until 1854	31
	1.12	Appendix: H. Lebesgue's Seminal Paper	33
2	A Re	fresher of Topology and Ordinal Numbers	36
	2.1	A Modicum of Point-Set Topology	36
	2.2	The Axiom of Choice and Its Relatives	41
	2.3	Cardinal and Ordinal Numbers	43
	2.4	The Ordinal Space	46
	2.5	The Cantor Set: A Nowhere Dense, Perfect Set	47
	2.6	The Cantor Function and Its Inverse	49
3	Rien	nann Is Not Enough	55
	3.1	The Riemann–Darboux upper integral is not additive	57

vi

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

	Contents	
3.2	Why one should define Riemann integrals on bounded intervals	58
3.3	There are no unbounded Riemann integrable functions	58
3.4	A function which is not Riemann integrable	59
3.5	Yet another function which is not Riemann integrable	59
3.6	A non-Riemann integrable function where a sequence of	
	Riemann sums is convergent	60
3.7	A Riemann integrable function without a primitive	61
3.8	A Riemann integrable function whose discontinuity	
	points are dense	62
3.9	Semicontinuity does not imply Riemann integrability	63
3.10	A function which has the intermediate value property but	
	is not Riemann integrable	64
3.11	A Lipschitz continuous function g and a Riemann integ-	
	rable function f such that $f \circ g$ is not Riemann integrable	65
3.12	The composition of Riemann integrable functions need	
	not be Riemann integrable	65
3.13	An increasing sequence of Riemann integrable functions	
	$0 \leq f_n \leq 1$ such that $\sup_n f_n$ is not Riemann integrable	65
3.14	A decreasing sequence of Riemann integrable functions	
	$0 \leq f_n \leq 1$ such that $\inf_n f_n$ is not Riemann integrable	65
3.15	Limit theorems for Riemann integrals are sub-optimal	66
3.16	The space of Riemann integrable functions is not complete	67
3.17	An example where integration by substitution goes wrong	68
3.18	A Riemann integrable function which is not Borel meas-	
	urable	68
3.19	A non-Riemann integrable function f which coincides	
	a.e. with a continuous function	69
3.20	A Riemann integrable function on \mathbb{R}^2 whose iterated	
	integrals are not Riemann integrable	69
3.21	Upper and lower integrals do not work for the Riemann–	
	Stieltjes integral	71
3.22	The Riemann–Stieltjes integral does not exist if integrand	
	and integrator have a common discontinuity	72
Fam	ilies of Sets	73
4.1	A Dynkin system which is not a σ -algebra	76
4.2	A monotone class which is not a σ -algebra	77
4.3	A σ -algebra which contains all singletons but no non-	
	trivial interval	77

4

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

	Contents	vii
4.4	There is no σ -algebra with $\#\mathcal{A} = \#\mathbb{N}$	78
4.5	A σ -algebra which has no non-empty atoms	78
4.6	An increasing family of σ -algebras whose union fails to be	
	a σ -algebra	79
4.7	The union of countably many strictly increasing	
	σ -algebras is never a σ -algebra	80
4.8	A countably generated σ -algebra containing a	
	sub- σ -algebra which is not countably generated	81
4.9	Two countably generated σ -algebras whose intersection is	
	not countably generated	82
4.10	A Borel σ -algebra which is not countably generated	83
4.11	$\sigma(\mathscr{G})$ can only separate points if \mathscr{G} does	84
4.12	A family \mathcal{G} of intervals whose endpoints form a dense	
	subset of \mathbb{R} but $\sigma(\mathcal{G}) \subsetneq \mathscr{B}(\mathbb{R})$	84
4.13	Intersection and the σ -operation do not commute:	
	$\sigma\left(\bigcap_{n\in\mathbb{N}}\mathscr{G}_n\right)\subsetneq\bigcap_{n\in\mathbb{N}}\sigma(\mathscr{G}_n)$	84
4.14	A metric space such that the σ -algebra generated by the	
	open balls is smaller than the Borel σ -algebra	85
4.15	The σ -algebra generated by the compact sets can be larger	
	than the Borel σ -algebra (compact sets need not be Borel	
	sets)	85
4.16	The σ -algebra generated by the compact sets can be	
	smaller than the Borel σ -algebra	86
4.17	A topology such that every non-empty Borel set has	
	uncountably many elements	87
4.18	A metrizable and a non-metrizable topology having the	07
4.10	same Borel sets	87
4.19	A σ -algebra which is not generated by any topology	89
4.20	A σ -algebra which is strictly between the Borel and the	01
4 01	Lebesgue sets	91
4.21	The Borel sets cannot be constructed by induction	91
4.22	The Borel sets can be constructed by transmitte induction	95
4.23	(Non-)equivalent characterizations of the Balte σ -algebra	90
4.24		00
	o-algeora	98
Set F	Functions and Measures	100
5.1	A class of measures where the $\mu(\emptyset) = 0$ is not needed in	
	the definition	102
5.2	A set function which is additive but not σ -additive	102

5

viii		Contents			
	5.3	A finite set function which is additive but not σ -additive	103		
	5.4	Another finite set function which is additive but not			
		σ -additive	104		
	5.5	A set function with infinitely many extensions	105		
	5.6	A measure that cannot be further extended	105		
	5.7	A measure defined on the open balls which cannot be			
		extended to the Borel sets	106		
	5.8	A signed pre-measure on an algebra \mathcal{R} which cannot be			
		extended to a signed measure on $\sigma(\mathcal{R})$	106		
	5.9	A measure defined on a non-measurable set	107		
	5.10	A measure which is not continuous from above	108		
	5.11	A σ -finite measure which is not σ -finite on a smaller			
		σ -algebra	108		
	5.12	A σ -finite measure μ on $\mathcal{B}(\mathbb{R})$ such that $\mu(I) = \infty$ for	100		
	F 10	every non-trivial interval (D) subjects is not a Laboratory	108		
	5.13	A σ -finite measure μ on $\mathcal{B}(\mathbb{R})$ which is not a Lebesgue–	100		
	514	Stienjes measure Infinite sums of finite measures need not be a finite	108		
	5.14	The image massure of σ finite measures need not be σ -limite	109		
	5.15	The image measure of a 0-initie measure is not necessarily $\sigma_{\rm e}$ finite	100		
	5 16	A locally finite measure need not be σ -finite	109		
	5.10	Two measures on $\sigma(\mathcal{C})$ such that $\mu _{\sigma} < \nu _{\sigma}$ but $\mu < \nu$ fails	110		
	5.18	Two measures on $\sigma(\mathcal{C})$ such that $\mu _{\mathcal{C}} = \nu _{\mathcal{C}}$ but $\mu \neq \nu$	110		
	5.10	Two measures $\mu \neq \nu$ such that $\int n d\mu = \int n d\nu$ for all	110		
	5.17	polynomials	111		
	5.20	Two finite measures $\mu \neq \nu$ whose Fourier transforms			
	0.20	coincide on an interval containing zero	113		
	5.21	(Non)Equivalent definitions of the convolution of measures	114		
	5.22	The convolution of σ -finite measures need not be σ -finite	115		
	5.23	$\mu * \nu = \mu$ does not imply $\nu = \delta_0$	116		
	5.24	The push forward 'disaster' (image measures behaving			
		badly)	117		
	5.25	The pull-back of a measure need not be a measure	118		
	5.26	A finite Borel measure which is not tight	119		
	5.27	A translation-invariant Borel measure which is not a			
		multiple of Lebesgue measure	120		
	5.28	There is no Lebesgue measure in infinite dimension	121		
6	Ran	ge and Support of a Measure	123		
	6.1	A measure where supp $\mu \neq \bigcap \{B; \ \mu(B^c) = 0\}$	124		

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

	Contents	ix
6.2	A measure which has no minimal closed support	124
6.3	Measures may have very small support	125
6.4	A measure μ such that the support of $\mu _{supp \mu}$ is strictly	
	smaller than supp μ	125
6.5	A measure with supp $\mu = \{c\}$ but $\mu \neq \delta_c$	126
6.6	Measures such that supp μ + supp $\nu \subsetneq$ supp $\mu * \nu$	126
6.7	Measures such that supp $\mu * \nu \subsetneq \overline{\text{supp } \mu + \text{supp } \nu}$	127
6.8	A signed measure such that supp $\mu^+ = \operatorname{supp} \mu^-$	128
6.9	A two-valued measure which is not a point mass	128
6.10	A two-valued measure on a countably generated σ -algebra	
	must be a point mass	129
6.11	(Non-)equivalent characterizations of atoms of a measure	130
6.12	A purely atomic measure such that $\mu \neq \sum_{x} \mu(\{x\})\delta_x$	131
6.13	A measure such that every set with positive measure is an	
	atom	131
6.14	An infinite sum of atomic measures which is non-atomic	131
6.15	Any non-atomic finite σ -additive measure defined on	
	$\mathscr{P}(\mathbb{R})$ is identically zero	132
6.16	A measure on a discrete space which attains all values in	
	$[0,\infty]$	133
6.17	A measure whose range is not a closed set	133
6.18	A measure with countable range	134
6.19	A vector measure which is non-atomic but whose range is	104
< 0 0	not convex	134
6.20	A non-trivial measure which assigns measure zero to all	125
6 01	$ A \text{ signed measure } u \in \mathcal{A} \to (a \text{ and } a \text{ big uniformly}) $	135
0.21	A signed measure $\mu: \mathcal{A} \to (-\infty, \infty)$ is uniformly bounded below	126
	bounded below	150
Mea	surable and Non-Measurable Sets	138
7.1	A dense open set in $(0, 1)$ with arbitrarily small Lebesgue	
	measure	139
7.2	A set of positive Lebesgue measure which does not contain	
	any interval	140
7.3	A Cantor-like set with arbitrary measure	140
7.4	An uncountable set of zero measure	141
7.5	A Lebesgue null set $A \subseteq \mathbb{R}$ such that for every $\delta \in [0, 1]$	
	there exist $x, y \in A$ with $\delta = x - y $	141
7.6	A dense open set whose complement has positive measure	144

7

Х

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

	Contents	
7.7	A compact set whose boundary has positive Lebesgue	144
78	A set of first category in $[0, 1]$ with measure one	144
7.0	A set of second category with measure zero	145
7.10	An uncountable dense set of measure zero such that the	145
/.10	complement is of first category	145
7.11	A null set which is not an F_{-} -set	145
7.12	A Borel set which is neither F_{-} nor G_{s}	146
7.13	Each Borel set is the union of a null set and a set of first	1.0
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	category	147
7.14	A set $B \subseteq \mathbb{R}$ such that $B \cap F \neq \emptyset$ and $B^c \cap F \neq \emptyset$ for any	1.7
	uncountable closed set <i>F</i>	147
7.15	A Borel set $B \subseteq \mathbb{R}$ such that $\lambda(B \cap I) > 0$ and $\lambda(B^c \cap I) > 0$	
	for all open intervals $I \neq \emptyset$	148
7.16	There is no Borel set <i>B</i> with $\lambda(B \cap I) = {}^{-1}\lambda(I)$ for all intervals <i>I</i>	148
7.17	A non-Borel set B such that $K \cap B$ is Borel for every	
	compact set K	149
7.18	A convex set which is not Borel	149
7.19	A Souslin set which is not Borel	150
7.20	A Lebesgue measurable set which is not Borel measurable	153
7.21	A Lebesgue measurable set which is not a Souslin set	153
7.22	A non-Lebesgue measurable set	153
7.23	Arbitrary unions of non-trivial closed balls need not be	
	Borel measurable	155
7.24	The image of a Borel set under a continuous mapping	
	need not be Borel	155
7.25	The image of a Lebesgue set under a continuous mapping	
	need not be Lebesgue measurable	157
7.26	The Minkowski sum $A + B$ of two Borel sets is not	
	necessarily Borel	158
7.27	A Lebesgue null set <i>B</i> such that $B + B = \mathbb{R}$	158
7.28	The difference of fat Cantor sets contains an interval	159
7.29	The sum of scaled Cantor sets is sometimes an interval	161
7.30	The difference of fat Cantor sets is exactly $[-1, 1]$	161
7.31	The Banach–Tarski paradox	162
Mea	surable Maps and Functions	164
8.1	A measurable space where every map is measurable	165
8.2	A measurable space where only constant functions are	
	measurable	165

8

Contents	xi
A non-measurable function whose modulus <i>f</i> is meas- urable	165
A non-measurable function whose level sets	
$\{x; f(x) = \alpha\}$ are measurable	165
A measurable function which is not μ -a.e. constant on	
any atom	165
A function $f(x, y)$ which is Borel measurable in each	
variable, but fails to be jointly measurable	166
Another function $f(x, y)$ which is Borel measurable in	
each variable, but fails to be jointly measurable	167
A function $f = (f_1, f_2)$ which is not measurable but	
whose components are measurable	168
The set of continuity points of any function f is Borel	
measurable	168
A set <i>D</i> for which there exists no function having <i>D</i> as its	
discontinuity set	170
A bijective measurable function f such that f^{-1} is not	
measurable	171
A continuous bijective function $f: [0,1] \rightarrow [0,1]$ which	
is not Lebesgue measurable	171
A Lebesgue measurable bijective map $f : \mathbb{R} \to \mathbb{R}$ whose	
inverse is not Lebesgue measurable	172
Borel measurable bijective maps have Borel measurable	
inverses	173
Sums and products of measurable functions need not be	
measurable	173
The limit of a sequence of measurable functions need not	
be measurable	174
A sequence of measurable functions such that the set	
{x; $\lim_{n\to\infty} f_n(x)$ exists} is not measurable	175
The supremum of measurable functions need to be meas-	
urable	175
Measurability is not preserved under convolutions	176
The factorization lemma fails for general measurable	
spaces	177
A Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ for which	
there is no Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ such	
that $f \leq g$	178
A positive Borel measurable function which cannot be	
approximated a.e. from below by step functions	179
	Contents A non-measurable function whose modulus $ f $ is measurable A non-measurable function whose level sets $\{x; f(x) = \alpha\}$ are measurable A measurable function which is not μ -a.e. constant on any atom A function $f(x, y)$ which is Borel measurable in each variable, but fails to be jointly measurable A nother function $f(x, y)$ which is Borel measurable in each variable, but fails to be jointly measurable A function $f = (f_1, f_2)$ which is not measurable but whose components are measurable The set of continuity points of any function f is Borel measurable A set D for which there exists no function having D as its discontinuity set A bijective measurable function f such that f^{-1} is not measurable A continuous bijective function f : $[0,1] \rightarrow [0,1]$ which is not Lebesgue measurable Borel measurable bijective map f : $\mathbb{R} \rightarrow \mathbb{R}$ whose inverse is not Lebesgue measurable Borel measurable bijective maps have Borel measurable inverses Sums and products of measurable functions need not be measurable A sequence of measurable functions such that the set $\{x; \lim_{n\to\infty} f_n(x) exists\}$ is not measurable The supremum of measurable functions need to be measurable Measurability is not preserved under convolutions The factorization lemma fails for general measurable spaces A Lebesgue measurable function $f : \mathbb{R} \to \mathbb{R}$ for which there is no Borel measurable function $g : \mathbb{R} \to \mathbb{R}$ such that $f \leqslant g$

xii		Contents					
	8.23	$\mathbb{1}_{\mathbb{R}\setminus\mathbb{Q}}$ cannot be the pointwise limit of continuous functions	180				
9	Inne	er and Outer Measure	182				
	9.1	An explicit construction of a non-measurable set	185				
	9.2	A set which is not Lebesgue measurable with strictly					
		positive outer and zero inner measure	186				
	9.3	A decreasing sequence $A_n \downarrow \emptyset$ such that $\lambda^*(A_n) = 1$	186				
	9.4	A set such that $\lambda_*(E) = 0$ and $\lambda^*(E \cap B) = \lambda(B) = \lambda^*(B \setminus E)$					
		for all $B \in \mathscr{B}(\mathbb{R})$	187				
	9.5	Lebesgue measure beyond the Lebesgue sets	188				
	9.6	The Carathéodory extension λ^* of $\lambda _{[0,1)}$ is not continuous					
		from above	189				
	9.7	An outer measure which is not continuous from below	189				
	9.8	A measure μ such that its outer measure μ^* is not additive	190				
	9.9	A measure space such that $(X, \mathcal{A}^*, \mu^* _{\mathcal{A}^*})$ is not the					
		completion of (X, \mathcal{A}, μ)	190				
	9.10	A measure space where $\mu_*(E) = \mu^*(E)$ does not imply					
	0.44	measurability of E	190				
	9.11	A non-Lebesgue measurable set with identical inner and					
	0.10	outer measure	191				
	9.12	A measure such that every set is μ^{μ} measurable	191				
	9.13	A measure μ relative to 8 such that every non-empty set	102				
	0.14	In δ fails to be μ intersulable An additive set function μ on a semi-ring such that μ^* is	192				
	9.14	All additive set function μ on a semi-ring such that μ is not an extension of μ	102				
	0 1 5	An outer measure constructed on the intervals $[a, b]$ such	193				
	9.15	that not all Borel sets are measurable	103				
	916	There exist non- u^* measurable sets if and only if u^* is	175				
	<i>.</i> 10	not additive on $\mathcal{P}(X)$	194				
	9.17	An outer regular measure which is not inner compact	171				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	regular	195				
	9.18	An inner compact regular measure which is neither inner					
		nor outer regular	195				
	9.19	A measure which is neither inner nor outer regular	196				
	9.20	A measure which is inner regular but not inner compact					
		regular	197				
	9.21	The regularity of a measure depends on the topology	197				
	9.22	A regular Borel measure whose restriction to a Borel set is					
		not regular	198				

		Contents	xiii
10	Integ	grable Functions	202
	10.1	An integrable function which is unbounded in every interval	203
	10.2	A continuous integrable function such that	
		$\lim_{ x \to\infty} f(x) \neq 0$	204
	10.3	A continuous function vanishing at infinity which is not	
		in L^p for any $p > 0$	205
	10.4	A non-integrable function such that	
		$\lim_{r \to \infty} r\mu(\{ f > r\}) = 0$	205
	10.5	Characterizing integrability in terms of series	206
	10.6	A non-integrable function such that $f(x - 1/n)$ is integ-	
		rable for all $n \in \mathbb{N}$	207
	10.7	An integrable function such that $f(x - 1/n)$ fails to be	
		integrable for all $n \in \mathbb{N}$	208
	10.8	An improperly Riemann integrable function which is not	
		Lebesgue integrable	208
	10.9	A function such that $\lim_{n\to\infty} \int_0^n f d\lambda$ exists and is finite	
		but $\int_0^\infty f d\lambda$ does not exist	209
	10.10	A function which is nowhere locally integrable	210
	10.11	Integrable functions f, g such that $f \cdot g$ is not integrable	210
	10.12	A function such that $f \notin L^p$ for all $p \in [1, \infty)$ but $fg \in L^1$	
		for all $g \in L^q$, $q \ge 1$	210
	10.13	$f \in L^p$ for all $p < q$ does not imply $f \in L^q$	211
	10.14	A function such that $f \in L^p$ for all $p < \infty$ but $f \notin L^\infty$	211
	10.15	A function such that $f \in L^{\infty}$ but $f \notin L^p$ for all $p < \infty$	212
	10.16	A function which is in exactly one space L^p	212
	10.17	Convolution is not associative	213
	10.18	An example where integration by substitution goes wrong	214
	10.19	There is no non-constant function such that	
		$\int_{\mathbb{R}^d \setminus \{0\}} \int_{\mathbb{R}^d} f(x+y) - f(x) y ^{-d-1} dx dy < \infty$	215
	10.20	A measure space which has no strictly positive function	
		$f \in L^1$	217
	10.21	In infinite measure spaces there is no function $f > 0$ with	
		$f \in L^1$ and $1/f \in L^1$	217
	10.22	There is no continuous function $f \ge 0$ with $\int f^n d\lambda = 1$	
		tor all $n \in \mathbb{N}$	218
	10.23	A measure space where $\int_A f d\mu = \int_A g d\mu$ (for all A) does	010
	10.0	not entail $f = g$ a.e.	219
	10.24	A vector function which is weakly but not strongly integrable	220

xiv		Contents	
11	Mod	es of Convergence	221
	11.1	Classical counterexamples to a.e. convergence vs. conver-	
		gence in probability	222
	11.2	Pointwise convergence does not imply convergence in	
		measure	223
	11.3	L^p -convergence does not imply L^r -convergence for $r \neq p$	224
	11.4	Classical counterexamples related to weak convergence in	
		L^p	224
	11.5	The convergence tables	225
	11.6	The limit in probability is not necessarily unique	225
	11.7	A sequence converging in probability without having an	
		a.e. converging subsequence	227
	11.8	A sequence converging in probability without having any	
		subsequence converging in measure	228
	11.9	A sequence such that $\int f_n(x) dx \to 0$ but $(f_n)_{n \in \mathbb{N}}$ has no	
		convergent subsequence	229
	11.10	A sequence converging a.e. and in measure but not almost	
		uniformly	229
	11.11	Egorov's theorem fails for infinite measures	229
	11.12	Egorov's theorem does not hold for nets	229
	11.13	A uniformly convergent sequence of L^1 -functions which	
		is not convergent in L^1	231
	11.14	Convergence in measure is not stable under products	231
	11.15	A measure space where convergence in measure and	
		uniform convergence coincide	232
	11.16	A measure space where strong and weak convergence of	
		sequences in L^1 coincide	233
	11.17	Convergence a.e. is not metrizable	233
12	Conv	ergence Theorems	235
	12.1	Classical counterexamples to dominated convergence	236
	12.2	Fatou's lemma may fail for non-positive integrands	236
	12.3	Fatou's lemma may lead to a strict inequality	237
	12.4	The monotone convergence theorem needs a lower integ-	
		rable bound	237
	12.5	A series of functions such that integration and summation	
		do not interchange	238
	12.6	Riesz's convergence theorem fails for $p = \infty$	239
	12.7	A sequence such that $f_n \to 0$ pointwise but	
		$\int_{I} f_{n} d\lambda \rightarrow \lambda(I)$ for all intervals	239

		Contents	XV
	12.8	$\int_I f_n d\lambda \rightarrow \int_I f d\lambda$ for all intervals I does not imply	
		$\int_B f_n d\lambda \to \int_B f d\lambda$ for all Borel sets B	240
	12.9	The classical convergence theorems fail for nets	242
	12.10	The continuity lemma 'only' proves sequential continuity	243
	12.11	A sequence f_n converging to 0 in L^1 without integrable	
		envelope – the 'sliding hump'	244
	12.12	A sequence $(f_n)_{n \in \mathbb{N}}$ which is uniformly integrable but	
		$\sup_n f_n $ is not integrable	244
	12.13	A sequence which is not uniformly integrable but $f_n \to 0$	245
	1214	and $\int \int_n d\lambda \to 0$	245
	12.14	An <i>L</i> -bounded sequence which is not uniformly integrable	245
	12.13	in I^1	245
	12.16	An L^1 -bounded sequence which fails to be uniformly	273
	12.10	integrable on any set of positive measure	246
12	Cont	invituand a Continuity	247
15	12 1	An a a continuous function which does not coincide a a	247
	13.1	with any continuous function	248
	13.2	A nowhere continuous function which equals a e a	240
	10.2	continuous function	248
	13.3	A function f such that every g with $f = g$ a.e. is nowhere	
		continuous	248
	13.4	A function which is everywhere sequentially continuous	
		but nowhere continuous	249
	13.5	An a.e. continuous function whose discontinuity points	
		are dense	249
	13.6	An a.e. discontinuous function whose continuity points	
		are dense	249
	13.7	The composition of two a.e. continuous functions which	250
	120	Is nownere continuous	250
	12.0	A hounded Perel measurable function such that	251
	15.9	A bounded borer measurable function such that $f(r + 1/n) \rightarrow f(r)$ fails to hold on a set of positive measure	251
	13 10	A nowhere constant function which is a e-continuous	231
	15.10	and has countable range	252
	13.11	A continuous function such that $f(x) \in \mathbb{Q}$ a.e. and f is	_2
	. –	not constant on any interval	252
	13.12	A continuous function which is strictly positive on Q but	
		fails to be strictly positive almost everywhere	253

xvi		Contents	
	13.13	A measurable function which is zero almost everywhere but whose graph is dense	254
	13.14	A continuous function $f : [0,1] \to \mathbb{R}^2$ whose image has positive Lebesgue measure	255
	13.15	The image of a Lebesgue null set under a continuous bijective mapping need not have Lebesgue measure zero	257
	13.16	Lusin's theorem fails for non-regular measures	257
	13.17	The convolution of two integrable functions may be discontinuous	258
14	Integ	gration and Differentiation	261
	14.1	A non-Riemann integrable function f which has a primitive	262
	14.2	A function f which is differentiable, but f' is not integrable	263
	14.3	Volterra's version of Example 14.2	264
	14.4	A continuous function such that f' exists almost every- where and is integrable but the fundamental theorem of	
		calculus fails	265
	14.5	A continuous strictly increasing function with $f' = 0$	
		Lebesgue almost everywhere	266
	14.6	A continuous function f such that $f' > 1$ a.e. but f is not increasing on any interval	266
	14.7	A function which is Lebesgue almost everywhere dif-	
		ferentiable but f' does not exist on a dense subset of	
		R	268
	14.8	$f_n \to f$ and $f'_n \to g$ pointwise does not imply $f' = g$ a.e.	268
	14.9	A function $f(t, x)$ for which $\partial_t \int f(t, x) dx$ and $\int \partial_t f(t, x) dx$	
		exist but are not equal	271
	14.10	A function such that $\partial_t \int f(t, x) dx$ exists but $\int \partial_t f(t, x) dx$	
		does not	271
	14.11	A function such that $\int \partial_t f(t, x) dx$ exists but $\partial_t \int f(t, x) dx$	
		does not	272
	14.12	A bounded function such that $t \mapsto f(t, x)$ is continuous but $t \mapsto \int f(t, x) \mu(dx)$ is not continuous	272
	14.13	An increasing continuous function ϕ and a continuous	
		function f such that $\int_0^1 f(x) d\alpha(x) \neq \int_0^1 f(x) \alpha'(x) dx$	272
	14.14	A nowhere continuous function whose Lebesgue points	
		are dense	273
	14.15	A discontinuous function such that every point is a	
		Lebesgue point	273

		Contents	xvii
	14.16	An integrable function f such that $x \mapsto \int_0^x f(t) dt$ is differentiable at $x = x_0$ but x_0 is not a Lebesgue point of f	274
	14.17	Lebesgue points of f need not be Lebesgue points of f^2	275
	14.18	Functions $f \in L^p$, $0 < n < 1$, without Lebesgue points	275
	14.19	Lebesgue's differentiation theorem fails for sets which are	_//0
	,	not shrinking nicely	276
	14.20	A measure for which Lebesgue's differentiation theorem	
		fails	278
15	Meas	surability on Product Spaces	280
	15.1	A function which is Borel measurable but not Lebesgue	
		measurable	281
	15.2	The product of complete σ -algebras need not be complete	281
	15.3	$\mathscr{L}(\mathbb{R}) \otimes \mathscr{L}(\mathbb{R}) \subsetneqq \mathscr{L}(\mathbb{R}^2)$	282
	15.4	Sigma algebras $\mathscr{A} = \sigma(\mathscr{G})$ and $\mathscr{B} = \sigma(\mathscr{H})$ such that	
		$\sigma(\mathscr{G} \times \mathscr{H})$ is strictly smaller than $\mathscr{A} \otimes \mathscr{B}$	282
	15.5	An example where $\mathcal{P}(X) \otimes \mathcal{P}(X) \neq \mathcal{P}(X \times X)$	283
	15.6	The product of Borel σ -algebras is not always the Borel	
		σ -algebra of the product	284
	15.7	Topological spaces X, Y such that $\mathscr{B}(X) = \mathscr{B}(Y)$ but	
		$\mathscr{B}(X \times X) \neq \mathscr{B}(Y \times Y)$	285
	15.8	$\mathscr{B}(X)^{\otimes l}$ is strictly smaller than $\mathscr{B}(X^{l})$ for uncountable <i>l</i>	286
	15.9	The diagonal $\Delta = \{(x, x); x \in X\}$ need not be measurable	288
	15.10	A metric which is not jointly measurable	289
	15.11	A non-measurable set whose projections are measurable	289
	15.12	A measurable set whose projection is not measurable	289
	15.13	A non-measurable set whose slices are measurable	290
	15.14	A measurable function with a monosurable graph	291
	15.15	A function $f(x, y)$ which is measurable in each variable	291
	15.10	but fails to be jointly measurable	201
	15 17	A function $f(x, y)$ which is separately continuous in each	291
	13.17	variable but fails to be Borel measurable	292
	15.18	An $A \otimes B$ measurable function $f \ge 0$ which cannot be	
	10.10	approximated from below by simple functions of product	
		form	293
16	Prod	uct Measures	295
	16.1	Non-uniqueness of product measures	298
	16.2	A measure on a product space which is not a product	220
		measure	299

xviii		Contents	
	16.3	The product of complete measure spaces need not be complete	299
	16.4	A Lebesgue null set in $[0, 1]^2$ which intersects any set $A \times B$ whose Lebesgue measure is positive	299
	16.5	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which does not contain any rectangle	300
	16.6	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure such that the intersection of every non-degenerate rectangle with A^c has positive measure	300
	16.7	A set $A \subseteq \mathbb{R}^2$ of positive Lebesgue measure which is not a countable union of rectangles	302
	16.8	A jointly measurable function such that $x \mapsto \int f(x, y) \mu(dy)$ is not measurable	302
	16.9	A function $f(x, y)$ such that $f(\cdot, y)$ is \mathcal{A} measurable but $\int f(\cdot, y) dy$ is not \mathcal{A} measurable	302
	16.10 16.11	Tonelli's theorem fails for non-positive integrands A positive function with $f(x, y) = f(y, x)$ such that the	304
	16.12	iterated integrals do not coincide A positive function $f(x, y)$ whose iterated integrals do not	305
	16.13	coincide A finite measure μ and a Borel set <i>B</i> such that	305
	16.14	$\iint \mathbb{1}_B(x+y)\mu(dx)\lambda(dy) \neq \iint \mathbb{1}_B(x+y)\lambda(dy)\mu(dx)$ A non-measurable function $f(x,y)$ such that the iterated	306
	16.15	integral $\iint f(x, y) dx dy$ exists and is finite A function $f(x, y)$ whose iterated integrals exist but do	307
	16.16	not coincide A function $f(x, y)$ which is not integrable but whose	308
	16.17	iterated integrals exist and coincide	309
	16.18	the double integral doesn't An ale continuous function $f(r, y)$ where only one	310
	16.10	iterated integral exists Classical integration by parts fails for Lebesgue. Stielties	311
	16.20	integrals $K(x, dy)$ integrable but fails to be	311
	16.20	A function which is $K(x, uy)$ -integrable but fails to be $\mu K(dy)$ -integrable	313
	16.21	projective limit	315

		Contents	xix
17	Rado	on–Nikodým and Related Results	317
	17.1	An absolutely continuous measure without a density	317
	17.2	Another absolutely continuous measure without density	318
	17.3	Yet another absolutely continuous measure without density	318
	17.4	A not-absolutely continuous measure given by a density	319
	17.5	A measure $\mu \ll \lambda$ such that $\lambda(A_n) \to 0$ does not imply	
		$\mu(A_n) \to 0$	320
	17.6	A measure μ which is absolutely continuous w.r.t.	
		Lebesgue measure and $\mu(a, b) = \infty$ for any $(a, b) \neq \emptyset$	320
	17.7	A continuous measure which is not absolutely continuous	321
	17.8	An absolutely continuous function whose inverse is not	
		absolutely continuous	321
	17.9	A continuous measure with atoms	321
	17.10	The Radon–Nikodým density $f = d\nu/d\mu$ does not	
		necessarily satisfy $f(x) = \lim_{r \downarrow 0} \nu(B_r(x)) / \mu(B_r(x))$	322
	17.11	Lebesgue's decomposition theorem fails without σ -finiteness	322
	17.12	Two mutually singular measures which have the same	
		support	322
	17.13	A probability measure μ with full support such that μ and	
		$\mu(c \cdot)$ are mutually singular for $c \neq 1$	322
	17.14	The convolution of two singular measures may be abso-	
		lutely continuous	324
	17.15	Singular measures with full support – the case of Bernoulli	
		convolutions	325
	17.16	The maximum of two measures need not be the maximum	
		of its values	329
18	Func	ction Spaces	330
	18.1	Relations between L^r, L^s, L^t if $r < s < t$	332
	18.2	One may have $\ell^p(\mu) \subseteq \ell^q(\mu)$, or $\ell^p(\mu) \supseteq \ell^q(\mu)$, or no	
		inclusion at all	334
	18.3	A measure space where $L^p = \{0\}$ for all $0 \leq p < \infty$	336
	18.4	A measure space where all spaces L^p , $1 \le p \le \infty$ coincide	336
	18.5	A measure space where $L^1 \subsetneq L^{\infty}$	337
	18.6	$L^1(\mu) = L^{\infty}(\mu)$ if, and only if, $1 \leq \dim(L^1(\mu)) < \infty$	337
	18.7	A function where $\sup_{x \in U} f(x) \neq f _{L^{\infty}(U)}$ for any open	
		set U	340
	18.8	One cannot compare L^p -norms on $C[0,1]$	341
	18.9	The spaces L^p with $0 are only quasi-normed spaces$	341
	18.10	The spaces L^p with $0 are not locally convex$	343

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter More Information

> Contents XX 18.11 The dual of $L^p(\lambda)$ with 0 is trivial344 18.12 Functions $f \in L^p$, 0 , need not be locally integrable345 18.13 The spaces L^q with q < 0 are not linear spaces 346 18.14 A measure space where L^p is not separable 346 18.15 Separability of the space L^{∞} 347 18.16 $C_h(X)$ need not be dense in $L^p(\mu)$ 349 18.17 A subset of L^p which is dense in L^r , r < p, but not dense in L^p 350 18.18 L^p is not an inner product space unless p = 2 or dim $(L^p) \leq 1$ 351 18.19 The condition $\sup_{\|g\|_{I} \leq 1} \int |fg| d\mu < \infty$ need not imply that $f \in L^p(\mu)$ 352 18.20 Identifying the dual of L^p with L^q is a tricky business 354 18.21 The dual of L^1 can be larger than L^{∞} 355 18.22 The dual of L^1 can be isometrically isomorphic to a space which is strictly smaller than L^{∞} 357 18.23 A measure space such that the dual of L^1 is L^1 358 18.24 The dual of L^{∞} can be larger than L^1 358 18.25 A measure space where the dual of L^{∞} is L^1 359 18.26 Non-uniqueness in the Riesz representation theorem 360 18.27 Non-uniqueness in the Riesz representation theorem II 360 18.28 A measure space where L^{∞} is not weakly sequentially complete 361 18.29 Uniform boundedness does not imply weak compactness in L^1 363 18.30 The algebra $L^1(\lambda^d)$ does not have a unit element 364 18.31 The algebra $L^1(\lambda^d)$ contains non-trivial divisors of zero 364 18.32 Uniform convexity/rotundity of L^p 365 18.33 An absolutely continuous measure such that the translation operator is not continuous in L^1 366 18.34 There is no Bochner integral in spaces which are not locally convex 367 19 **Convergence of Measures** 370 19.1 Classical counterexamples related to vague and weak convergence 373 19.2 Vague convergence does not preserve mass 375 19.3 Vague convergence of positive measures $\mu_n \rightarrow \mu$ does not imply $|\mu_n - \mu| \to 0$ 375 19.4 Vague convergence $\mu_n \rightarrow 0$ does not entail vague convergence $|\mu_n| \to 0$ 375

	Contents	xxi
19.5	Vague convergence does not imply $\mu_n(B) \rightarrow \mu(B)$ for all Borel sets	376
19.6	A sequence of absolutely continuous measures which converges weakly to λ on $[0, 1]$ but $\mu_n(B) \rightarrow \lambda(B)$ fails for	
10.7	some Borel set $B \subseteq [0, 1]$	376
19.7	A sequence of measures μ_n such that $\min_{n\to\infty} \int \int d\mu_n$ exists, but is not of the form $\int \int d\mu$	376
19.8	Weakly convergent sequences need not be tight	377
19.9	Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all	
	$f \in C(\mathbb{R})$ but $\mu_n(B) \to \mu(B)$ fails for sets with $\mu(\partial B) = 0$	377
19.10	Signed measures μ_n such that $\int f d\mu_n \to \int f d\mu$ for all	
	bounded uniformly continuous functions f but μ_n does	
	not converge weakly to μ	378
19.11	A sequence of measures which does not converge weakly	
	but whose Fourier transforms converge pointwise	378
19.12	Lévy's continuity theorem fails for nets	379
19.13	A sequence of non-atomic measures converging weakly to	
	a purely atomic measure	380
19.14	A sequence of purely atomic measures converging weakly	
	to a non-atomic measure	380
19.15	A net of Dirac measures converging weakly to a non-Dirac	
	measure	381
19.16	$f_n \mu \to f \mu$ weakly does not imply $f_n \to f$ in probability	381
19.17	$f_n \mu \to f\mu$ weakly does not imply $f_n \to f$ weakly in $L^1(\mu)$	382
19.18	$f_n \rightarrow f$ weakly in $L^p(\mu)$ for $p > 1$ does not imply	202
	$J_n \mu \to J \mu$ weakly	383
Refer	ences	385
Index	C	394

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

Preface

A **counterexample** / 'kauntarig,zd:mpl/ is an example that opposes or contradicts an idea or theory.¹ It is fair to say that the word 'counterexample' is not too common in everyday language, but rather a concept from philosophy and, of course, mathematics. In mathematics, there are proofs and examples, and while an example, say, of some $x \in A$ satisfying $x \in B$ does not prove $A \subseteq B$, the counterexample of some $x_0 \in B$ such that $x_0 \notin A$ disproves $A \subseteq B$; in other words, it proves that $A \subseteq B$ does not hold. This observation shows that there is no sharp distinction between example and counterexample, and we do not give a definition of what a counterexample should or could be (you may want to consult Lakatos [94] instead), but assume the more pragmatic point of view of a working mathematician. If we want to solve a problem, we look at the same time for a proof and for counterexamples which help us to capture and delineate the subject matter.

The same is also true for the student of mathematics, who will gain a better understanding of a theorem or theory if he knows its limitations – which may be expressed in the form of counterexamples. The present collection of (counter-)examples grew out of our own experience, in the classroom and on stackexchange.com, where we are often asked after the 'how' and 'why' of many a result. This explains the wide range of examples, from the fairly obvious to rather intricate constructions. The choice of the examples reflects, naturally, our own taste. We decided to include only those counterexamples which could be dealt with in a couple of pages (or less) and which are not too pathological – one can, indeed, destroy almost anything by the choice of the underlying topology. We intend the present volume as a companion to our textbook *Measures, Integrals and Martingales* [MIMS], which means that most examples are from elementary measure and integration, not touching on integration on

¹ Oxford dictionaries https://en.oxforddictionaries.com/definition/counterexample, accessed 11-May-2019.

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

xxiv

Preface

groups (Haar measure) or on really deep axiomatic issues (e.g. as in descriptive set theory, see Kechris [89], and the advanced constructive theory of functions, see Kharazishvili [91, 92]).

This book is intended as supplementary reading for a course in measure and integration theory, or for seminars and reading courses where students can explore certain aspects of the theory by themselves. Where appropriate, we have added comments putting the example into context and pointing the reader to further literature. We think that this book will also be useful for lecturers and tutors in teaching measure and integration, and for researchers who may discover new and sometimes unexpected phenomena. Readers are assumed to have basic knowledge of functional analysis, point-set topology and, of course, measure and integration theory. For novices, there is a panorama of measure and integration which gives a non-technical overview on the subject and can serve, to some extent, as a first introduction. The overall presentation is as self-contained as possible; in order to make the text easy to access, we use only a few standard references – Schilling [MIMS] and Bogachev [19] for measure and integration, Rudin [151] and Yosida [202] for functional analysis, and Willard [200] and Engelking [53] for topology.

Some of the counterexamples are famous, many are more or less well known, and a few are of our own making. When we could trace the origin of an example, we have given references and attached names, but most entries are 'standard' examples which seem to have been in the public domain for ages; having said this, we acknowledge a huge debt to many anonymous authors and we do apologize if we have failed to give proper credit. The three classic counterexample books by Gelbaum & Olmsted [65], Steen & Seebach [172], and Stoyanov [180] were both inspiration and encouragement. We hope that this book lives up to their high standards.

It is a pleasure to acknowledge the interest and skill of our editor, Roger Astley, in the preparation of this book and Cambridge University Press for the excellent book design. Many colleagues have contributed to this text with comments and suggestions, in particular M. Auer, R. Baumgarth, G. Berschneider, N.H. Bingham – for the famous full red-ink treatment, C.-S. Deng, D.E. Edmunds and C. Goldie – for most helpful discussions, Y. Ishikawa, N. Jacob – for access to his legendary library, Y. Mishura and N. Sandrić. We thank our colleagues and friends who suffered for quite a while from our destructive search for counterexamples (*Do you know an example of a measure which fails to ...?*), strange functions and many outer-worldly excursions – and our families who have us back in real life.

Cambridge University Press 978-1-316-51913-4 - Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter More Information

User's Guide

This book is not intended for linear reading – although this might well be possible - but invites the reader to browse, to read selectively and to look things up. We have, therefore, organized the material in self-contained chapters which treat different aspects of measure and integration theory. We assume that the reader has a basic knowledge of abstract measure and integration; the outline given in the 'panorama' (Chapter 1) is intended to refresh the reader's memory, to fix notation and to give a first non-technical introduction to the subject. The cross-reference $[\mathbb{B}^n n.m]$ appearing in the margin points towards essential counterexamples to the (positive) result at hand. Some supplementary material which is not always part of the mathematical curriculum is collected in Chapter 2; look it up once you need it.

Cross-referencing. Throughout the text, |m n.m| and Example n.m refers to counterexample *m* in Chapter *n*. Theorem *n.m*, Definition *n.m*, etc. point to the respective theorem, definition, etc. in the 'panorama' (Chapter 1) or the 'refresher' (Chapter 2). Equation m in Chapter n is denoted by (n.m). At the beginning of each chapter, we recall more specialized results and definitions which are particular to that chapter; these are numbered locally as 5A, 5B, 5C, ... (for Chapter 5, say) and they are mostly used within that chapter. Theorems, lemmas and corollaries may also appear in a counterexample; if needed, we use again local numbering 1, 2, 3,

Finding stuff. Following Gelbaum & Olmsted [65] we have organized the examples by theme and all counterexamples are listed in the list of contents by (hopefully) meaningful names. We begin with examples on Riemann integration (Chapter 3) and move on to various aspects of the (abstract) Lebesgue integral (Chapters 4-19). The chapters on Lebesgue integration follow 'The way

xxvi

User's Guide

of integration' (alluding to Fig. 1.3 in Chapter 1), i.e. beginning with measurable sets and σ -algebras to set functions, measurable functions, to integrals and theorems on integration. The subject index helps to find definitions, theorems and concepts, but it does not refer to specific counterexamples.

Notation. We tried to avoid specialized notation and we use commonly accepted standard notation, e.g. as in [MIMS]. The following list is intended to aid cross-referencing, so notation that is specific to a single section is generally not listed; numbers following entries are page numbers.

Unless otherwise stated, binary operations between functions such as $f \pm g$, $f \cdot g$, $f \wedge g$, $f \vee g$, comparisons $f \leq g$, f < g or limiting relations $f_n \xrightarrow[n \to \infty]{} f$, $\lim_n f_n$,

General notation

positive negative increasing decreasing	always in the sense ≥ 0 always in the sense ≤ 0 $x \le y \Rightarrow f(x) \le f(y)$ $x \le y \Rightarrow f(x) \ge f(y)$
countable	finite or countably infinite
\mathbb{N}	natural numbers: 1, 2, 3,
\mathbb{N}_0	positive integers: 0, 1, 2,
$\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$	integer, rational, real, complex numbers
$\overline{\mathbb{R}}$	$[-\infty, +\infty]$ (two-point
	compactification), 11, 38
inf Ø, sup Ø	$\inf \phi = +\infty, \sup \phi = -\infty$
$a \lor b, a \land b$	$\max\{a, b\}, \min\{a, b\}$
$gcd(\cdot, \cdot)$	greatest common divisor
\aleph_0	cardinality of ℕ, 44
c	cardinality of \mathbb{R} , 44
ω_0	first infinite ordinal,
	ordinal number of IN, 44
ω_1	first uncountable ordinal, 45, 46
$\Omega = [0, \omega_1]$	ordinal space, 45, 46
$\Omega_0 = [0, \omega_1)$	countable ordinals, 45, 46

Sets and set operations

$A \cup B$	union of disjoint sets
$A \vartriangle B$	$(A \setminus B) \cup (B \setminus A)$
A^c	complement of A
\overline{A}	closure of A, 37

A°	open interior of A , 37
$A_n \uparrow A$	$A_n \subseteq A_{n+1}, A = \bigcup_n A_n$
$A_n \downarrow A$	$A_n \supseteq A_{n+1}, A = \bigcap_n^n A_n$
#A	cardinality of A
$B_r(x)$	open (metric) ball
	$\{v: d(x, v) < r\}$

Families of sets

$\mathcal{A}, \mathcal{B}, \mathcal{C}$	generic families of sets
\mathscr{A}^*	μ^* measurable sets, 28
	completion, 9
$\mathscr{A}\otimes\mathscr{B}$	product σ -algebra, 10, 21
$\mathscr{B}(X)$	Borel sets in X , 9
$\mathscr{L}(X)$	Lebesgue sets in X, 10
$\mathcal{O}(X)$	open sets in X, 36
$\mathcal{P}(X)$	all subsets of X
$\sigma(\mathscr{F})$	σ -algebra generated by \mathcal{F} , 9
$\sigma(\phi),$	σ -algebra generated by the
$\sigma(\phi_i, i \in I)$	map(s) ϕ , resp. ϕ_i , 9

Measures and integrals

11 11	generic (nositive) measures
μ, ν	generic (positive) measures
μ_*, μ^*	inner and outer measure,
	182, 100
δ_x	Dirac measure in x , 8
λ, λ ^d	Lebesgue measure, 9
$\zeta, \zeta_X, \#(\cdot)$	counting measure on X , 8
$\mu \circ f^{-1}, f_* \mu$	image or push-forward
	measure, 8, 24

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

User's Guide

xxvii

$ \mu \times \nu \\ \mu \ast \nu \\ \mu \ll \nu \\ \mu \perp \nu $	product of measures, 10, 21 convolution, 26 absolute continuity, 29 singular measures, 29	$f(A)$ $f^{-1}(\mathscr{B})$ f^{+} f^{-}	$\{f(x); x \in A\}$ $\{f^{-1}(B); B \in \mathcal{B}\}$ $\max\{f(x), 0\} \text{ positive part}$ $-\min\{f(x), 0\} \text{ negative part}$
$\frac{d\nu}{d\mu}$	Radon–Nikodým	$\{f \in B\}$ $\{f \ge \lambda\}$	$ \{x ; f(x) \in B \} $ $ \{x ; f(x) \ge \lambda \}, etc. $
$\operatorname{supp} \mu$	derivative, 29 support of a measure, 123	f * g	convolution, 26
$\overline{f}, \underline{f}$	upper, lower R-integral, 2	C(X)	support $\{j \neq 0\}$ continuous functions on X
Functions	s and spaces	$C_b(X) \\ C_c(X)$	bounded — — — — with compact support
	$\begin{pmatrix} 1 & x \in A \end{pmatrix}$	L^p, L^∞	Lebesgue spaces, 15

$\mathbb{1}_A$	$1_A(x) = \begin{cases} 1, \\ 0 \end{cases}$	$x \in A,$ $x \notin A$
sgn(x)	$1_{(0,\infty)}(x) - 1$	$(-\infty,0)(x)$

 $\begin{aligned} \|f\|_{p}, \|f\|_{L^{p}} & (f | f |^{p} d\mu)^{1/p}, p < \infty \\ \|f\|_{\infty}, \|f\|_{L^{\infty}} & \text{esssup } f := \\ & \inf \{c; \ \mu\{|f| \ge c\} = 0\}, 14 \end{aligned}$

Cambridge University Press 978-1-316-51913-4 — Counterexamples in Measure and Integration René L. Schilling , Franziska Kühn Frontmatter <u>More Information</u>

List of Topics and Phenomena

Торіс	Possible consequence	Example
μ is not finite	 µ not continuous from above range of µ not closed Jensen's inequality does not hold p ≤ q ⇒ L^q ⊆ L^p no series test for integrability Egorov's theorem fails convergence in probability ⇒ convergence in measure 	[127 5.10] [127 6.17] [127 18.1] [127 10.5] [127 11.11] [127 11.5]
μ is not σ -finite	 no unique product measure Fubini's and Tonelli's theorem fail Radon–Nikodým's theorem fails Lebesgue's decomposition theorem fails there is no positive integrable function limits in probability not unique f_n → f in probability ⇒ f_{nk} → f a.e. L^p, 1 ≤ p < ∞, not separable (X, A*, μ* _{A*}) ≠ completion of (X, A, μ) trace of a regular measure not regular 	[137 16.1] [137 16.8-16.18] [137 17.1-17.3] [137 17.11] [137 17.11] [137 10.20] [137 11.6] [137 11.7] [137 11.7] [137 18.14] [137 9.9] [137 9.22]
μ does not have the finite subset property	 ∫_A f dµ = ∫_A g dµ for all A ⇒ f = g a.e. ∃f ∈ L[∞] s.t. Λ_f(g) = f fg dµ, g ∈ L¹, satisfies Λ_f < f _{L[∞]} ∫ fg dµ ≤ C g _{L^q} ⇒ f ∈ L^p 	[127 10.23] [127 18.21] [127 18.19]
μ is not locally finite	► $C_b(X) \cap L^p(\mu)$ not dense in $L^p(\mu), 1 \le p < \infty$	[kp 18.16]
μ is not regular	► Lusin's theorem fails ► $C_b(X) \cap L^p(\mu)$ not dense in $L^p(\mu), 1 \le p < \infty$ ► there exists $\nu \ne \mu$ s.t. $\int f d\mu = \int f d\nu$ for all $f \in C_c(X)$	[127 13.16] [127 18.16] [127 18.26, 18.27]

List of Topics and Phenomena

Торіс	Possible consequence	Example
X is not separable	 ℬ(X) not generated by open balls ℬ(X) not countably generated supp μ ≠ smallest closed set F such that μ(X \ F) = 0 μ(X) ≠ μ(supp μ) finite measures not tight 	[昭 4.14] [昭 4.10] [昭 6.2] [昭 6.3] [昭 5.26]
X is not a metric space	 compact sets not Borel fewer Baire sets than Borel sets pointwise limits of measurable functions not measurable finite measures not outer regular inner compact regular ⇒ inner regular 	[127 4.15] [127 4.24] [127 8.16] [127 9.18] [127 9.18]
\overline{X} is not σ -compact	 ▶ locally finite ⇒ σ-finite ▶ inner regular ⇒ inner compact regular 	[\vvacue{3} 5.16] [\vvacue{3} 9.20]
X is not locally convex	 only trivial dual space no Bochner integral 	[\$\$ 18.11] [\$ 18.34]
X has cardinality > c	 the diagonal is not in 𝒫(X) ⊗ 𝒫(X) 𝔅(X) ⊗ 𝔅(X) ≠ 𝔅(X × X) metric not jointly measurable with respect to 𝔅(X) ⊗ 𝔅(X) 	[☞ 15.9] [☞ 15.6] [☞ 15.10]
A is too small, e.g. discrete	 'few' measurable functions f : X → ℝ factorization lemma fails 	[127 8.2] [127 8.20]
A is too big, e.g. discrete	 'many' measurable functions f : X → ℝ 'few' non-atomic measures 	[ଙ୍ଗ 8.1] [ଙ୍ଗ 6.15]
A not countably generated	► two-valued measures which are not a point mass	[FF 6.10]
role of 'small' sets	 Lebesgue null sets may be uncountable/of second category B + B = ℝ for a Lebesgue null set B 2^c many Lebesgue sets but 'only' c many Borel sets f' = 0 a.e. ⇒ f constant f a.e. continuous ⇒ f = g a.e. for g continuous μ_n → μ weakly ⇒ μ_n(B) → μ(B) for all B support of a probability measure may have measure 0 	[127 7.4, 7.9] [127 7.27] [127 4.20] [127 2.6, 14.5] [127 13.1] [127 19.5] [127 6.3]
lack of countability	 ▶ many theorems fail for nets, e.g. classical convergence theorems, Egorov's and Lévy's continuity theorem ▶ uncountable supremum of measurable functions are not measurable ▶ ℬ(X)^{⊗I} is 'small' for I uncountable 	[129] [137 11.12, 19.12] [137 8.18] [137 15.8, 4.17]

xxix

XXX	List of Topics and Phenomena	
Торіс	Possible consequence	Example
	► projective limit of consistent family may not exist	[BP 16.21]
	► $t \mapsto f(t, x)$ cts. $\forall x$ ⇒ $t \mapsto \int f(t, x) \mu(dx)$ cts.	[kg 14.12]
lack of uniform integrability	► $(f_n)_{n \in \mathbb{N}} \subseteq L^1, f_n \to 0 \text{ a.e.} \Rightarrow \int f_n \to 0$ ► $f_n \to f, f'_n \to g \text{ everywhere } \Rightarrow f' = g \text{ a.e.}$ ► $f_n \to f \text{ in probability } \Rightarrow f_{n_k} \to f \text{ in measure}$ Let $f_n \to f \text{ in probability } \Rightarrow f_{n_k} \to f \text{ in measure}$ Let $f_n \to f \text{ in probability } \Rightarrow f_{n_k} \to f \text{ in measure}$	[127] [12.1, 12.7] [127] 14.8] [127] 11.8]
$\overline{L^1, L^\infty}$ are special	 L[∞] sequential weak completities this L[∞] separable if, and only if, dim L[∞] < ∞ (L¹)* ⊋ L[∞] (L[∞])* ⊋ L¹ not uniformly convex 	[13] 18.25] [13] 18.15] [13] 18.21, 18.22] [13] 18.24] [13] 18.32]
A atom	► comparison: different definitions of atom	[BF 6.11]
A absolute continuity	► comparison: different definitions of abso- lute continuity	[IP 17.4]
A convergence in measure	► comparison: convergence in measure vs. in probability	[☞ p. 20 Fig. 1.4 pp. 221, 226–227]
• weak convergence	► weak convergence of measures is not weak convergence in the sense of functional ana- lysis	[@p. 371, 19.7]
A Baire σ -algebra	► comparison of different definitions of Baire sets	[IBF 4.23]