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Preface

A counterexample /"kaUnt@r Ig ­zA:mp l/ is an example that opposes or con-

tradicts an idea or theory.1 It is fair to say that the word ‘counterexample’ is not
too common in everyday language, but rather a concept from philosophy and,

of course, mathematics. In mathematics, there are proofs and examples, and

while an example, say, of some � ∈ � satisfying � ∈ � does not prove � ⊆ �,
the counterexample of some �0 ∈ � such that �0 ∉ � disproves � ⊆ �; in
other words, it proves that � ⊆ � does not hold. This observation shows that

there is no sharp distinction between example and counterexample, and we do

not give a deinition of what a counterexample should or could be (you may

want to consult Lakatos [94] instead), but assume the more pragmatic point of

view of a workingmathematician. If we want to solve a problem, we look at the

same time for a proof and for counterexamples which help us to capture and

delineate the subject matter.

The same is also true for the student of mathematics, who will gain a bet-

ter understanding of a theorem or theory if he knows its limitations – which

may be expressed in the form of counterexamples. The present collection of

(counter-)examples grew out of our own experience, in the classroom and on

��❛❝❦❡①❝❤❛♥❣❡✳❝♦♠, where we are often asked after the ‘how’ and ‘why’ of

many a result. This explains the wide range of examples, from the fairly obvi-

ous to rather intricate constructions. The choice of the examples relects, nat-

urally, our own taste. We decided to include only those counterexamples which

could be dealt with in a couple of pages (or less) and which are not too patho-

logical – one can, indeed, destroy almost anything by the choice of the under-

lying topology. We intend the present volume as a companion to our textbook

Measures, Integrals andMartingales [MIMS], which means that most examples

are from elementary measure and integration, not touching on integration on

1 Oxford dictionaries ❤��♣�✿✴✴❡♥✳♦①❢♦
❞❞✐❝�✐♦♥❛
✐❡�✳❝♦♠✴❞❡❢✐♥✐�✐♦♥✴❝♦✉♥�❡
❡①❛♠♣❧❡,
accessed 11-May-2019.
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groups (Haar measure) or on really deep axiomatic issues (e.g. as in descriptive

set theory, see Kechris [89], and the advanced constructive theory of functions,

see Kharazishvili [91, 92]).

This book is intended as supplementary reading for a course in measure and

integration theory, or for seminars and reading courses where students can ex-

plore certain aspects of the theory by themselves. Where appropriate, we have

added comments putting the example into context and pointing the reader to

further literature.We think that this bookwill also be useful for lecturers and tu-

tors in teachingmeasure and integration, and for researchers whomay discover

new and sometimes unexpected phenomena. Readers are assumed to have ba-

sic knowledge of functional analysis, point-set topology and, of course,measure

and integration theory. For novices, there is a panorama of measure and integ-

ration which gives a non-technical overview on the subject and can serve, to

some extent, as a irst introduction. The overall presentation is as self-contained

as possible; in order to make the text easy to access, we use only a few standard

references – Schilling [MIMS] and Bogachev [19] for measure and integration,

Rudin [151] and Yosida [202] for functional analysis, andWillard [200] and En-

gelking [53] for topology.

Some of the counterexamples are famous,many aremore or less well known,

and a few are of our ownmaking.Whenwe could trace the origin of an example,

we have given references and attached names, but most entries are ‘standard’

examples which seem to have been in the public domain for ages; having said

this, we acknowledge a huge debt to many anonymous authors and we do apo-

logize if we have failed to give proper credit. The three classic counterexample

books by Gelbaum & Olmsted [65], Steen & Seebach [172], and Stoyanov [180]

were both inspiration and encouragement. We hope that this book lives up to

their high standards.

It is a pleasure to acknowledge the interest and skill of our editor, Roger

Astley, in the preparation of this book and Cambridge University Press for the

excellent book design. Many colleagues have contributed to this text with com-

ments and suggestions, in particular M. Auer, R. Baumgarth, G. Berschneider,

N.H. Bingham – for the famous full red-ink treatment, C.-S. Deng, D.E. Ed-

munds and C. Goldie – for most helpful discussions, Y. Ishikawa, N. Jacob – for

access to his legendary library, Y. Mishura and N. Sandrić. We thank our col-

leagues and friends who sufered for quite a while from our destructive search

for counterexamples (Do you know an example of a measure which fails to . . . ?),

strange functions and many outer-worldly excursions – and our families who

have us back in real life.
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This book is not intended for linear reading – although this might well be pos-

sible – but invites the reader to browse, to read selectively and to look things

up.We have, therefore, organized thematerial in self-contained chapters which

treat diferent aspects of measure and integration theory. We assume that the

reader has a basic knowledge of abstract measure and integration; the outline

given in the ‘panorama’ (Chapter 1) is intended to refresh the reader’s memory,

to ix notation and to give a irst non-technical introduction to the subject.
✑�.�The cross-reference ⌊✑�.�⌉ appearing in the margin points towards essen-

tial counterexamples to the (positive) result at hand. Some supplementary ma-

terial which is not always part of the mathematical curriculum is collected in

Chapter 2; look it up once you need it.

Cross-referencing. Throughout the text, ⌊✑�.�⌉ and Example �.� refers to

counterexample � in Chapter �. Theorem �.�, Deinition �.�, etc. point to
the respective theorem, deinition, etc. in the ‘panorama’ (Chapter 1) or the ‘re-

fresher’ (Chapter 2). Equation� in Chapter � is denoted by (�.�). At the begin-
ning of each chapter, we recall more specialized results and deinitions which

are particular to that chapter; these are numbered locally as 5�, 5�, 5�,… (for

Chapter 5, say) and they are mostly used within that chapter. Theorems, lem-

mas and corollaries may also appear in a counterexample; if needed, we use

again local numbering 1, 2, 3, … .
Finding stuf. Following Gelbaum & Olmsted [65] we have organized the ex-

amples by theme and all counterexamples are listed in the list of contents by

(hopefully) meaningful names. We begin with examples on Riemann integra-

tion (Chapter 3) and move on to various aspects of the (abstract) Lebesgue in-

tegral (Chapters 4–19). The chapters on Lebesgue integration follow ‘The way
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of integration’ (alluding to Fig. 1.3 in Chapter 1), i.e. beginning with measur-

able sets and �-algebras to set functions, measurable functions, to integrals and
theorems on integration. The subject index helps to ind deinitions, theorems

and concepts, but it does not refer to speciic counterexamples.

Notation. We tried to avoid specialized notation and we use commonly accep-

ted standard notation, e.g. as in [MIMS]. The following list is intended to aid

cross-referencing, so notation that is speciic to a single section is generally not

listed; numbers following entries are page numbers.

Unless otherwise stated, binary operations between functions such as � ± �,� ⋅ �, � ∧ �, � ∨ �, comparisons � ⩽ �, � < � or limiting relations �� `̀`̀ →̀�→∞ �,
lim� ��, lim inf� ��, lim sup��, sup� �� or inf � �� are always understood point-
wise.

General notation

positive always in the sense ⩾ 0
negative always in the sense ⩽ 0
increasing � ⩽ � ⇐⇒ �(�) ⩽ �(�)
decreasing � ⩽ � ⇐⇒ �(�) ⩾ �(�)
countable inite or countably ininite
N natural numbers: 1, 2, 3, …
N0 positive integers: 0, 1, 2, …
Z,Q,R,C integer, rational, real,

complex numbers

R [−∞,+∞] (two-point
compactiication), 11, 38inf ∅, sup ∅ inf ∅ = +∞, sup ∅ = −∞� ∨ �, � ∧ � max{�, �},min{�, �}gcd(⋅, ⋅) greatest common divisorℵ0 cardinality ofN, 44� cardinality ofR, 44�0 irst ininite ordinal,
ordinal number ofN, 44�1 irst uncountable ordinal,
45, 46Ω = [0, �1] ordinal space, 45, 46Ω0 = [0, �1) countable ordinals, 45, 46

Sets and set operations

� ⊍ � union of disjoint sets� ▵ � (� ⧵ �) ⊍ (� ⧵ �)�� complement of �� closure of �, 37

�◦ open interior of �, 37�� ↑ � �� ⊆ ��+1, � = ⋃
� ���� ↓ � �� ⊇ ��+1, � = ⋂
� ��#� cardinality of ���(�) open (metric) ball{� ; �(�, �) < �}

Families of sets

�,ℬ,� generic families of sets�∗ �∗ measurable sets, 28
completion, 9� ⊗ℬ product �-algebra, 10, 21ℬ(�) Borel sets in �, 9ℒ(�) Lebesgue sets in �, 10�(�) open sets in �, 36�(�) all subsets of ��(ℱ) �-algebra generated byℱ, 9�(�), �-algebra generated by the�(�� , � ∈ �) map(s) �, resp. �� , 9

Measures and integrals

�, � generic (positive) measures�∗, �∗ inner and outer measure,
182, 100�� Dirac measure in �, 8�, �� Lebesgue measure, 9�, �� , #(⋅) counting measure on �, 8�◦�−1, �∗� image or push-forward
measure, 8, 24
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� × � product of measures, 10, 21� ∗ � convolution, 26� ≪ � absolute continuity, 29�⊥� singular measures, 29��
�� Radon–Nikodým

derivative, 29supp � support of a measure, 123

∫, ∫ upper, lower R-integral, 2

Functions and spaces

1� 1�(�) = {1, � ∈ �,0, � ∉ �,sgn(�) 1(0,∞)(�) − 1(−∞,0)(�)

�(�) {�(�) ; � ∈ �}�−1(ℬ) {�−1(�) ; � ∈ ℬ}�+ max{�(�), 0} positive part�− −min{�(�), 0} negative part{� ∈ �} {� ; �(�) ∈ �}{� ⩾ �} {� ; �(�) ⩾ �}, etc.� ∗ � convolution, 26

supp� support {� ≠ 0}�(�) continuous functions on ���(�) bounded ——��(�) ——with compact support��, �∞ Lebesgue spaces, 15

‖�‖�, ‖�‖�� (∫ |�|� ��)1∕�, � < ∞‖�‖∞, ‖�‖�∞ esssup � ≔inf {� ; �{|�| ⩾ �} = 0}, 14
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List of Topics and Phenomena

Topic Possible consequence Example

� is not inite ▸ � not continuous from above ⌊✑ 5.10⌉▸ range of � not closed ⌊✑ 6.17⌉▸ Jensen’s inequality does not hold▸ � ⩽ � ⇏ �� ⊆ �� ⌊✑ 18.1⌉▸ no series test for integrability ⌊✑ 10.5⌉▸ Egorov’s theorem fails ⌊✑ 11.11⌉▸ convergence in probability⇏ convergence
in measure

⌊✑ 11.5⌉
� is not �-inite ▸ no unique product measure ⌊✑ 16.1⌉▸ Fubini’s and Tonelli’s theorem fail ⌊✑ 16.8–16.18⌉▸ Radon–Nikodým’s theorem fails ⌊✑ 17.1–17.3⌉▸ Lebesgue’s decomposition theorem fails ⌊✑ 17.11⌉▸ there is no positive integrable function ⌊✑ 10.20⌉▸ limits in probability not unique ⌊✑ 11.6⌉▸ �� → � in probability⇏ ��� → � a.e. ⌊✑ 11.7⌉▸ ��, 1 ⩽ � < ∞, not separable ⌊✑ 18.14⌉▸ (�,�∗, �∗|�∗) ≠ completion of (�,�, �) ⌊✑ 9.9⌉▸ trace of a regular measure not regular ⌊✑ 9.22⌉
� does not have
the inite subset
property

▸ ∫� � �� = ∫� � �� for all � ⇏ � = � a.e. ⌊✑ 10.23⌉▸ ∃� ∈ �∞ s.t. Λ�(�) = ∫�� ��, � ∈ �1,
satisies ‖Λ�‖ < ‖�‖�∞ ⌊✑ 18.21⌉
▸ ∫ |��| �� ⩽ �‖�‖�� ⇏ � ∈ �� ⌊✑ 18.19⌉

� is not locally
inite

▸ ��(�) ∩ ��(�) not dense
in ��(�), 1 ⩽ � < ∞ ⌊✑ 18.16⌉

� is not regular ▸ Lusin’s theorem fails ⌊✑ 13.16⌉▸ ��(�) ∩ ��(�) not dense
in ��(�), 1 ⩽ � < ∞ ⌊✑ 18.16⌉
▸ there exists � ≠ � s.t. ∫��� = ∫��� for
all � ∈ ��(�) ⌊✑ 18.26, 18.27⌉
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Topic Possible consequence Example

� is not
separable

▸ ℬ(�) not generated by open balls ⌊✑ 4.14⌉▸ ℬ(�) not countably generated ⌊✑ 4.10⌉▸ supp� ≠ smallest closed set � such that�(� ⧵ �) = 0 ⌊✑ 6.2⌉
▸ �(�) ≠ �(supp�) ⌊✑ 6.3⌉▸ inite measures not tight ⌊✑ 5.26⌉

� is not a metric
space

▸ compact sets not Borel ⌊✑ 4.15⌉▸ fewer Baire sets than Borel sets ⌊✑ 4.24⌉▸ pointwise limits of measurable functions
not measurable

⌊✑ 8.16⌉
▸ inite measures not outer regular ⌊✑ 9.18⌉▸ inner compact regular⇏ inner regular ⌊✑ 9.18⌉

� is not�-compact ▸ locally inite⇏ �-inite ⌊✑ 5.16⌉▸ inner regular⇏ inner compact regular ⌊✑ 9.20⌉
� is not locally
convex

▸ only trivial dual space ⌊✑ 18.11⌉▸ no Bochner integral ⌊✑ 18.34⌉
� has cardinality> � ▸ the diagonal is not in�(�) ⊗�(�) ⌊✑ 15.9⌉▸ ℬ(�) ⊗ℬ(�) ≠ ℬ(� × �) ⌊✑ 15.6⌉▸metric not jointly measurable with respect

toℬ(�) ⊗ℬ(�) ⌊✑ 15.10⌉
� is too small,
e.g. discrete

▸ ‘few’ measurable functions �∶ � → R ⌊✑ 8.2⌉▸ factorization lemma fails ⌊✑ 8.20⌉
� is too big,
e.g. discrete

▸ ‘many’ measurable functions �∶ � → R ⌊✑ 8.1⌉▸ ‘few’ non-atomic measures ⌊✑ 6.15⌉
� not countably
generated

▸ two-valuedmeasures which are not a point
mass

⌊✑ 6.10⌉
role of ‘small’
sets

▸ Lebesgue null sets may be uncountable/of
second category

⌊✑ 7.4, 7.9⌉
▸ � + � = R for a Lebesgue null set � ⌊✑ 7.27⌉▸ 2� many Lebesgue sets but ‘only’ � many
Borel sets

⌊✑ 4.20⌉
▸ �′ = 0 a.e.⇏ � constant ⌊✑ 2.6, 14.5⌉▸ � a.e. continuous⇏ � = � a.e. for � con-
tinuous

⌊✑ 13.1⌉
▸ �� → � weakly⇏ ��(�) → �(�) for all � ⌊✑ 19.5⌉▸ support of a probability measure may have
measure 0 ⌊✑ 6.3⌉

lack of
countability

▸many theorems fail for nets, e.g. classical ⌊✑ 12.9⌉
convergence theorems, Egorov’s and Lévy’s
continuity theorem

⌊✑ 11.12, 19.12⌉
▸ uncountable supremum of measurable
functions are not measurable

⌊✑ 8.18⌉
▸ ℬ(�)⊗� is ‘small’ for � uncountable ⌊✑ 15.8, 4.17⌉
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xxx List of Topics and Phenomena

Topic Possible consequence Example

▸ projective limit of consistent family may
not exist

⌊✑ 16.21⌉
▸ � ↦→ �(�, �) cts. ∀�⇏ � ↦→ ∫�(�, �) �(��) cts. ⌊✑ 14.12⌉

lack of uniform
integrability

▸ (��)�∈N ⊆ �1, �� → 0 a.e.⇏ ∫�� → 0 ⌊✑ 12.1, 12.7⌉▸ �� → �, �′� → � everywhere⇏ �′ = � a.e. ⌊✑ 14.8⌉▸ �� → � in probability⇏��� → � in meas-
ure

⌊✑ 11.8⌉
▸ sequential weak compactness fails ⌊✑ 18.29⌉

�1, �∞ are
special

▸�∞ separable if, and only if, dim�∞ < ∞ ⌊✑ 18.15⌉▸(�1)∗ ⫌ �∞ ⌊✑ 18.21, 18.22⌉▸(�∞)∗ ⫌ �1 ⌊✑ 18.24⌉▸ not uniformly convex ⌊✑ 18.32⌉
� atom ▸ comparison: diferent deinitions of atom ⌊✑ 6.11⌉
� absolute
continuity

▸ comparison: diferent deinitions of abso-
lute continuity

⌊✑ 17.4⌉
� convergence
in measure

▸ comparison: convergence inmeasure vs. in ⌊✑ p. 20 Fig. 1.4
probability pp. 221, 226–227⌋

� weak
convergence

▸weak convergence of measures is not weak
convergence in the sense of functional ana-
lysis

⌊✑ p. 371, 19.7⌉

� Baire�-algebra ▸ comparison of diferent deinitions of Baire
sets

⌊✑ 4.23⌉
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