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A Panorama of Lebesgue Integration

The idea of measuring area and volume by ininitesimal (exhaustion) meth-

ods was already known to the ancient Greeks. This may be seen as the irst

example of ‘integration’. The precursor of our modern notion of integration be-

gins with the creation of the ininitesimal calculus by Newton and Leibniz. For

Newton, the derivative was the primary operation of calculus and the integral

was just the primitive, i.e. the antiderivative. Leibniz followed a more geomet-

ric approach, deining the integral as a sum of ininitesimal quantities which

represent the area below the graph of a curve, thus establishing the integral as

an object in its own right. Of course, both Newton and Leibniz were describing

essentially the same object, and the history of integration is, in some sense, the

attempt to reconcile both deinitions. A short overview of the early history of

integration is given in Section 1.11 at the end of this chapter. For us, themodern

theory of integration starts in the year 1854with Riemann’s Habilitationsschrift

[143].

1.1 Modern Integration. ‘Also zuerst: Was hat man unter ∫�� �(�) �� zu
verstehen?’

1
Riemann’s answer to (t)his question is the following deinition [143, Section 4]:

Deinition 1.1 A bounded function �∶ [�, �] → R deined on a compact

interval [�, �] ⊆ R is integrable (in the sense of Riemann) if the limit

∫�
� �(�) �� = lim|Π|→0

�∑
�=1(�� − ��−1)�(��), |Π| ≔ max1⩽�⩽� |�� − ��−1|, (1.1)

taken along all inite partitions Π = {� = �0 < �1 < ⋯ < �� = �} and for any
choice of intermediary points �� ∈ [��−1, ��] exists and is inite.
1 Riemann [143, p. 239] – To begin with: What is the meaning of ∫�� �(�) ��?

www.cambridge.org/9781316519134
www.cambridge.org


Cambridge University Press
978-1-316-51913-4 — Counterexamples in Measure and Integration
René L. Schilling , Franziska Kühn 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

2 1 A Panorama of Lebesgue Integration

Riemann immediately gives two necessary and suicient conditions for the

convergence of (1.1), cf. [MIMS, p. 443] for amodern proof. Denote byΠ a inite

partition of [�, �] and write �� ≔ sup[��−1,��] � − inf [��−1,��] � for the oscillation
of a function � in the �th partition interval [��−1, ��].
(R1) The limit in (1.1) exists if, and only if, for all inite partitions Π of [�, �],

lim|Π|→0
�∑
�=1�� ⋅ |�� − ��−1| = 0.

(R2) The limit in (1.1) exists if, and only if,

∀� > 0, � > 0 ∃� > 0 ∀Π, |Π| ⩽ � ∑
�∶��>� |��−1 − ��| < �.

In retrospect, Riemann’s condition (R2) marks the beginning of the study of

outer (Lebesgue) measure. We will see in Theorem 1.28 below that a bounded

function � is Riemann integrable if, and only if, the set of its discontinuity

points is a Lebesgue null set.

From (R2) it is clear that the Riemann integral is capable of dealing with

functions which are discontinuous on a (countable) dense subset. This fact was

already illustrated by Riemann in [143] using the function

�(�) = ∞∑
�=1

ℎ(��)�2 , ℎ(�) = ⎧
⎨⎩
� − �, if � ∈ (� − 12 , � + 12

) , � ∈ Z,0, if � = � ± 12 , � ∈ Z,
which is discontinuous on the set � = {�∕(2�) ; gcd(�, 2�) = 1}; see Fig. 3.3.
Hankel [73, pp. 199–200] observed that � is an example of a function such that

�(�) ≔ ∫�
0 �(�) ��

is continuous, but �′(�) = �(�) fails if � ∈ �, i.e. � is not a primitive of �⌊✑ 3.7⌉.
After the publication of Riemann’s 1854 thesis in 1867, his deinition of the

integral waswidely accepted, and it is still one of themost important andwidely

used notions of integration. The presentation was quickly streamlined, not-

ably by the introduction of upper and lower sums and integrals which make

Riemann’s criterion (R1) more tractable.

Deinition 1.2 (Thomae [183], Darboux [37], Volterra [195]) For a bounded

function �∶ [�, �] → R we call

�Π[�] ≔ ∑
��−1,��∈Π�� ⋅ (�� − ��−1), �� ≔ inf�∈[��−1,��]�(�),
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1.1 Modern Integration. ‘Also zuerst: Was hat man unter ∫�� �(�) �� zu verstehen?’ 3�Π[�] ≔ ∑
��−1,��∈Π�� ⋅ (�� − ��−1), �� ≔ sup�∈[��−1,��]�(�),

the lower and upper Darboux sums and

∫�
� �(�) �� ≔ supΠ⊆[�,�] �Π[�] and ∫ �

� �(�) �� ≔ infΠ⊆[�,�] �Π[�]
(sup and inf range over all inite partitions Π of [�, �]) the lower and upper
Riemann–Darboux integrals.

Using the lower and upper integrals we can show the following integrability

criterion.

Theorem 1.3 ([MIMS, p. 443]) A bounded function �∶ [�, �] → R is Riemann

integrable if, and only if,

−∞ < ∫�
� �(�) �� = ∫ �

� �(�) �� < ∞.
The common (inite) value is the Riemann integral ∫�� �(�) ��.
The development of the Riemann integral and the concept of a function go

hand in hand. Up to Cauchy, functions were (implicitly) thought to be smooth,

after Cauchy to be continuous; from 1867, Riemann integrable functions were

seen to be the most general and still reasonable functions. But soon there were

irst examples of non-Riemann integrable functions, and other shortcomings of

the Riemann integral were discovered:

1o The rather limited scope of Riemann integrable functions. The (proper) Rie-

mann integralmakes sense only on bounded sets and for bounded functions⌊✑ 3.2, 3.3⌉, it behaves badly under compositions ⌊✑ 3.11⌉ and there are
rather natural and simple non-integrable functions ⌊✑ 3.4, 3.5⌉.

2o If the Riemann integral is extended to two dimensions, the familiar formula

∬[�,�]×[�,�] �(�, �) �� �� = ∫�
� [∫�

� �(�, �) ��] ��
= ∫�

� [∫�
� �(�, �) ��] ��

may become senseless since some, or all, of the one-dimensional integrals

might not exist ⌊✑ 3.20⌉.
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4 1 A Panorama of Lebesgue Integration

3o Riemann’s theory does not ix the diference between integral and primitive.

There are integrable functions � such that �(�) = ∫�� �(�) �� is not every-
where diferentiable, i.e. not a proper primitive.Worse, there are everywhere

diferentiable functions � whose derivative �′ is not integrable ⌊✑ 14.2,

14.3⌉.
4o The Riemann integral behaves rather badly if one wants to interchange lim-

its and integrals. Among other pathologies, one can construct a uniformly

bounded sequence of Riemann integrable functions (��)�∈N on [0, 1] such
that lim�→∞ ��(�) = �(�) but � is not Riemann integrable ⌊✑ 3.13, 3.14,

3.16⌉.
1.2 The Idea Behind Lebesgue Integration

Part of the problemwithRiemann’s deinition is that the approximation proced-

ure used in (1.1) is based on given partitions of the domain [�, �] of the function�∶ [�, �] → R, i.e. these partitions need not relate to the behaviour of �.
Lebesgue’s idea in [100, 101] is to split the range �([�, �]) of a bounded func-

tion �∶ [�, �] → R into equal intervals, say �1, … , ��, and to determine those
sets �1, … , �� ⊆ [�, �] such that �� = �−1(��). The corresponding approximations
of the integral would be

� = �∑
�=1 |��| ⋅ sup �� and � = �∑

�=1 |��| ⋅ inf ��, (1.2)

where |�| denotes the total length of the set�. If we choose an equidistant par-
titioning ofmesh �, the value of the upper approximation is� = �+�⋅|[�, �]| =�+� ⋅(�−�), i.e. it is enough to restrict one’s attention to �. Notice that the res-
ulting partition of the domain depends on �. Before we give proper deinitions
and discuss the implications of this approach, let us consider a simple example.

Example 1.4 Consider an oscillating periodic function, e.g. �(�) = sin2(���)
with � ∈ N and � ∈ [0, 1), cf. Fig. 1.1. Using the relation sin2 � = 12 (1 − cos 2�)
it is easy to determine the integral of �,

∫1
0 sin2(���) �� = 12 ∫

1
0 (1 − cos(2���)) �� = 12 ∫

1
0 �� = 12,

but the upper and lower Darboux sums for an equidistant partition of [0, 1],Π = {0 = �0 < ⋯ < �� = 1}, with mesh |Π| = 1� ⩾ 1�
(
or a general partition

such that min�(�� − ��−1) ⩾ 1�
)
are easily seen to be 1 and 0, respectively.
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1.2 The Idea Behind Lebesgue Integration 5

Figure 1.1 The oscillating periodic function �(�) = sin2(���) for � = 5 (up-
per panel) and the choice of the domain partition �� for an equidistant range
partition �� (lower panel).

However, Lebesgue’s approach using � = 4 and �� = [ �−1� , ��) gives, over the
irst period,

�� ∩ [0, 1�) = {0 ⩽ � < 1� ; �−1� ⩽ �(�) < ��
} = [��−1, ��) ∪ (�8−�, �8−(�−1)]

with �0 = 0, �1 = 1∕6�, �2 = 1∕4�, �3 = 1∕3�, �4 = 1∕2�, �5 = 2∕3�,�6 = 3∕4�, �7 = 5∕6� and �8 = 1∕�; see Fig. 1.1 (lower panel). Thus, in[0, 1∕�) we get
4∑
�=1

� − 14 [(�� − ��−1) + (�8−(�−1) − �8−�)] = ( 124 + 112 + 14) 1� = 38� .
Since there are � periods in [0, 1], we have � = 38 (and � = 38 + 14 = 58 ). This is
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6 1 A Panorama of Lebesgue Integration

already a reasonable approximation of the true value
12 and, if one uses 12 (�+�),

it even happens to be the exact value.

This example makes it clear that Lebesgue’s approach is better suited to deal

with (rapidly) oscillating integrands, in particular, when the oscillations ap-

proach a condensation point as is the case for � ↦→ sin2 1� as � → 0.
1.3 Lebesgue Essentials – Measures and �-Algebras
Let us recast Lebesgue’s approximation of a function � ⩾ 0 from below by sli-

cing its range horizontally as shown in Fig. 1.2. The level sets

��� ≔ {{�2−� ⩽ � < (� + 1)2−�} for � = 0, 1, 2, … , �2� − 1,{� ⩾ �} for � = �2�,
can be used to deine step functions

Figure 1.2 The function � sits like a ‘Mexican hat’ (a sombrero) over the ap-
proximating simple functions.

��(�) ≔ �2�∑
�=0 �2−�1��� (�)

which approximate � from below. Coming from below has the advantage that� need not be bounded; instead, we use a moving cut-of level � which kicks in
on the set ���2� . From Fig. 1.2 we see that

(i) 0 ⩽ �� ⩽ ��+1 ⩽ � and �� ↑ �;
(ii) |��(�) − �(�)| ⩽ 2−� if � ∈ {� < �}; in particular, if � is bounded, the

sequence �� approximates � uniformly.
We are interested in the nature of the level sets ��� . Property (i) requires that
we are able to subdivide the level sets ��� initely often. If we want to integrate
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1.3 Lebesgue Essentials – Measures and �-Algebras 7

the sum of two functions �, �, the level sets of � + � will be expressed through
inite unions and intersections of the level sets of � and �.
Therefore, the level sets form a family of sets which is closed if we repeat the

usual set operations (intersection, union, taking complements and diferences)

initely or – for limits – countably ininitely often. This requirement leads nat-

urally to the notion of a �-algebra.
Deinition 1.5 Let � ≠ ∅ be any set, and denote by �(�) its power set. A�-algebra� on � is a family of subsets of � with the following properties:

� ∈ �, (Σ1)� ∈ � ⇐⇒ �� ∈ �, (Σ2)(��)�∈N ⊆ � ⇐⇒ ⋃
�∈N�� ∈ �. (Σ3)

Because of (Σ1) and (Σ2) we have ∅ ∈ �, and using �1 ∪ �2 ∪ ∅ ∪ … in (Σ3)
shows that� is stable under inite unions. With de Morgan’s laws we get that� is also stable under inite and countably ininite intersections and this is also

true for diferences as�⧵� = �∩�� is a combination of complementation and
intersection.

The second ingredient needed for the construction of the integral is a ‘gauge’

for the size of the level sets��� . In Example 1.4we naively took the ‘length’ of the
interval and there was no problem since the level sets were relatively simple. In

the general case we need a function deined on all possible level sets which is

compatible with (countably often repeated) set operations. This is the rationale

for the following deinition.

Deinition 1.6 Let � ≠ ∅ be any set. A (positive)measure is a set function�∶ � → [0,∞] satisfying
� is a �-algebra on �, (M0)�(∅) = 0, (M1)

(��)�∈N ⊆ � pairwise disjoint ⇐⇒ � ⎛⎜⎝
⨃
�∈N��⎞⎟⎠ =

∑
�∈N�(��). (M2)

The pair (�,�) is called ameasurable space and (�,�, �) is called ameasure
space. The measure space is called inite, if �(�) < ∞, and �-inite, if there
exists a sequence (��)�∈N ⊆ � such that � = ⋃�∈N �� and �(��) < ∞. A set� ∈ � is often called ameasurable set.

The requirements (M0)–(M2) lead to a rich family of set functions withmany
further properties; see [MIMS, pp. 24, 28]. For example, if �, �,��, �� ∈ �:
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8 1 A Panorama of Lebesgue Integration

(a) � ∩ � = ∅ ⇐⇒ �(� ⊍ �) = �(�) + �(�) (additive)

(b) � ⊆ � ⇐⇒ �(�) ⩽ �(�) (monotone)

(c) � ⊆ �, �(�) < ∞ ⇐⇒ �(� ⧵ �) = �(�) − �(�)
(d) �(� ∪ �) + �(� ∩ �) = �(�) + �(�) (strongly additive)

(e) �(� ∪ �) ⩽ �(�) + �(�) (subadditive)

(f) �� ↑ � ⇐⇒ �(�) = sup� �(��) = lim� �(��) (continuous
from below)

(g) �� ↓ �, �(�1) < ∞ ⇐⇒ �(�) = inf� �(��) = lim� �(��) (continuous
from above)

(h) �( ⋃�∈N��) ⩽ ∑
�∈N�(��). (�-subadditive)

Example 1.7 Here are some of the most commonly used measures and �-algebras.
Unless otherwise indicated, (�,�, �) is an arbitrary measure space.

�-Algebra� Typical measure on (�,�)
The indiscrete �-algebra: {∅, �} – this
is the smallest possible �-algebra on �.(a) ▸ The trivial measure �(∅) = 0 and�(�) = ∞.

The discrete �-algebra:�(�) – this is
the largest possible �-algebra on �.(b) ▸ As a rule of thumb, rich �-algebras

admit only poor (i.e. simple) measures:�(�) can support the trivial measure
from (a), the counting measure�(�) = #�, or Dirac’s delta function
(point mass) at � ∈ �

��(�) = {0, if � ∉ �,1, if � ∈ �.
The trivial �-algebra:�� = {� ∈ �; �(�) = 0 or �(��) = 0}.(c) ▸ This construction works for every

measure space (�,�, �).
The co-countable �-algebra:{� ⊆ � ; #� ⩽ #N or #�� ⩽ #N}
on an uncountable set � ⌊✑Example
4A⌉.

(d) ▸ The co-countable (probability)
measure

�(�) = {0, if � is countable,1, if �� is countable,⌊✑Example 5A⌉.
The trace �-algebra: Let � ⊆ �.�� = � ∩� ≔ {� ∩ � ; � ∈ �}.(e) ▸ If � ∈ �, the restriction �|�(�) ≔�(�∩�) is ameasure on the tracemeas-

urable space (�,��); ⌊✑ 5.9⌉ if � ∉ �.
The pre-image �-algebra: Let�∶ � → �′ be any map and�′
a �-algebra on �′.

�−1(�′) = {�−1(�′) ; �′ ∈ �′} .
(f) ▸ If � is a measure on (�,�), then

�′(�′) ≔ �(�−1(�′))
is called the image measure or push-
forward measure of � under �.
Notation: �◦�−1, �∗� or �(�).
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1.3 Lebesgue Essentials – Measures and �-Algebras 9

The �-algebra generated by a set � ⊆ �: This is the smallest �-algebra on �
containing the set �: �(�) = {∅, �, ��, �}.(g)

The �-algebra generated by a family of sets ℱ: This is the smallest �-algebra
containing the familyℱ: �(ℱ) = ⋂ {ℬ ; ℱ ⊆ ℬ,ℬ �-algebra}.(h)

Let �� ∶ � → �� , � ∈ � be arbitrarily many mappings and assume that �� is a�-algebra in �� . The �-algebra generated by the family of mappings (��)�∈� ,�(�� , � ∈ �) = � (⋃�∈� �−1� (��)), is the smallest �-algebra that makes all �� measur-
able (see Deinition 1.8 further on).

(i)

The completed �-algebra: Letℱ ⊆ �
be a (not necessarily proper) sub-�-al-
gebra,

�� = {� ∈ � ; �(�) = 0}
the family of all measurable null sets,
and

�∗� = {�∗ ⊆ � ; ∃� ∈ ��, �∗ ⊆ �}
the family of all subsets of measurable
null sets.
The completion of ℱ is the �-algebraℱ∗ ≔ �(ℱ,�∗). One can show that

ℱ∗ = {� ▵ �∗ ; � ∈ ℱ, �∗ ∈ �∗}= {�∗ ; ∃�, � ∈ ℱ, � ⊆ �∗ ⊆ �,
�(� ⧵ �) = 0}.

(j) ▸ The completion �̄ of the measure �
(deined onℱ) is the measure �̄ on the
measurable space (�,ℱ∗) given by
�̄(�∗) ≔ 12(�(�) + �(�)), �∗ ∈ ℱ∗,
where the sets �, � ∈ ℱ are such that�(� ⧵ �) = 0 and � ⊆ �∗ ⊆ �. The
former ensures that �̄ is well-deined,
i.e. independent of the choice of the sets� and �.
Sinceℱ ⊆ ℱ∗, �̄ is an extension of �.

Let � be a topological space and � the family of all open sets. The Borel or topo-
logical �-algebra is the �-algebra generated by the open setsℬ(�) = �(�).
Since a set is open if its complement is closed,ℬ(�) is also generated by the closed
sets. If � is a metric space which is the union of countably many compact sets � =⋃�∈N �� (e.g. if � is locally compact and separable), thenℬ(�) is also generated
by the compact sets ⌊✑ 4.15, 4.16⌉.

(k)

The Borel sets in R�, ℬ(R�), are gen-
erated by any of the following families:
The open sets, the closed sets, the com-
pact sets, the open balls ��(�) (radius� ∈ Q+, centre � ∈ Q�), the rectangles⨉��=1[�� , ��) (with rational �� , �� ∈ Q).

(l) ▸ Most measures used in analysis are
deined on the Borel sets (or their com-
pletion, the Lebesgue sets, cf. Example
(n)). The prime example of a measure
on ℬ(R�) is �-dimensional Lebesgue
measure ��. Since the structure of the
Borel sets is quite complicated, one de-
ines �� on a suiciently rich generator

�� ⎛⎜⎝
�⨉
�=1 [�� , ��)

⎞⎟⎠ =
�∏
�=1 (�� − ��).

We will see in Theorem 1.40 that this
characterizes �� uniquely.
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10 1 A Panorama of Lebesgue Integration

If � ⊆ R�, then ℬ(�) is the Borel �-
algebra which is generated by the relat-
ively open subsets of�. It is not hard to
see that ℬ(�) coincides with the trace�-algebra � ∩ℬ(R�).

(m) ▸ Use ���, the trace of Lebesgue meas-
ure �� on the trace-�-algebra; see Ex-
ample (e).

The Lebesgue �-algebra or Lebesgue
setsℒ(R�) are the completion, see Ex-
ample (j), of the Borel sets with respect
to Lebesgue measure.

(n) ▸ Use the completion �̄� of ��; see Ex-
ample (j).

Theproduct �-algebra�⊗ℬ is the �-
algebra �(� ×ℬ) generated by all gen-
eralized ‘rectangles’, i.e. sets of the form�×� ∈ �×ℬwith� ∈ � and � ∈ ℬ.

(o) ▸ Let (�,�, �) and (�,ℬ, �) be �-inite
measure spaces. Similar to the construc-
tion of Lebesgue measure, the product
measure � is deined irst on the sets� × � ∈ � ×ℬ of a generator,

�(� × �) ≔ �(�)�(�),
and from the general theory it is known
that this characterizes � on � ⊗ℬ, cf.
Theorem 1.33.

1.4 Lebesgue Essentials – Integrals andMeasurable Functions

Let us return to the original problem of integrating a function. A real-valued

function �∶ � → R whose level sets {� ⩽ � < �} are in a �-algebra� on � is

called measurable. The observation

{� ⩽ � < �} = {� ⩾ �} ∩ {� < �} = �−1([�,∞)) ∩ �−1((−∞, �))
explains the following slightly more general deinition.

Deinition 1.8 Let (�,�) and (�,ℬ) be two measurable spaces. A mapping�∶ � → � is called�∕ℬmeasurable, if

∀� ∈ ℬ ∶ �−1(�) ∈ �. (1.3)

If � is a topological space equipped with its Borel sets, then measurable func-

tions � are also called Borel maps or Borel functions.

Remark 1.9 (a) Ifℬ is generated by some familyℋ, then (1.3) is equivalent

to the requirement that �−1(�) ∈ � for all � ∈ ℋ. In particular, if we

consider R equipped with the Borel �-algebra ℬ(R), then measurability
of �∶ � → Rmeans that {� ⩽ �} ∈ � for all � ∈ R or {� > �} ∈ � for all� ∈ R; see [MIMS, pp. 54, 60].

Since the pre-image of an open set under a continuous function is open,

continuous functions are always Borel measurable.
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