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Introduction

Stochastic games are a mathematical model that is used to study dynamic

interactions among agents who influence the evolution of the environment.

These games were first presented and studied by Lloyd Shapley (1953).1,2

Since Shapley’s seminal work, the literature on stochastic games expanded

considerably, and the model was applied to numerous areas, such as arms race,

fishery wars, and taxation.

A stochastic game is played in discrete time by a finite set I of players, and

it consists of a finite number of states. In each state s, each player i ∈ I has a

given set of actions, denoted Ai(s). In every stage t ∈ N, the play is in one of

the states, denoted st . Each player i ∈ I chooses an action ai
t ∈ Ai(st ) that is

available to her at the current stage, receives a stage payoff, which depends on

the current state st as well as on the actions (a
j
t )j∈I chosen by the players, and

a new state st+1 is chosen, according to a probability distribution that depends

on the current state and on the actions of the players (a
j
t )j∈I .

In a stochastic game, the players have two, seemingly contradicting, goals.

First, they need to ensure that their future opportunities remain high. At the

same time, they should make sure that their stage payoff is also high. This

dichotomy makes the analysis of stochastic games intriguing and not trivial.

The study of stochastic games uses tools from many mathematical branches,

such as probability, analysis, algebra, differential equations, and combina-

torics. The goal of this book is to present the theory through the mathematical

techniques that it employs. Thus, each chapter presents mathematical results

1 Lloyd Stowell Shapley (Cambridge, Massachusetts, June 2, 1923 – Tucson, Arizona, March 12,
2016) was an American mathematician who made many influential contributions to Game
Theory, like the Shapley value, stochastic games, and the defer-acceptance algorithm for stable
marriages. Shapley shared the 2012 Nobel Prize in Economics together with game theorist
Alvin Roth.

2 All commentary is taken from Wikipedia.
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2 Introduction

from some branch of mathematics, and uses them to prove results on stochastic

games. The goal is not to prove the most general theorems in stochastic games,

but rather to present the beauty of the theory. Accordingly, we sometimes

restrict the scope of the results that is proven, to allow for simpler proofs that

bypass technical difficulties.

The material in this book is summarized by the following table:

Chapter Tool + Result

1 Contracting mappings

Stationary optimal strategies in Markov decision problems

2 Tauberian Theorem

Uniform ǫ-optimality in hidden Markov decision problems

5 Contracting mappings

Stationary discounted optimal strategies in zero-sum stochastic

games

6 Semi-algebraic mappings

Existence of the limit of the discounted value

7 B-graphs

Continuity of the limit of the discounted value

8 Kakutani’s fixed point theorem

Stationary discounted equilibria in multiplayer stochastic games

9 Existence of the uniform value in zero-sum stochastic games

10 The vanishing discount factor approach

Existence of uniform equilibrium in absorbing games

11 Ramsey’s Theorem

Existence of undiscounted equilibrium in two-player deterministic

stopping games

12 Approximating infinite orbits

Existence of undiscounted equilibrium in multiplayer quitting

games

13 Linear complementarity problems

Existence of undiscounted equilibrium in multiplayer quitting

games

Each chapter contains exercises. Solutions are available as supplementary

material on the book’s page on the publisher’s website. The book is based

on a graduate level course that I taught at Tel Aviv University for more than
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Notation 3

a decade. I hope that the readers, as my students, will like the diversity of the

topics and the elegance of the proofs. For the benefit of readers who would like

to expand their knowledge in stochastic games, I added references to related

results at the end of each chapter. Books and surveys that include material

on different aspects of stochastic games include Raghavan et al. (1991),

Raghavan and Filar (1991), Filar and Vrieze (1997), Başar and Olsder (1998),

Mertens (2002), Vieille (2002), Neyman and Sorin (2003), Solan (2008),

Chatterjee et al. (2009, 2013), Chatterjee and Henzinger (2012), Laraki and

Sorin (2015), Mertens et al. (2015), Solan and Vieille (2015), Solan and

Ziliotto (2016), Başar and Zaccour (2017), Jaśkiewicz and Nowak (2018a,b),

and Renault (2019).

I end the introduction by thanking Ayala Mashiah-Yaakovi, who read the

manuscript and the solution manual and made many comments that improved

the text; Andrei Iacob, who copyedited the text; and John Yehuda Levy,

Andrzej Nowak, Robert Simon, Bernhard von Stengel, Uri Zwick, and my

students throughout the years for providing comments and spotting typos.

Notation

The set of positive integers is

N := {1,2,3, . . .}.

The number of elements in a finite set K is denoted by |K|. For every finite

set K , the set of probability distributions over K is denoted by �(K). We

identify each element k ∈ K with the probability distribution in �(K) that

assigns probability 1 to k. For a probability distribution μ ∈ �(K), the support

of μ, denoted supp(μ), is the set of all elements k ∈ K that have positive

probability under μ:

supp(μ) := {k ∈ K : μ[k] > 0}.

A probability distribution is pure if supp(μ) contains only one element:

|supp(μ)| = 1.

Let I be a finite set, and, for each i ∈ I , let Ai be a set. We denote by AI :=∏
i∈I Ai the cartesian product, and denote A−i :=

∏
j∈I\{i} Aj . Similarly, if

a = (ai)i∈I ∈ AI , we denote by a−i := (aj )j∈I\{i} ∈ A−i the vector a with

its i’th coordinate removed.

We will use two norms, the L1-norm and the L∞-norm (or the maximum

norm). For a vector x ∈ R
n, we define
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4 Introduction

‖x‖1 :=

n∑

i=1

|xi |,

and

‖x‖∞ := max
i=1,...,n

|xi |.

For a function f : X → R, argmaxx∈Xf (x) is the set of all points in X that

maximize f :

argmaxx∈Xf (x) :=

{
y ∈ X : f (y) = max

x∈X
f (x)

}
.

When the set X is compact and the function f is continuous, the set

argmaxx∈Xf (x) is non-empty.
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Markov Decision Problems

In this chapter, we introduce Markov decision problems, which are stochastic

games with a single player. They serve as an appetizer. On the one hand,

the basic concepts and basic proofs for zero-sum stochastic games are better

understood in this simple model. On the other hand, some of the conclusions

that we draw for Markov decision problems are different from those drawn

for zero-sum stochastic games. This illustrates the inherent difference

between single-player decision problems and multiplayer decision problems

(=games). The interested reader is referred to, for example, Ross (1982) or

Puterman (1994) for an exposition of Markov decision problems.

We will study both the T -stage evaluation and the discounted evaluation.

We will introduce and study contracting mappings,1 and will use such

mappings to show that the decision maker has a stationary discounted optimal

strategy. We will also define the concept of uniform optimality, and show that

the decision maker has a stationary uniformly optimal strategy.

Definition 1.1 A Markov decision problem2 is a vector Ŵ = 〈S,(A(s))s∈S,

q,r〉 where

• S is a finite set of states.

• For each s ∈ S, A(s) is a finite set of actions available at state s. The set of

pairs (state, action) is denoted by

SA := {(s,a) : s ∈ S,a ∈ A(s)}.

• q : SA → �(S) is a transition rule.

• r : SA → R is a payoff function.

1 We adhere to the convention that a mapping is a function whose range is a general space or Rn,
while a function is always real-valued.

2 Andrey Andreyevich Markov (Ryazan, Russia, June 14, 1856 – St. Petersburg, Russia, July 20,
1922) was a Russian mathematician. He is best known for his work on the theory of stochastic
processes that now bear his name: Markov chains and Markov processes.
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6 Markov Decision Problems

A Markov decision problem involves a decision maker, and it evolves as

follows. The problem lasts for infinitely many stages. The initial state s1 ∈ S

is given. At each stage t ≥ 1, the following happens:

• The current state st is announced to the decision maker.

• The decision maker chooses an action at ∈ A(st ) and receives the stage

payoff r(st,at ).

• A new state st+1 is drawn according to q(· | st,at ), and the game proceeds

to stage t + 1.

Example 1.2 Consider the following situation. The technological level of a

country can be High (H), Medium (M), or Low (L). The annual investment

of the country in technological advances can also be high (2 billion dollars),

medium (1 billion dollars), or low (0.5 billion dollars). The annual gain

from technological level is increasing: the high, medium, and low technolog-

ical level yield 10, 6, and 2 billion dollars, respectively. The technological

level changes stochastically as a function of the investment in technologi-

cal advancement, according to the following table:3

High Medium Low

Technology level investment investment investment

H H
[

1
2
(H), 1

2
(M)

] [
1
4
(H), 3

4
(M)

]

M
[

3
5
(H), 2

5
(M)

]
M

[
2
5
(M), 3

5
(L)

]

L
[

3
5
(M), 2

5
(L)

] [
2
5
(M), 3

5
(L)

]
L

The situation can be presented as a Markov decision problem as follows:

• There are three states, which represent the three technological levels:

S = {H,M,L}.

• There are three actions in each state, which represent the three investment

levels: A(s) = {h,m,l} for each s ∈ S.

• The transition rule is given by

3 Here and in the sequel, a probability distribution is denoted by a list of probabilities and
outcomes in square brackets, where the outcomes are written within round brackets.

Thus,
[

2
3
(H), 1

3
(M)

]
means a probability distribution that assigns probability 2

3
to H and

probability 1
3

to M .
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Markov Decision Problems 7

q(H | H,h) = 1, q(M | H,h) = 0, q(L | H,h) = 0,

q(H | H,m) = 1
2
, q(M | H,m) = 1

2
, q(L | H,m) = 0,

q(H | H,l) = 1
4
, q(M | H,l) = 3

4
, q(L | H,l) = 0,

q(H | M,h) = 3
5
, q(M | M,h) = 2

5
, q(L | M,h) = 0,

q(H | M,m) = 0, q(M | M,m) = 1, q(L | M,m) = 0,

q(H | M,l) = 0, q(M | M,l) = 2
5
, q(L | M,l) = 3

5
,

q(H | L,h) = 0, q(M | L,h) = 3
5
, q(L | L,h) = 2

5
,

q(H | L,m) = 0, q(M | L,m) = 2
5
, q(L | L,m) = 3

5
,

q(H | L,l) = 0, q(M | L,l) = 0, q(L | L,l) = 1.

• The payoff function (in billions of dollars) is given by

r(H,h) = 8, r(H,m) = 9, r(H,l) = 9 1
2
,

r(M,h) = 4, r(M,m) = 5, r(M,l) = 5 1
2
,

r(L,h) = 0, r(L,m) = 1, r(L,l) = 1 1
2

. �

Example 1.3 The Markov decision problem that is illustrated in Figure 1.1

is formally defined as follows:

• There are three states: S = {s(1),s(2),s(3)}.

• In state s(1), there are two actions: A(s(1)) = {U,D}; in states s(2) and

s(3), there is one action: A(s(2)) = A(s(3)) = {D}.

• Payoffs appear at the center of each entry and are given by:

r(s(1),U) = 10; r(s(1),D) = 5; r(s(2),D) = 10; r(s(3),D) = −100.

• Transitions appear in parentheses next to the payoff and are given by:

– If in state s(1) the decision maker chooses U , the process moves to state

s(2), that is, q(s(2) | s(1),U) = 1.

– If in state s(1) the decision maker chooses D, the process remains in

state s(1), that is, q(s(1) | s(1),D) = 1.

5(1,0,0)

10(0,1,0)

D

U

s(1)

10(
1
10 ,0, 9

10

)
−100(0,0,1)D D

s(2) s(3)

Figure 1.1 The Markov decision problem in Example 1.3.

www.cambridge.org/9781316516331
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51633-1 — A Course in Stochastic Game Theory
Eilon Solan 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

8 Markov Decision Problems

– From state s(2), the process moves to state s(1) with probability 1
10

and

to state s(3) with probability 9
10

, that is, q(s(1) | s(2),D) = 1
10

and

q(s(3) | s(2),D) = 9
10

.

– Once the process reaches state s(3), it stays there, that is,

q(s(3) | s(3),D) = 1. �

1.1 On Histories

For t ∈ N, the set of histories of length t is defined by

Ht := (SA)t−1 × S,

where by convention (SA)0 = ∅. This is the set of all histories that may occur

until stage t . A typical element in Ht is denoted by ht . The last state of history

ht is denoted by st . The set H1 is identified with the state space S, and the

history (s1) is simply denoted by s1.

We denote the set of all histories by

H :=
⋃

t∈N

Ht,

and the set of all infinite histories or plays by

H∞ := (SA)N.

The set of plays H∞ is a measurable space, with the sigma-algebra

generated by the cylinder sets, which are defined as follows. For a history

h̃t = (̃s1,ã1, . . . ,̃st ) ∈ Ht , the cylinder set C(̃ht ) ⊂ H∞ is the collection of

all plays that start with h̃t , that is,

C(̃ht ) := {h = (s1,a1,s2,a2, . . .) ∈ H∞ : s1 = s̃1,a1 = ã1, . . . ,st = s̃t }.

For every t ∈ N, the collection of all cylinder sets (C(̃ht ))h̃t∈Ht
defines a

finite partition, or an algebra, on H∞. We denote by Ht this algebra and by H

the sigma-algebra on H∞ generated by the algebras (Ht )t∈N.

1.2 On Strategies

A mixed action at state s is a probability distribution over the set of actions

A(s) available at state s. The set of mixed actions at state s is therefore

�(A(s)). A strategy of the decision maker specifies how the decision maker

should play after each possible history.

Definition 1.4 A strategy is a mapping σ that assigns to each history

h = (s1,a1, . . . ,at−1,st ) a mixed action in �(A(st )).

The set of all strategies is denoted by �.

www.cambridge.org/9781316516331
www.cambridge.org


Cambridge University Press & Assessment
978-1-316-51633-1 — A Course in Stochastic Game Theory
Eilon Solan 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1.2 On Strategies 9

A decision maker who follows a strategy σ behaves as follows: at each

stage t , given the past history (s1,a1, . . . ,st ), the decision maker chooses an

action at according to the mixed action σ(· | s1,a1, . . . ,st ).

Comment 1.5 A strategy as defined in Definition 1.4 is termed in the

literature behavior strategy.

Comment 1.6 The fact that the choice of the decision maker depends on

past play implicitly assumes that the decision maker knows the past play; that

is, the decision maker observes (and remembers) all past states that the process

visited, and she remembers all her past choices. In Chapter 2, we will study the

model of Markov decision problems when the decision maker does not observe

the state.

Comment 1.7 A strategy contains a lot of irrelevant information. Indeed,

when the initial state is s1 = s, it is not important what the decision maker

would play if the initial state were s′ �= s. Similarly, if in the first stage the

decision maker played the action a1 = a, it is irrelevant what she would

play in the second stage if she played the action a′ �= a in the first stage. We

nevertheless regard a strategy as a mapping defined on the set of all histories,

because of the simplicity of the definition; otherwise we would have to define

for every strategy σ and every positive integer t the set of all histories of length

t that can occur with positive probability when the decision maker follows

strategy σ (which depend on the definition of σ up to stage t − 1), and define

σ at stage t only for those histories.

Every strategy σ , together with the initial state s1, defines a probability

distribution Ps1,σ on the space of measurable space (H∞,H). To define this

probability distribution formally, we define it on the collection of cylinder sets

that generate (H∞,H) by the rule

Ps1,σ (C(̃s1,ã1, . . . ,̃st−1,ãt−1,̃st )) (1.1)

:= 1{s1=̃s1} ·

t−1∏

k=1

σ (̃ak | s̃1,ã1, . . . ,̃s1) ·

t−1∏

k=1

q(̃sk+1 | s̃k,ãk).

Let Ps1,σ be the unique probability distribution on H∞ that agrees with this

definition on cylinder sets. The fact that, in this way, we indeed obtain a

unique probability distribution is guaranteed by the Carathéodory4 Extension

Theorem (see, e.g., theorem 3.1 in Billingsley (1995)).

4 Constantin Carathéodory (Berlin, Germany, September 13, 1873 – Munich, Germany,
February 2, 1950) was a Greek mathematician who spent most of his career in Germany.
He made significant contributions to the theory of functions of a real variable, the calculus
of variations, and measure theory. His work also includes important results in conformal
representations and in the theory of boundary correspondence.
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10 Markov Decision Problems

Two simple classes of strategies are pure strategies that involve no random-

ization, and stationary strategies that depend only on the current state and not

on the whole past history.

Definition 1.8 A strategy σ is pure if |supp(σ (ht ))| = 1 for every history

ht ∈ H .

The set of pure strategies is denoted by �P.

Definition 1.9 A strategy σ is stationary if, for every two histories

ht = (s1,a1,s2, . . . ,at−1,st ) and ĥk = (̂s1,â1,̂s2, . . . ,âk−1,̂sk) that satisfy

st = ŝk , we have σ(ht ) = σ (̂hk).

The set of stationary strategies is denoted by �S.

A pure stationary strategy assigns to each state s ∈ S an action in A(s).

Since the number of actions in A(s) is |A(s)|, we can express the number of

pure stationary strategies in terms of the data of the Markov decision problem.

Theorem 1.10 The number of pure stationary strategies is
∏

s∈S |A(s)|.

One can identify a stationary strategy σ with a vector x ∈
∏

s∈S �(A(s)).

With this identification, x(s) is the mixed action chosen when the current state

is s. Thus, the set of stationary strategies �S can be identified with the space

X :=
∏

s∈S �(A(s)), which is convex and compact. For every element x ∈ X,

the stationary strategy that corresponds to x is still denoted by x.

In Definition 1.4 we defined a strategy to be a mapping from histories to

mixed actions. We now present another concept of a strategy that involves

randomization – a mixed strategy.

Definition 1.11 A mixed strategy is a probability distribution over the set

�P of pure strategies.

Every strategy is equivalent to a mixed strategy. Indeed, a strategy σ

is defined by ℵ0 lotteries: to each history ht ∈ H , it assigns a lottery

σ(ht ) ∈ �(A(st )). If the decision maker performs all the ℵ0 lotteries before

the play starts, then the realizations of the lotteries define a pure strategy. In

particular, the strategy defines a probability distribution over the set of pure

strategies.

Conversely, every mixed strategy is equivalent to a strategy. Indeed, given

a mixed strategy τ , one can calculate for each history ht the conditional

probability σ(at | ht ) that the action chosen after ht is at ∈ A(st ). If the history

ht occurs with probability 0 under Ps1,σ , we set σ(at | ht ) arbitrarily. One can

show that the strategy σ is equivalent to the mixed strategy τ .
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