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1 Flow and Transport

1.1 Fluids and the Continuum Hypothesis

A material exhibits flow if shear forces, however small, lead to a deformation which

is unbounded – we could use this as a definition of a fluid. A solid has a fixed

shape, or at least a strong limitation on its deformation when force is applied

to it. Within the category of ‘fluids’, we include liquids and gases. The main

distinguishing feature between these two fluids is the notion of compressibility. Gases

are usually compressible – as we know from everyday aerosols. Liquids are generally

incompressible – a feature essential to all modern car brakes. However, some gas flows

can also be incompressible, particularly at low speeds.

Fluids can be further subcategorised. There are ideal or inviscid fluids. In such fluids,

the only internal force present is pressure, which acts so that fluid flows from a region of

high pressure to one of low pressure. The equations for an ideal fluid have been applied

to wing and aircraft design (as a limit of high Reynolds-number flow). However, fluids

can exhibit internal frictional forces which model a ‘stickiness’ property of the fluid

which involves energy loss – these are known as viscous fluids. Some fluids/material

known as ‘non-Newtonian or complex fluids’ exhibit even stranger behaviour, their

reaction to deformation may depend on: (i) past history (earlier deformations), for

example some paints; (ii) temperature, for example some polymers or glass; (iii) the

size of the deformation, for example some plastics or silly putty.

For any real fluid there are three natural length scales:

1. Lmolecular, the molecular scale characterised by the mean-free-path distance of

molecules between collisions;

2. Lfluid, the medium scale of a fluid parcel, the fluid droplet in the pipe or ocean flow;

3. Lmacro, the macro-scale which is the scale of the fluid geometry, the scale of the

container the fluid is in, whether a beaker or an ocean.

And, of course, we have the asymptotic inequalities

Lmolecular ≪ Lfluid ≪ Lmacro.

Continuum Hypothesis. We will assume that the properties of an elementary

volume/parcel of fluid, however small, are the same as for the fluid as a whole – i.e. we

suppose that the properties of the fluid at scale Lfluid propagate all the way down and

through the molecular scale Lmolecular. This is the continuum assumption. For everyday
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4 1 Flow and Transport

fluid mechanics engineering, this assumption is extremely accurate, see Chorin and

Marsden (1990, p. 2).

1.2 Conservation Principles

Our derivation of the basic equations underlying the dynamics of fluids is based on

three basic conservation principles:

1. Conservation of mass, mass is neither created or destroyed.

2. Newton’s Second Law/balance of momentum, for a parcel of fluid the rate of change

of momentum equals the force applied to it.

3. Conservation of energy, energy is neither created nor destroyed.

In turn these principles generate the:

1. Continuity equation, which governs how the density of the fluid evolves locally and

thus indicates compressibility properties of the fluid.

2. Navier–Stokes equations of motion for a fluid, which indicate how the fluid moves

around from regions of high pressure to those of low pressure and with the effects

of viscosity.

3. Equation of state, which indicates the mechanism of energy exchange within the

fluid.

1.3 Fluid Prescription

A crucial task is to decide how we wish to represent the fluid flow. We will use the

Eulerian prescription as follows. Consider a fluid in a container, what information do

we need in order to fully describe the ‘state’ of the fluid flow? Well, imagine that

at every fixed spatial position in the fluid we placed a weather vane that could pivot

three-dimensionally, i.e. at every fixed position there is a pointer that points in the

direction (three-dimensional) the fluid is flowing at that position. Further, suppose the

vane/pointer is also able to record the speed with which the fluid is flowing at that

position. If we know the fluid-flow direction and speed at each spatial position, then we

know the fluid-flow velocity vector at those positions. Of course that velocity vector

could change with time. Thus at any given time the prescription of the velocity vector

at every fixed spatial position in the fluid flow, along with some other concomitant

fluid-related quantities such as the scalar pressure and mass density given at each

spatial position, should be enough to describe the ‘state’ of the fluid. Given the

velocity field at every position and time, we know the fluid flow and we can in

principle determine fluid-particle trajectories under that flow. This is the focus of the

next section.
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1.4 Trajectories and Streamlines 5

1.4 Trajectories and Streamlines

Suppose that our fluid is contained within a region/domain D ⊆ Rd , where d = 3,

and we use Cartesian coordinates x = (x, y, z)T ∈ D to label points/positions in D.

Imagine a small fluid particle or a speck of dust moving in a fluid flow field prescribed

by the velocity field u = u(x, t), where u has d = 3 components as follows: u =

(u, v,w)T. Suppose the position of the particle at time t is recorded by the variables

x(t) =
(

x(t), y(t), z(t)
)T

, i.e. by the vector x(t) = x(t) i + y(t) j + z(t)k, where i,

j and k are the unit vectors in the respective coordinate directions x, y and z. We

thus have the following equations for the velocity of the particle at time t at position

x(t) =
(

x(t), y(t), z(t)
)T

:

d

dt
x(t) = u

(

x(t), y(t), z(t), t
)

,

d

dt
y(t) = v

(

x(t), y(t), z(t), t
)

,

d

dt
z(t) = w

(

x(t), y(t), z(t), t
)

.

Definition 1.1 (Particle path or trajectory) The particle path or trajectory of a fluid

particle is the curve traced out by the particle as time progresses. If the particle starts

at position x0 = (x0, y0, z0)T then its particle path x = x(t) is the solution to the

following system of differential equations (the same as those above but here in shorter

vector notation) with initial conditions x(0) = x0:

d

dt
x(t) = u(x(t), t).

Definition 1.2 (Streamline) A streamline is an integral curve of the velocity field

u = u(x, t) for t fixed, i.e. it is a curve x = x(s) parameterised by the variable s,

that satisfies the following system of differential equations with t held constant and

x(0) = x0 at s = 0:

d

ds
x(s) = u(x(s), t).

Remark 1.3 (Stationary/steady flows) Flows for which ∂u/∂t = 0 are said to be

stationary/steady. For such flows the velocity field u is time-independent, so u = u(x)

only, and trajectories and streamlines coincide.

Example 1.4 (Solid-body rotation flow) Suppose a velocity field u = (u, v,w)T

depends on position x only and is given by

���
�

u

v

w

���
�
=

���
�

−Ωy
Ωx

0

���
�
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6 1 Flow and Transport

for some non-zero constant Ω ∈ R. The particle path for a particle that starts at

x0 = (x0, y0, z0)T is the integral curve of the system of differential equations

dx

dt
= −Ωy,

dy

dt
= Ωx,

dz

dt
= 0,

with initial condition x(0) = x0. This is a coupled pair of differential equations as

the solution to the last equation is z(t) = z0 for all t � 0. There are several methods

for solving the pair of equations, one method is as follows. Differentiating the first

equation with respect to t we find

d2x

dt2
= −Ω

dy

dt
⇔

d2x

dt2
= −Ω2

x.

In other words, we are required to solve the linear second-order differential equation

for x = x(t) shown. The general solution is

x(t) = A cos(Ωt) + B sin(Ωt),

where A and B are arbitrary constants. We now find y = y(t) by substituting this

solution for x = x(t) into the first differential equation above as follows:

y(t) = −
1

Ω

dx

dt

= −
1

Ω

(

−Ω A sin(Ωt) +Ω B cos(Ωt)
)

= A sin(Ωt) − B cos(Ωt).

Using that x(0) = x0 and y(0) = y0 we find that A = x0 and B = −y0, so the particle

path of the particle that is initially at x0 = (x0, y0, z0)T is given by

x(t) = x0 cos(Ωt) − y0 sin(Ωt),

y(t) = x0 sin(Ωt) + y0 cos(Ωt),

z(t) = z0.

This particle thus traces out a horizontal circular particle path at height z = z0 of radius
(

x2
0
+ y

2
0

)1/2
. Since this flow is stationary, streamlines coincide with particle paths for

this flow. See Figure 1.1.

Example 1.5 (Two-dimensional oscillating flow) Consider the two-dimensional flow

field u = (u, v)T, which depends on the two-dimensional position x = (x, y)T vector

and time t � 0, given by
(

u

v

)

=

(

u0

v0 cos(k x − αt)

)

,
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1.4 Trajectories and Streamlines 7
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Figure 1.1 Six particle paths corresponding to the solid-body rotation flow in Example 1.4 are

shown. Three correspond to the initial positions x0 =
√

2, y0 =
√

2 and z0 equals either −1, 0

or 1. The other three particle paths correspond to x0 =
√

2/2, y0 =
√

2/2 and again z0 equals

either −1, 0 or 1. The particles trace out horizontal circular paths, with those tracing out paths,

of larger radii travelling faster. All the particles complete one revolution in the same time, hence

the nomination as a solid-body rotation flow.

where u0, v0, k and α are constants. Let us find the particle path and streamline for

the particle at x0 = (x0, y0)T
= (0, 0)T at t = 0. Starting with the particle path, we are

required to solve the coupled pair of differential equations

dx

dt
= u0,

dy

dt
= v0 cos(k x − αt).

We can solve the first differential equation, which tells us

x(t) = u0t,

where we used that x(0) = 0. We now substitute this expression for x = x(t) into the

second differential equation and integrate with respect to time using y(0) = 0 as follows:

dy

dt
= v0 cos

(

(ku0 − α)t
)

⇔ y(t) = 0 +

∫

t

0

v0 cos
(

(ku0 − α)τ
)

dτ

⇔ y(t) =
v0

ku0 − α
sin
(

(ku0 − α)t
)

.

If we eliminate time t between the formulae for x = x(t) and y = y(t) we find that the

trajectory through (0, 0)T is

y =
v0

ku0 − α
sin

(

(

k −
α

u0

)

x

)

.
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8 1 Flow and Transport

To find the streamline through (0, 0)T, we fix t and solve the pair of differential equations

dx

ds
= u0,

dy

ds
= v0 cos(k x − αt).

As above we can solve the first equation so that x(s) = u0s using that x(0) = 0. We can

substitute this into the second equation and integrate with respect to s, remembering

that t is constant, to get

dy

ds
= v0 cos(ku0s − αt)

⇔ y(s) = 0 +

∫

s

0

v0 cos(ku0r − αt) dr

⇔ y(s) =
v0

ku0

(

sin(ku0s − αt) − sin(−αt)
)

.

If we eliminate the parameter s between x = x(s) and y = y(s) above, we find the

equation for the streamline is

y =
v0

ku0

(

sin(k x − αt) + sin(αt)
)

.

The equation of the streamline through (0, 0)T at time t = 0 is thus given by

y =
v0

ku0

sin(k x).

As the underlying flow is not stationary, as expected, the particle path and streamline

through (0, 0)T at time t = 0 are distinguished; see Figure 1.2. Finally, let us examine

0 1 2 3 4 5 6 7 8 9 10
x

-1

-0.5

0

0.5

1

1.5

y

particle path
streamline (t=0)
streamline (t=1)

Figure 1.2 For the oscillatory flow in Example 1.5, we plot both the particle path associated with

the particle starting from the origin (solid line) and the streamlines through the origin when time

is instantaneously frozen, first at t = 0 (dotted line) and second at t = 1 (dash-dotted line). The

other parameters were fixed as k = 1, α = 3, u0 = 1 and v0 = 1.
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1.5 Continuity Equation 9

two special limits for this flow. As α → 0 the flow becomes stationary and correspond-

ingly the particle path and streamline coincide. As k → 0 the flow is not stationary. In

this limit the particle path through (0, 0)T is y = (v0/α) sin(αx/u0), i.e. it is sinusoidal,

whereas the streamline is given by x = u0s and y = v0s, which is a straight line through

the origin.

Remark 1.6 (Streaklines) A streakline is the locus of all the fluid elements

which at some time have passed through a particular point, say (x0, y0, z0)T.

We can obtain the equation for a streakline through (x0, y0, z0)T by solving the

ordinary differential equations (d/dt)x(t) = u(x(t), t) assuming at t = t0 we have
(

x(t0), y(t0), z(t0)
)T
= (x0, y0, z0)T. Eliminating t0 between the equations generates

the streakline corresponding to (x0, y0, z0)T. For example, ink dye injected at the point

(x0, y0, z0)T in the flow will trace out a streakline.

1.5 Continuity Equation

Recall that we suppose our fluid is contained within a region/domain D ⊆ Rd . Here

we assume d = 3, but everything we say is true for the collapsed two-dimensional

case d = 2. Hence x = (x, y, z)T ∈ D is a position/point in D. At each time t we

suppose that the fluid has a well-defined mass density ρ = ρ(x, t) at the point x.

Indeed, invoking the continuum hypothesis, at each time t we can compute the mass of

fluid inside a small volume centred at x, and then consider the ratio of that mass to the

volume in the limit as the volume shrinks to zero around the point x. The limiting ratio

generates the mass density ρ = ρ(x, t). In addition, we note that each fluid particle

traces out a well-defined path in the fluid, and its motion along that path is governed

by the velocity field u = u(x, t) at position x at time t. Consider an arbitrary fixed

subregionV ⊆ D; see Figure 1.3. The total mass of fluid contained inside the region

V at time t is
∫

V
ρ(x, t) dV (x),

where dV = dV (x) is the volume measure in Rd . Let us now consider the rate of

change of mass insideV . By the principle of conservation of mass, the rate of increase

Figure 1.3 The fluid of mass density ρ(x, t) swirls around inside the containerD, whileV is an

arbitrary fixed subregion.
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10 1 Flow and Transport

of the mass in V is given by the mass of fluid entering/leaving the boundary ∂V of

V per unit time.

To compute the total mass of fluid entering/leaving the boundary ∂V per unit time,

we consider a small area patch dS = dS(x) on the boundary of ∂V , which has unit

outward normal n. The total mass of fluid flowing out of V through the area patch

dS = dS(x) per unit time is (where ‘×’ is just scalar multiplication)

mass density × fluid volume leaving per unit time

which is, to leading order,

ρ(x, t) × u(x, t) · n(x) dS(x),

where, say, x is at the centre of the area patch dS on ∂V . Note that to estimate the fluid

volume leaving per unit time we have decomposed the fluid velocity at x ∈ ∂V , time

t, into velocity components normal (u · n) and tangent to the surface ∂V at that point.

The velocity component tangent to the surface pushes fluid along the surface – no fluid

enters or leavesV via this component. Hence we only retain the normal component –

see Figure 1.4.

Returning to the principle of conservation of mass, this is now equivalent to the

integral form of the law of conservation of mass, which is given by

d

dt

∫

V
ρ dV = −

∫

∂V
ρu · n dS.

That the rate of change of the total mass in V equals the total rate of change of mass

density inV , and the divergence theorem, imply respectively

d

dt

∫

V
ρ dV =

∫

V

∂ρ

∂t
dV and

∫

∂V
(ρu) · n dS =

∫

V
∇ · (ρu) dV .

Using these two relations, the law of conservation of mass is equivalent to

∫

V

∂ρ

∂t
dV = −

∫

V
∇ · (ρu) dV ⇔

∫

V

(

∂ρ

∂t
+ ∇ · (ρu)

)

dV = 0.

dS

u

n

u · n

Figure 1.4 The total mass of fluid moving through the patch dS on the surface ∂V per unit time

is given by the mass density ρ(x, t) times the volume of the cylinder shown, which is u · n dS.
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1.6 Reynolds Transport Theorem 11

We now use thatV is arbitrary to deduce the differential form of the law of conservation

of mass or continuity equation applied pointwise, as follows.

Theorem 1.7 (Continuity equation) Given a velocity field u = u(x, t), the mass

density ρ = ρ(x, t) satisfies the first-order partial differential equation

∂ρ

∂t
+ ∇ · (ρu) = 0.

1.6 Reynolds Transport Theorem

Recall our image of a small fluid particle moving in a prescribed fluid velocity field

u = u(x, t). The velocity of a particle at time t at position x = x(t) is

d

dt
x(t) = u(x(t), t).

As the particle moves in the velocity field u = u(x, t), say from position x = x(t) to a

nearby position an instant in time later, two dynamical contributions change: (i) a small

instant in time has elapsed and the velocity field u(x, t), which depends on time, will

have changed a little; (ii) the position of the particle has changed in that short time as it

moved slightly, and the velocity field u = u(x, t), which depends on position, will be

slightly different at the new position. Let us compute the acceleration of the particle

to observe these two contributions explicitly. By using the chain rule we see that

d2

dt2
x(t) =

d

dt
u
(

x(t), t
)

=

∂u

∂x

dx

dt
+

∂u

∂y

dy

dt
+

∂u

∂z

dz

dt
+

∂u

∂t

dt

dt

=

(

dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dz

dt

∂

∂z

)

u +
∂u

∂t

= (u · ∇) u +
∂u

∂t
.

Indeed, for any function F = F
(

x(t), t
)

, scalar- or vector-valued, the chain rule implies

d

dt
F
(

x(t), t
)

=

∂F

∂t
+ (u · ∇)F .

Definition 1.8 (Material derivative) Given a velocity field u = u(x, t) with

components u = (u, v,w)T, the partial differential operator u · ∇ is

u · ∇ ≔ u
∂

∂x
+ v
∂

∂y
+ w
∂

∂z
.

We thus define the material derivative following the fluid to be

∂

∂t
+ u · ∇.
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