Applied Stochastic Differential Equations

Stochastic differential equations are differential equations whose solutions are stochastic processes. They exhibit appealing mathematical properties that are useful in modeling uncertainties and noisy phenomena in many disciplines. This book is motivated by applications of stochastic differential equations in target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. It builds an intuitive hands-on understanding of what stochastic differential equations are all about, but also covers the essentials of Itô calculus, the central theorems in the field, and such approximation schemes as stochastic Runge–Kutta. Greater emphasis is given to solution methods than to analysis of theoretical properties of the equations. The book's practical approach assumes only prior understanding of ordinary differential equations. The numerous worked examples and end-of-chapter exercises include application-driven derivations and computational assignments. MATLAB/Octave source code is available for download, promoting hands-on work with the methods.

SIMO SÄRKKÄ is Associate Professor of Electrical Engineering and Automation at Aalto University, Adjunct Professor at Tampere University of Technology and Lappeenranta University of Technology, and Technical Advisor or Founder in multiple startup companies. His research interests are in probabilistic modeling and sensor fusion for location sensing, health technology, and machine learning. He has authored over 100 peer-reviewed scientific articles as well as one book, titled *Bayesian Filtering and Smoothing*.

ARNO SOLIN is Assistant Professor of Computer Science at Aalto University and Technical Advisor in multiple startup companies. His research interests focus on models and applications in sensor fusion for tracking and navigation, brain imaging, and machine learning problems. He has published over 30 peer-reviewed scientific papers, and has won several hackathons and competitions in mathematical modeling, including the 2014 Schizophrenia Classification Challenge on Kaggle.

INSTITUTE OF MATHEMATICAL STATISTICS TEXTBOOKS

Editorial Board Nancy Reid (University of Toronto) Ramon van Handel (Princeton University) Xuming He (University of Michigan) Susan Holmes (Stanford University)

IMS Textbooks give introductory accounts of topics of current concern suitable for advanced courses at master's level, for doctoral students and for individual study. They are typically shorter than a fully developed textbook, often arising from material created for a topical course. Lengths of 100–290 pages are envisaged. The books typically contain exercises.

Other Books in the Series

- 1. Probability on Graphs, by Geoffrey Grimmett
- 2. Stochastic Networks, by Frank Kelly and Elena Yudovina
- 3. Bayesian Filtering and Smoothing, by Simo Särkkä
- 4. The Surprising Mathematics of Longest Increasing Subsequences, by Dan Romik
- 5. *Noise Sensitivity of Boolean Functions and Percolation*, by Christophe Garban and Jeffrey E. Steif
- 6. Core Statistics, by Simon N. Wood
- 7. Lectures on the Poisson Process, by Günter Last and Mathew Penrose
- 8. Probability on Graphs (Second Edition), by Geoffrey Grimmett
- 9. Introduction to Malliavin Calculus, by David Nualart and Eulàlia Nualart
- 10. Applied Stochastic Differential Equations, by Simo Särkkä and Arno Solin

Applied Stochastic Differential Equations

SIMO SÄRKKÄ Aalto University, Finland

ARNO SOLIN Aalto University, Finland

CAMBRIDGE

Cambridge University Press 978-1-316-51008-7 — Applied Stochastic Differential Equations Simo Särkkä, Arno Solin Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9781316510087 DOI: 10.1017/9781108186735

© Simo Särkkä and Arno Solin 2019

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2019

Printed and bound in Great Britain by Clays Ltd, Elcograf S.P.A.

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Särkkä, Simo, author. | Solin, Arno, author. Title: Applied stochastic differential equations / Simo Särkkä, Arno Solin. Description: Cambridge, United Kingdom ; New York, NY : Cambridge University Press, 2019. | Series: Institute of Mathematical Statistics textbooks ; v 10 | Includes bibliographical references and index. Identifiers: LCCN 2018026584 | ISBN 9781316510087 (hardback : alk. paper) |

ISBN 9781316649466 (paperback : alk. paper) Subjects: LCSH: Stochastic differential equations–Textbooks.

Classification: LCC QA274.23 .S23 2019 | DDC 315/.350151923–dc23 LC record available at https://lccn.loc.gov/2018026584

ISBN 978-1-316-51008-7 Hardback ISBN 978-1-316-64946-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Preface			
1	Introduction	1	
2	Some Background on Ordinary Differential Equations	4	
2.1	What Is an Ordinary Differential Equation?	4	
2.2	Solutions of Linear Time-Invariant Differential Equations	6	
2.3	Solutions of General Linear Differential Equations	10	
2.4	Fourier Transforms	11	
2.5	Laplace Transforms	13	
2.6	Numerical Solutions of Differential Equations	16	
2.7	Picard–Lindelöf Theorem	19	
2.8	Exercises	20	
3	Pragmatic Introduction to Stochastic Differential Equations	23	
3.1	Stochastic Processes in Physics, Engineering, and Other Fields	23	
3.2	Differential Equations with Driving White Noise	33	
3.3	Heuristic Solutions of Linear SDEs	36	
3.4	Heuristic Solutions of Nonlinear SDEs	39	
3.5	The Problem of Solution Existence and Uniqueness	40	
3.6	Exercises	40	
4	Itô Calculus and Stochastic Differential Equations	42	
4.1	The Stochastic Integral of Itô	42	
4.2	Itô Formula	46	
4.3	Explicit Solutions to Linear SDEs	49	
4.4	Finding Solutions to Nonlinear SDEs	52	
4.5	Existence and Uniqueness of Solutions	54	
4.6	Stratonovich Calculus	55	
4.7	Exercises	56	

Cambridge University Press
978-1-316-51008-7 - Applied Stochastic Differential Equations
Simo Särkkä , Arno Solin
Frontmatter
More Information

vi	Contents	
5	Probability Distributions and Statistics of SDEs	59
5.1	Martingale Properties and Generators of SDEs	59
5.2	Fokker–Planck–Kolmogorov Equation	61
5.3	Operator Formulation of the FPK Equation	65
5.4	Markov Properties and Transition Densities of SDEs	67
5.5	Means and Covariances of SDEs	
5.6	Higher-Order Moments of SDEs	72
5.7	Exercises	
6	Statistics of Linear Stochastic Differential Equations	77
6.1	Means, Covariances, and Transition Densities of Linear SDEs	77
6.2	Linear Time-Invariant SDEs	80
6.3	Matrix Fraction Decomposition	83
6.4	Covariance Functions of Linear SDEs	87
6.5	Steady-State Solutions of Linear SDEs	90
6.6	Fourier Analysis of LTI SDEs	92
6.7	Exercises	96
7	Useful Theorems and Formulas for SDEs	98
7.1	Lamperti Transform	98
7.2	Constructions of Brownian Motion and the Wiener Measure	100
7.3	Girsanov Theorem	104
7.4	Some Intuition on the Girsanov Theorem	111
7.5	Doob's <i>h</i> -Transform	113
7.6	Path Integrals	116
7.7	Feynman–Kac Formula	118
7.8	Exercises	124
8	Numerical Simulation of SDEs	126
8.1	Taylor Series of ODEs	126
8.2	Itô-Taylor Series-Based Strong Approximations of SDEs	129
8.3	Weak Approximations of Itô–Taylor Series	137
8.4	Ordinary Runge–Kutta Methods	140
8.5	Strong Stochastic Runge–Kutta Methods	144
8.6	Weak Stochastic Runge–Kutta Methods	151
8.7	Stochastic Verlet Algorithm	155
8.8	Exact Algorithm	157
8.9	Exercises	161
9	Approximation of Nonlinear SDEs	165
9.1	Gaussian Assumed Density Approximations	165
9.2	Linearized Discretizations	174
9.3	Local Linearization Methods of Ozaki and Shoji	175

Cambridge University Press
978-1-316-51008-7 — Applied Stochastic Differential Equations
Simo Särkkä , Arno Solin
Frontmatter
More Information

	Contents	vii
9.4	Taylor Series Expansions of Moment Equations	179
9.5	Hermite Expansions of Transition Densities	183
9.6	Discretization of FPK	185
9.7	Simulated Likelihood Methods	192
9.8	Pathwise Series Expansions and the Wong–Zakai Theorem	193
9.9	Exercises	196
10	Filtering and Smoothing Theory	197
10.1	Statistical Inference on SDEs	198
10.2	Batch Trajectory Estimates	203
10.3	Kushner-Stratonovich and Zakai Equations	206
10.4	Linear and Extended Kalman–Bucy Filtering	208
10.5	Continuous-Discrete Bayesian Filtering Equations	211
10.6	Kalman Filtering	216
10.7	Approximate Continuous-Discrete Filtering	219
10.8	Smoothing in Continuous-Discrete and Continuous Time	223
10.9	Approximate Smoothing Algorithms	228
10.10	Exercises	231
11	Parameter Estimation in SDE Models	234
11.1	Overview of Parameter Estimation Methods	234
11.2	Computational Methods for Parameter Estimation	236
11.3	Parameter Estimation in Linear SDE Models	239
11.4	Approximated-Likelihood Methods	243
11.5	Likelihood Methods for Indirectly Observed SDEs	246
11.6	Expectation-Maximization, Variational Bayes, and Other	
	Methods	248
11.7	Exercises	249
12	Stochastic Differential Equations in Machine Learning	251
12.1	Gaussian Processes	252
12.2	Gaussian Process Regression	254
12.3	Converting between Covariance Functions and SDEs	257
12.4	GP Regression via Kalman Filtering and Smoothing	265
12.5	Spatiotemporal Gaussian Process Models	266
12.6	Gaussian Process Approximation of Drift Functions	268
12.7	SDEs with Gaussian Process Inputs	270
12.8	Gaussian Process Approximation of SDE Solutions	272
12.9	Exercises	274
13	Epilogue	277
13.1	Overview of the Covered Topics	277
13.2	Choice of SDE Solution Method	278

viii	Contents	
13.3	Beyond the Topics	279
Refer	rences	281
Symbols and Abbreviations		293
List c	305	
List of Algorithms		309
Index		311

Preface

This book is an outgrowth of a set of lecture notes that has been extended with material from the doctoral theses of both authors and with a large amount of completely new material. The main motivation for the book is the application of stochastic differential equations (SDEs) in domains such as target tracking and medical technology and, in particular, their use in methodologies such as filtering, smoothing, parameter estimation, and machine learning. We have also included a wide range of examples of applications of SDEs arising in physics and electrical engineering.

Because we are motivated by applications, much more emphasis is put on solution methods than on analysis of the theoretical properties of equations. From the pedagogical point of view, one goal of this book is to provide an intuitive hands-on understanding of what SDEs are all about, and if the reader wishes to learn the formal theory later, she can read, for example, the brilliant books of Øksendal (2003) and Karatzas and Shreve (1991).

Another pedagogical aim is to overcome a slight disadvantage in many SDE books (e.g., the aforementioned ones), which is that they lean heavily on measure theory, rigorous probability theory, and the theory of martingales. There is nothing wrong in these theories – they are very powerful theories and everyone should indeed master them. However, when these theories are explicitly used in explaining SDEs, they bring a flurry of technical details that tend to obscure the basic ideas and intuition for the first-time reader. In this book, without shame, we trade rigor for readability by treating SDEs completely without measure theory.

The book's low learning curve only assumes prior knowledge of ordinary differential equations and basic concepts of statistics, together with understanding of linear algebra, vector calculus, and Bayesian inference. The book is mainly intended for advanced undergraduate and graduate students in applied mathematics, signal processing, control engineering,

CAMBRIDGE

Cambridge University Press 978-1-316-51008-7 — Applied Stochastic Differential Equations Simo Särkkä , Arno Solin Frontmatter <u>More Information</u>

> statistics, and computer science. However, the book is suitable also for researchers and practitioners who need a concise introduction to the topic at a level that enables them to implement or use the methods.

> The worked examples and numerical simulation studies in each chapter illustrate how the theory works in practice and can be implemented for solving the problems. End-of-chapter exercises include application-driven derivations and computational assignments. The MATLAB[®] source code for reproducing the example results is available for download through the book's web page, promoting hands-on work with the methods.

We have attempted to write the book to be freestanding in the sense that it can be read without consulting other material on the way. We have also attempted to give pointers to work that either can be considered as the original source of an idea or just contains more details on the topic at hand. However, this book is not a survey, but a textbook, and therefore we have preferred citations that serve a pedagogical purpose, which might not always explicitly give credit to all or even the correct inventors of the technical ideas. Therefore, we need to apologize to any authors who have not been cited although their work is clearly related to the topics that we cover. We hope you understand.

The authors would like to thank Aalto University for providing the chance to write this book. We also would like to thank Robert Piché, Petteri Piiroinen, Roland Hostettler, Filip Tronarp, Santiago Cortés, Johan Westö, Joonas Govenius, Ángel García-Fernández, Toni Karvonen, Juha Sarmavuori, and Zheng Zhao for providing valuable comments on early versions of the book.

Simo and Arno