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Introduction

The topic of this book is stochastic differential equations (SDEs). As their
name suggests, they really are differential equations that produce a differ-
ent “answer” or solution trajectory each time they are solved. This peculiar
behaviour gives them properties that are useful in modeling of uncertain-
ties in a wide range of applications, but at the same time it complicates the
rigorous mathematical treatment of SDEs.

The emphasis of the book is on applied rather than theoretical aspects of
SDEs and, therefore, we have chosen to structure the book in a way that we
believe supports learning SDEs from an applied point of view. In the fol-
lowing, we briefly outline the purposes of each of the remaining chapters
and explain how the chapters are connected to each other. In the chapters,
we have attempted to provide a wide selection of examples of the practical
application of theoretical and methodological results. Each chapter (except
for the Introduction and Epilogue) also contains a representative set of an-
alytic and hands-on exercises that can be used for testing and deepening
understanding of the topics.

Chapter 2 is a brief outline of concepts and solutions methods for deter-
ministic ordinary differential equations (ODEs). We especially emphasize
solution methods for linear ODEs, because the methods translate quite eas-
ily to SDEs. We also examine commonly used numerical methods such as
the Euler method and Runge–Kutta methods, which we extend to SDEs in
the later chapters.

Chapter 3 starts with a number of motivating examples of SDEs found
in physics, engineering, finance, and other applications. It turns out that in
a modeling sense, SDEs can be regarded as noise-driven ODEs, but this
notion should not be taken too far. The aim of the rest of the chapter is to
show where things start to go wrong. Roughly speaking, with linear SDEs
we are quite safe with this kind of thinking, but anything beyond them will
not work.
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2 Introduction

In Chapter 4, we reformulate SDEs properly as stochastic integral equa-
tions where one of the terms contains a new kind of integral called the Itô
integral. We then derive the change of variable formula, that is, the Itô for-
mula for the integral, and use it to find complete solutions to linear SDEs.
We also discuss some methods to solve nonlinear SDEs and look briefly at
Stratonovich integrals.

The aim of Chapter 5 is to analyze the statistics of SDEs as stochas-
tic processes. We discuss and derive their generators, the Fokker–Planck–
Kolmogorov equations, as well as Markov properties and transition densi-
ties of SDEs. We also derive the formal equations of the moments, such as
the mean and covariance, for the SDE solutions. It turns out, however, that
these equations cannot easily be solved for other than linear SDEs. This
challenge will be tackled later in the numerical methods chapters.

As linear SDEs are very important in applications, we have dedicated
Chapter 6 to solution methods for their statistics. Although explicit solu-
tions to linear SDEs and general moment equations for SDEs were already
given in Chapters 4 and 5, here we also discuss and derive explicit mean
and covariance equations, transition densities, and matrix fraction methods
for the numerical treatment of linear SDEs. We also discuss steady-state
solutions and Fourier analysis of linear time-invariant (LTI) SDEs as well
as temporal covariance functions of general linear SDEs.

In Chapter 7, we discuss some useful theorems, formulas, and results
that are typically required in more advanced analysis of SDEs as well as
in their numerical methods. In addition to the Lamperti transform, Gir-
sanov theorem, and Doob’s h-transform, we also show how to find so-
lutions to partial differential equations with Feynman–Kac formulas and
discuss some connections to path integrals in physics. This chapter is not
strictly necessary for understanding the rest of the chapters and can be
skipped during a first reading.

Although the Itô stochastic calculus that is derivable from the Itô for-
mula is theoretically enough for defining SDEs, it does not help much in
practical solution of nonlinear SDEs. In Chapter 8, we present numerical
simulation-based solution methods for SDEs. The methods are based pri-
marily on Itô–Taylor series and stochastic Runge–Kutta methods, but we
also discuss the Verlet and exact algorithm methods.

In many applications we are interested in the statistics of SDEs rather
than their trajectories per se. In Chapter 9, we develop methods for ap-
proximate computation of statistics such as means and covariances or prob-
ability densities of SDEs – however, many of the methods are suitable for
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Introduction 3

numerical simulation of SDEs as well. We start with classical and mod-
ern Gaussian “assumed density” approximations and then proceed to other
linearization methods. We also discuss Taylor and Hermite series approx-
imations of transition densities and their moments, numerical solutions of
Fokker–Planck–Kolmogorov equations, simulation-based approximations,
and finally pathwise Wong–Zakai approximations of SDEs.

An important and historically one of the first applications of SDEs is
the filtering and smoothing theory. In Chapter 10, we describe the basic
ideas of filtering and smoothing and then proceed to the classical Kushner–
Stratonovich and Zakai equations. We also present the linear and nonlin-
ear Kalman–Bucy and Kalman filters and discuss their modern variants.
Finally, we present formal equations and approximation methods for the
corresponding smoothing problems.

The aim of Chapter 11 is to give an overview of parameter estimation
methods for SDEs. The emphasis is on statistical likelihood-based methods
that aim at computing maximum likelihood (ML) or maximum a posteriori
(MAP) estimates or are targeted to full Bayesian inference on the parame-
ters. We start with brief descriptions of the ideas of ML and MAP estimates
as well as Markov chain Monte Carlo (MCMC) methods. Parameter esti-
mation in linear SDEs is then discussed, and finally we give approximate
likelihood methods for parameter estimation in nonlinear SDEs. We also
discuss some parameter estimation methods for indirectly observed SDEs.

Chapter 12 addresses the somewhat less traditional topic of connections
between machine learning and SDEs. The aim is to discuss links between
Gaussian process regression, Kalman filtering, and SDEs, along with appli-
cations of the methods across the fields of signal processing and machine
learning.

Finally, Chapter 13 concludes the book with an overview and gives
some hints where to go next. We also discuss additional topics such as
fractional Brownian motions, Lévy process driven SDEs, and stochastic
control problems.
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2

Some Background on Ordinary Differential

Equations

The chapter provides background on deterministic (nonstochastic) ordi-
nary differential equations (ODEs) from points of view especially suited
to the context of stochastic differential equations (SDEs). As SDEs are in-
herently inhomogeneous differential equations (i.e., they have an input),
we will concentrate on solution methods suitable for them. Furthermore,
as linear and especially linear time-invariant (LTI) ODE systems are im-
portant in applications, we review the matrix exponential– and transition
matrix–based methods of solution. We also discuss Fourier– and Laplace
transform–based solution methods for LTI ODEs and for computing matrix
exponentials. For more details on ODE methods and theory, the reader is
referred to the books of Kreyszig (1993), Tenenbaum and Pollard (1985),
and Hairer et al. (2008), although the same information can be found in
many other books as well.

2.1 What Is an Ordinary Differential Equation?

An ODE is an equation in which the unknown quantity is a function, and
the equation involves derivatives of the unknown function. For example,
the second-order differential equation for a forced spring–mass system (or,
e.g., a resonator circuit in telecommunications) can be generally expressed
as

d2x.t/

dt2
C 


dx.t/

dt
C ⌫2 x.t/ D w.t/; (2.1)

where ⌫ and 
 are constants that determine the resonant angular velocity
and damping of the spring. The force w.t/ is some given function that
may or may not depend on time. In this equation, the position variable x is
called the dependent variable and time t is the independent variable. The
equation is of second order, because it contains the second derivative and
no higher-order terms are present. It is linear, because x.t/ appears linearly
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2.1 What Is an Ordinary Differential Equation? 5

in the equation. The equation is inhomogeneous, because it contains the
forcing term w.t/. This inhomogeneous term will become essential in later
chapters, because replacing it with a random process leads to a stochastic
differential equation.

Here a solution to the differential equation is defined as a particular

solution, a function that satisfies the equation and does not contain any ar-
bitrary constants. A general solution on the other hand contains every par-
ticular solution of the equation parameterized by some free constants. To
actually solve the differential equation, it is necessary to tie down the gen-
eral solution by some initial conditions. In the preceding case, this means
that we need to know the spring–mass position x.t/ and velocity dx.t/=dt

at some fixed initial time t D t0. Given these initial values, there is a unique
solution to the equation (provided that w.t/ is continuous). Instead of ini-
tial conditions, we could also fix some other (boundary) conditions of the
differential equation to get a unique solution, but here we only consider
differential equations with given initial conditions.

Note that it is common not to write the dependencies of x and w on t

explicitly, and write the equation as

d2x

dt2
C 


dx

dt
C ⌫2 x D w: (2.2)

Although it sometimes is misleading, this “ink saving” notation is very
commonly used, and we will also employ it here whenever there is no risk
of confusion. Furthermore, because in this section and in this whole book
we mainly consider ordinary differential equations, we often drop the word
“ordinary” and just talk about differential equations.

Time derivatives are also sometimes denoted with dots over the variable,
such as Px D dx=dt , Rx D d2x

ı

dt2 and so on. In this Newtonian notation,
the previous differential equation would be written as

Rx C 
 Px C ⌫2 x D w: (2.3)

Differential equations of an arbitrary order n can (almost) always be
converted into vector differential equations of order one. For example,
in the preceding spring model, if we define a state variable x.t/ D

.x1.t/; x2.t// D .x.t/; dx.t/=dt /, we can rewrite the previous differen-
tial equation as a first-order vector differential equation:

✓

dx1.t/= dt

dx2.t/= dt

◆

„ ƒ‚ …

dx.t/=dt

D

✓

0 1

!⌫2 !


◆ ✓

x1.t/

x2.t/

◆

„ ƒ‚ …

f .x.t//

C

✓

0

1

◆

„ƒ‚…

L

w.t/: (2.4)
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6 Some Background on Ordinary Differential Equations

The preceding equation can be seen to be a special case of models of the
form

dx.t/

dt
D f .x.t/; t/ C L.x.t/; t/ w.t/; (2.5)

where the vector-valued function x.t/ 2 R
D is generally called the state

of the system, f .✏; ✏/ and L.✏; ✏/ are arbitrary functions, and w.t/ 2 R
S

is some (vector-valued) forcing function, driving function, or input to the
system. Note that we can absorb the second term on the right into the first
term to yield

dx.t/

dt
D f .x.t/; t/; (2.6)

and in that sense Equation (2.5) is slightly redundant. However, the
form (2.5) turns out to be useful in the context of stochastic differential
equations, and thus it is useful to consider it explicitly.

The first-order vector differential equation representation of an nth-order
differential equation is often called the state-space form of the differential
equation. Because nth order differential equations can (almost) always be
converted into equivalent n-dimensional vector-valued first-order differen-
tial equations, it is convenient to just consider such first-order equations
instead of considering nth-order equations explicitly. Thus in this book,
we develop the theory and solution methods (mainly) for first-order vector
differential equations and assume that nth-order equations are always first
converted into equations of this class.

The spring–mass model in Equation (2.4) is also a special case of linear

differential equations of the form

dx.t/

dt
D F.t/ x.t/ C L.t/ w.t/; (2.7)

which is a very useful class of differential equations often arising in ap-
plications. The usefulness of linear equations is that we can actually solve
these equations, unlike general nonlinear differential equations. This kind
of equations will be analyzed in the next sections.

2.2 Solutions of Linear Time-Invariant Differential Equations

Consider the following scalar linear homogeneous differential equation
with a fixed initial condition at t D 0:

dx

dt
D F x; x.0/ D given; (2.8)
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2.2 Solutions of Linear Time-Invariant Differential Equations 7

where F is a constant. This equation can now be solved, for example, via
separation of variables, which in this case means that we formally multiply
by dt and divide by x to yield

dx

x
D F dt: (2.9)

If we now integrate the left-hand side from x.0/ to x.t/ and right-hand side
from 0 to t , we get

log x.t/ ! log x.0/ D F t; (2.10)

which can be solved for x.t/ to give the final solution:

x.t/ D exp.F t/ x.0/: (2.11)

Another way of arriving at the same solution is by integrating both sides
of the original differential equation from 0 to t . Because

R t

0
dx=dt dt D

x.t/ ! x.0/, we can express the solution x.t/ as

x.t/ D x.0/ C

Z t

0

F x.⌧/ d⌧: (2.12)

We can now substitute the right-hand side of the equation for x.⌧/ inside
the integral, which gives

x.t/ D x.0/ C

Z t

0

F



x.0/ C

Z ⌧

0

F x.⌧ 0/ d⌧ 0

�

d⌧

D x.0/ C F x.0/

Z t

0

d⌧ C

Z t

0

Z ⌧

0

F 2 x.⌧ 0/ d⌧ 0

�

d⌧

D x.0/ C F x.0/ t C

Z t

0

Z ⌧

0

F 2 x.⌧ 0/ d⌧ 0 d⌧: (2.13)

Doing the same substitution for x.⌧ 0/ inside the last integral further yields

x.t/ D x.0/ C F x.0/ t C

Z t

0

Z ⌧

0

F 2

"

x.0/ C

Z ⌧ 0

0

F x.⌧ 00/ d⌧ 00

#

d⌧ 0 d⌧

D x.0/ C F x.0/ t C F 2 x.0/

Z t

0

Z ⌧

0

d⌧ 0 d⌧

C

Z t

0

Z ⌧

0

Z ⌧ 0

0

F 3 x.⌧ 00/ d⌧ 00 d⌧ 0 d⌧

D x.0/ C F x.0/ t C F 2 x.0/
t2

2
C

Z t

0

Z ⌧

0

Z ⌧ 0

0

F 3 x.⌧ 00/ d⌧ 00 d⌧ 0 d⌧:

(2.14)
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8 Some Background on Ordinary Differential Equations

It is easy to see that repeating this procedure yields the solution of the form

x.t/ D x.0/ C F x.0/ t C F 2 x.0/
t2

2
C F 3 x.0/

t3

6
C � � �

D

✓

1 C F t C
F 2 t2

2ä
C

F 3 t3

3ä
C � � �

◆

x.0/: (2.15)

The series in the parentheses can be recognized to be the Taylor series for
exp.F t/. Thus, provided that the series actually converges (it does), we
again arrive at the solution

x.t/ D exp.F t/ x.0/: (2.16)

The multidimensional generalization of the homogeneous linear differen-
tial equation (2.8) is an equation of the form

dx

dt
D F x; x.0/ D given; (2.17)

where F is a constant (i.e., time-independent) matrix. For this multidimen-
sional equation, we cannot use the separation of variables method, because
it only works for scalar equations. However, the series-based approach
works and yields a solution of the form

x.t/ D

✓

I C F t C
F

2 t2

2ä
C

F
3 t3

3ä
C � � �

◆

x.0/: (2.18)

The series in the parentheses can now be seen as a matrix generalization of
the exponential function. This series indeed is the definition of the matrix
exponential

exp.F t / D I C F t C
F

2 t2

2ä
C

F
3 t3

3ä
C � � � (2.19)

and thus the solution to Equation (2.17) can be written as

x.t/ D exp.F t / x.0/: (2.20)

Note that the matrix exponential cannot be computed by computing scalar
exponentials of the individual elements in matrix F t . It is a completely dif-
ferent function. Sometimes the matrix exponential is written as expm.F t /

to distinguish it from the elementwise computation, but here we use the
common convention to simply write it as exp.F t /. The matrix exponential
function can be found as a built-in function in most commercial and open-
source mathematical software packages such as MATLAB R
and Python. In
addition to this kind of numerical solution, the exponential can be evaluated
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2.2 Solutions of Linear Time-Invariant Differential Equations 9

analytically, for example, by directly using the Taylor series expansion, by
using the Laplace or Fourier transform, or via the Cayley–Hamilton theo-
rem (Åström and Wittenmark, 1997).

Example 2.1 (Matrix exponential). To illustrate the difference between the

matrix exponential and the elementwise exponential, consider the equation

d2x

dt2
D 0; x.0/ D given; .dx=dt/.0/ D given; (2.21)

which in state-space form can be written as

dx

dt
D

✓

0 1

0 0

◆

„ ƒ‚ …

F

x; x.0/ D given; (2.22)

where x D .x; dx=dt/. Because F
n D 0 for n > 1, the matrix exponential

is simply

exp.F t / D I C F t D

✓

1 t

0 1

◆

(2.23)

which is completely different from the elementwise matrix exponential:
✓

1 t

0 1

◆

¤

✓

exp.0/ exp.t/

exp.0/ exp.0/

◆

D

✓

1 et

1 1

◆

: (2.24)

Let us now consider the following linear differential equation with an
inhomogeneous term on the right-hand side:

dx.t/

dt
D F x.t/ C L w.t/; (2.25)

where x.t0/ is given and the matrices F and L are constant. For inhomo-
geneous equations, the solution methods are numerous, especially if we do
not want to restrict ourselves to specific kinds of forcing functions w.t/.
However, the following integrating factor method can be used for solving
general inhomogeneous equations.

If we move the term F x.t/ in Equation (2.25) to the left-hand side and
multiply with a term called integrating factor exp.!F t /, we get the fol-
lowing result:

exp.!F t /
dx.t/

dt
! exp.!F t / F x.t/ D exp.!F t / L w.t/: (2.26)

From the definition of the matrix exponential, we can derive the following
property:

d
dt

Œexp.!F t /ç D ! exp.!F t / F : (2.27)
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10 Some Background on Ordinary Differential Equations

The key thing is now to observe that

d
dt

Œexp.!F t / x.t/ç D exp.!F t /
dx.t/

dt
! exp.!F t / F x.t/; (2.28)

which is exactly the left-hand side of Equation (2.26). Thus we can rewrite
the equation as

d
dt

Œexp.!F t / x.t/ç D exp.!F t / L w.t/: (2.29)

Integrating from t0 to t then gives

exp.!F t / x.t/ ! exp.!F t0/ x.t0/ D

Z t

t0

exp.!F ⌧/ L w.⌧/ d⌧; (2.30)

which can be further rearranged to give the final solution

x.t/ D exp.F .t ! t0// x.t0/ C

Z t

t0

exp.F .t ! ⌧// L w.⌧/ d⌧: (2.31)

In the preceding solution, we have also used the identity
exp.F s/ exp.F t / D exp.F .s C t //, which is true because the ma-
trices F s and F t commute. The expression (2.31) is the complete solution
to Equation (2.25).

2.3 Solutions of General Linear Differential Equations

In this section, we consider solutions to more general, time-varying linear
differential equations. The corresponding stochastic equations are a useful
class of equations, because they can be solved in (semi)closed form quite
analogously to the deterministic case considered in this section.

The solution presented in the previous section in terms of matrix expo-
nential only works if the matrix F is constant. Thus for the time-varying
homogeneous equation of the form

dx

dt
D F.t/ x; x.t0/ D given; (2.32)

the matrix exponential solution does not work. However, we can express
the solution in the form

x.t/ D ‰.t; t0/ x.t0/; (2.33)
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