MODERN RADIO TECHNIQUE

General Editor: J. A. RATCLIFFE

A SURVEY OF
THE PRINCIPLES & PRACTICE
OF WAVE GUIDES
A SURVEY OF THE PRINCIPLES & PRACTICE OF WAVE GUIDES

BY

L. G. H. HUXLEY, M.A., D.PHIL.

Reader in Electromagnetism in the University of Birmingham
Formerly Principal Scientific Officer, Ministry of Aircraft Production

CAMBRIDGE AT THE UNIVERSITY PRESS
1947
To
E. M. H.

CAMBRIDGE
UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.
It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781316509814

© Cambridge University Press 1947

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1947
First paperback edition 2015

A catalogue record for this publication is available from the British Library

ISBN 978-1-316-50981-4 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.
PREFACE

Although the propagation of electromagnetic waves in metal tubes—or wave guides as they are now called—has been studied for some fifty years, until recently the subject was in the main of theoretical, rather than of practical, interest. However, with the development of the first microwave radar equipment during 1940–1 the subject was suddenly transformed to one of prime practical importance, and in the following years was developed at a phenomenal rate, both in Britain and the United States. This book is written to provide an introductory survey of these recent developments.

The treatment in the first six chapters is based on courses on microwave techniques which were given during the war at the Radar School of the Telecommunications Research Establishment (T.R.E.), and it is believed that the book has lost nothing of importance in content and rigour through this elementary and physical approach to the subject. Chapter 7 has been included for those readers who may prefer a more formal treatment.

The physical interpretation, given in §5.4, of the normalized admittance or impedance of an obstacle or other discontinuity in a wave guide, in terms of scattering coefficient, has the advantage of relating these quantities immediately to the experimental data obtained with a standing wave indicator. It was the subject of a paper that I read before a technical colloquium at T.R.E. during the war. The treatment of Babinet’s Principle in Chapter 7 is also believed to be original.

When this book was written, the greater proportion of the technical developments described were hidden in secret reports and memoranda which are not available to the general reader. No reference is made to this literature, and very few of the many contributors to the development of the subject have been mentioned by name. Accounts of confidential work done during the war are
vi

PREFACE

now appearing in technical journals, and the reader can obtain more detailed information on particular matters from these. Attention is drawn in particular to The Proceedings of the Radio-location Convention, March–May 1946, J. Instn Elect. Engrs, vol. 93, part III A, nos. 1, 3 and 4, 1946.

I welcome this opportunity of expressing my appreciation of the considerable assistance that I received from numerous colleagues at the Telecommunications Research Establishment without which this book could not have been written, but I wish to record in particular my indebtedness to Dr G. G. Macfarlane and Dr W. Cochrane with whom I engaged in many stimulating discussions on the subject of wave guides. I am also indebted to Mr J. A. Ratcliffe, who first aroused my interest in the subject, for helpful criticism of the text.

I wish also to express my thanks to the Director-General of Scientific Research (Air), Ministry of Supply, for permission to publish this book, which follows closely a monograph written by me as a contribution to the Scientific War Records of the Ministry of Supply (Air).

It is recorded, in conclusion, that, although the book has received official scrutiny before publication, I accept full responsibility for all opinions and statements in it. Further, I acknowledge Crown Copyright in respect of all illustrations in the book.

L. G. H. HUXLEY

DEPARTMENT OF ELECTRICAL ENGINEERING
THE UNIVERSITY, EDBASTON
BIRMINGHAM 15

28 June 1946
CONTENTS

Chapter 1. THE ELECTROMAGNETIC FIELDS OF TEM-WAVES

1.1 Introduction 1
1.2 Field of a plane-polarized electromagnetic wave in free space 3
1.3 Poynting flux 5
1.4 Behaviour of electric and magnetic fields at the surface of a conductor 7
1.5 Field pattern of a principal wave on parallel conductors—transmission-line formulae 10

Chapter 2. PROGRESSIVE ELECTROMAGNETIC WAVES IN WAVE GUIDES

2.1 General features of electromagnetic waves in metal wave guides 17
2.2 Derivation of the electromagnetic field patterns of H_{0n} (TE_{0n}) modes 18
2.3 The H_{01}-(TE_{01}) wave in a rectangular wave guide—dominant modes 29
2.4 Method of launching an H_{01}-wave in a rectangular wave guide 29
2.5 System of wall currents of the H_{10}-wave 29
2.6 Other wave modes in a rectangular wave guide 31
2.7 Circular wave guides and higher modes in coaxial transmission lines 34
 2.7.1 Introductory 34
 2.7.2 Supplementary waves in coaxial transmission lines 35
 2.7.3 H_{m1}-wave (TE_{m1}) in a circular wave guide 36
 2.7.4 E_{mn}-waves (TM_{mn}) 37
 2.7.5 Wave modes without axial symmetry 38
2.8 Methods of launching those wave modes of practical significance 42
2.9 Group velocity 45
CONTENTS

Chapter 3. FORMULAE FOR FIELD COMPONENTS—
EVANESCENT MODES—ATTENUATORS—
ATTENUATION DUE TO WALLS

3.1 Introduction 47
3.2 Field components of the H_{0n}-wave (TE_{0n}) in a rectangular
wave guide 47
3.3 Field components of H_{mn}- and E_{mn}-waves 52
3.4 Wave impedance and Poynting flux
 3.4.1 Wave impedance 53
 3.4.2 Poynting flux 54
3.5 Evanescent modes 55
3.6 The piston attenuator 57
3.7 Attenuators 61
3.8 Poynting flux in an evanescent mode 62
3.9 Attenuation of progressive waves due to finite conductivity
 of the walls 65

Chapter 4. WAVE-GUIDE TECHNIQUES

4.1 Introduction 71
4.2 Choice of wave-guide geometry and dimensions 71
4.3 Avoidance of reflected waves within a wave guide 73
4.4 Standing-wave indicators 74
4.5 Crystal detector 77
4.6 X-band wave-meter 81
4.7 Reflectionless terminations 82
4.8 Wave-guide test set 84
4.9 Wave-guide couplings and plungers 85
4.10 Bends and corners in wave guides 89
4.11 Twists and tapers 91
4.12 E_{01}-H_{01} transformers and rotating joints 92
4.13 Coaxial wave-guide transformers 95
4.14 Flexible wave guides 98
4.15 Production of circularly polarized waves 99
4.16 Phase-shifting devices 101
CONTENTS ix

Chapter 5. WAVE-GUIDE IMPEDANCE AND FURTHER TECHNIQUES

5:1 Introduction...
5:2 Transmission-line theory...
 5:2:1 Voltage and current in a progressive wave...
 5:2:2 Reflexion coefficient of a terminating impedance...
 5:2:3 Line impedance and input impedance...
 5:2:4 Distribution of voltage and current in a standing wave...
 5:2:5 Standing-wave ratio...
 5:2:6 Power carried to the terminating load...
 5:2:7 Formulae for a line with loss...
 5:2:8 Stub matching...
5:3 Generalization of theory to include propagation in wave guides...
5:4 The addition of equivalent lumped circuit elements in parallel or in series with a wave guide...
5:5 Examples of obstacles whose self-admittances can be calculated...
5:6 Resistive impedances...
5:7 Reflexion from a plane interface...
5:8 Resonant obstacles...
5:9 Applications of resonant obstacles...
 5:9:1 Resonant slots as switches and protective devices...
 5:9:2 Ring reflectors as switches...
5:10 T-junctions...
5:11 Shunt or H-plane junctions...
5:12 Junctions of circular with rectangular wave guides...
5:13 Applications of T-junctions...
 5:13:1 Common aerial working—T.R. systems...
 5:13:2 The magic tee...
5:14 Measurement of power...
5:15 A wave-guide quarter-wave transformer...
5:16 Corrugated wave guides...
5:17 Resonant slots in the walls of wave guides...
 5:17:1 Introduction...
 5:17:2 Slots in wave guides...
 5:17:3 Coupling of wave guides through resonant slots...
5:18 Methods for feeding microwave aerials from wave guides...
5:19 Miscellaneous equivalent circuits...
CONTENTS

Chapter 6. CAVITY RESONATORS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Importance of cavity resonators</td>
<td>218</td>
</tr>
<tr>
<td>6.2</td>
<td>Stationary waves in a wave guide</td>
<td>218</td>
</tr>
<tr>
<td>6.3</td>
<td>Field patterns in cavity resonators</td>
<td>221</td>
</tr>
<tr>
<td>6.4</td>
<td>Resonant wave-length of a cavity</td>
<td>223</td>
</tr>
<tr>
<td>6.5</td>
<td>Charges and currents on internal surface of resonator</td>
<td>225</td>
</tr>
<tr>
<td>6.6</td>
<td>Method of excitation of a cavity resonator</td>
<td>226</td>
</tr>
<tr>
<td>6.7</td>
<td>The Q-factor of a cavity (quality factor)</td>
<td>226</td>
</tr>
<tr>
<td>6.8</td>
<td>Applications of cavity resonators</td>
<td>228</td>
</tr>
<tr>
<td>6.9</td>
<td>Measurement of power factor of dielectrics</td>
<td>236</td>
</tr>
<tr>
<td>6.10</td>
<td>Q-factor of a dielectric</td>
<td>238</td>
</tr>
<tr>
<td>6.11</td>
<td>Equivalent circuit of a resonator</td>
<td>239</td>
</tr>
<tr>
<td>6.12</td>
<td>Resonator method for precision measurement of wave-guide</td>
<td>241</td>
</tr>
</tbody>
</table>

Chapter 7. MATHEMATICAL TREATMENT OF SELECTED TOPICS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>247</td>
</tr>
<tr>
<td>7.2</td>
<td>Maxwell’s field equations and Hertz vectors</td>
<td>247</td>
</tr>
<tr>
<td>7.3</td>
<td>The electric Hertz vector $\mathbf{\Pi}$</td>
<td>248</td>
</tr>
<tr>
<td>7.4</td>
<td>The magnetic Hertz vector $\mathbf{\Pi}_m$</td>
<td>249</td>
</tr>
<tr>
<td>7.5</td>
<td>Derivation of an electromagnetic field from a single scalar quantity</td>
<td>249</td>
</tr>
<tr>
<td>7.6</td>
<td>Derivation of \mathbf{E} and \mathbf{H} from U. E-type fields</td>
<td>251</td>
</tr>
<tr>
<td>7.7</td>
<td>Boundary conditions for U</td>
<td>252</td>
</tr>
<tr>
<td>7.8</td>
<td>The scalar V—magnetic or H-type fields</td>
<td>253</td>
</tr>
<tr>
<td>7.9</td>
<td>Boundary conditions for V</td>
<td>253</td>
</tr>
<tr>
<td>7.10</td>
<td>Application of theory to specific coordinate systems</td>
<td>254</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Introduction</td>
<td>254</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Solutions in Cartesian coordinates</td>
<td>255</td>
</tr>
<tr>
<td>7.10.3</td>
<td>Electromagnetic waves on cylinders—general discussion</td>
<td>259</td>
</tr>
<tr>
<td>7.10.4</td>
<td>TEM-waves</td>
<td>260</td>
</tr>
<tr>
<td>7.10.5</td>
<td>Circular cylinders</td>
<td>261</td>
</tr>
<tr>
<td>7.10.6</td>
<td>Intrinsic (or wave) impedance of waves along cylinders</td>
<td>269</td>
</tr>
<tr>
<td>7.10.7</td>
<td>Solutions in spherical polar coordinates</td>
<td>270</td>
</tr>
<tr>
<td>7.10.8</td>
<td>Longitudinal section waves</td>
<td>275</td>
</tr>
</tbody>
</table>
CONTENTS

7.11 Example of a method for calculating the susceptance of an obstacle 275
7.12 The field energy 282
7.13 Babinet's principle 283
7.14 Skin effect and equivalent surface resistance 290
7.15 General formula for attenuation coefficient of an empty wave guide 294
7.16 The Q-factor of a resonator 295
7.17 Lorentz's reciprocal theorem and equivalent networks—Thévenin's theorem 297
7.18 Spatial and functional properties of the electromagnetic fields of the characteristic modes 306
 7.18.1 Spatial orthogonality of the electric and magnetic fields of a mode 306
 7.18.2 Some properties of transmission-line modes 307
 7.18.3 Functional orthogonality of the characteristic modes of a resonator 309
 7.18.4 Forced oscillations in cavity resonators 314

BIBLIOGRAPHY 324

LIST OF SYMBOLS 324

SUBJECT INDEX 327
CORRIGENDA

p. 4, equation (3). For 10^{-6} read 10^6.
p. 5, 1·3, line 8. For E/q read F/q.
p. 10, equation (7). Omit 2 under radical.
p. 18, line 16. For smallest read largest.
p. 22, line 22. For D read B.
p. 61, 6 lines from bottom. For fig. 4·29 (c) read fig. 4·29 (a).
p. 70, line 3 from bottom. Cadmium plating is used externally, not internally.
p. 83, line 6 from bottom. For not used read not extensively used.
p. 87, lines 8 and 13. For G read C.
p. 88. In the account of choke couplings and plungers, it should have been mentioned that lose contacts between the wall and the plunger or between the two portions of the coupler, are rendered innocuous since they are placed at a node of current in the half wave recess.
p. 93, line 22. For (a) read (c).
p. 115, line 5 from bottom. For 5·2·2 (1) and (2) read of 5·2·2.
p. 119, line 6. For § 7·16 read § 7·17.
p. 133, line 3 from bottom. For 10 (a) read 5·10 (a).
p. 137. Equation (2) should read

$$y_1 = jh_1 = -j \frac{\lambda_s}{W} \cot^2 \left(\frac{\pi c}{2W} \right).$$

It is given correctly on the following page.
p. 141, fig. 5·16 (9). Include term -2 within the square bracket.
p. 141, fig. 5·16 (10). For R read r and for $2n - 1 \lambda$ read $(2n - 1) \lambda$.
p. 145, fig. 5·18 (a). Reflected components should read (E_r, H_r).
p. 146. In formula following (1) read $(1 - \rho)$.
p. 146, line 14 from bottom. For Z_H read $(Z_H)_{x}$.
p. 148, line 21. For fig. 5·16 read fig. 5·14.
p. 155, fig. 5·26 (a). For $\frac{1}{2}$ read $\frac{3}{2}$.
CORRIGENDA

pp. 164, 165, near bottom of page. \[\frac{j(1+jf_a)}{f_a} \text{ read } \frac{j(1+jf_a)}{2f_a}; \]
also make corresponding correction on fig. 5·30 (a).
p. 167, line 5. For right-hand read left-hand.
p. 179, line 23. For DE read BE.
p. 181, line 2. For DCHR read DCHK.
p. 190, line 9. For cell read cells.
p. 191, line 2 from bottom. For mean read peak.
p. 192, bottom line. For power read peak power.
p. 196. For intrinsic impedance read everywhere total impedance. (Ref. p. 119.)

p. 198, line 3 from bottom. For \(v = \sqrt{\frac{L}{C}} \) read \(v = \frac{1}{\sqrt{LC}} \).
p. 202, line 5 from bottom. For Cuttler read Cutler.
p. 203, first formula. For D read d within the round bracket.
p. 214, line 4. For (e) read (a).
p. 224. The \(E \)-mode with the lowest frequency is the \(E_{110} \) not the \(E_{111} \) as stated. This correction is required also on p. 258. The component \(U \) of the Hertz vector for the \(E_{110} \) mode is

\[U = \sin \left(\frac{\pi x}{a} \right) \sin \left(\frac{\pi y}{b} \right) e^{jat}. \]

p. 229, line 2. Omit words C opposite to B.
p. 235, centre of page, paragraph beginning ‘the input impedance...’.
Cause and effect are interchanged.

p. 248, § 7·3. In equation above (3) for \(eE \) read \(e\hat{E} \).

p. 253, equation (3). For \(\frac{\partial}{\partial \mu_a} \) read \(\frac{\partial}{\partial \mu_a} \) for first symbol within square bracket.

p. 275, end of § 7·10·7. The correct values of the roots are:
\(\rho_{11} = 4·49, \rho_{12} = 5·8, \rho_{12} = 7·64, \sigma_{11} = 2·75. \)
p. 276, second line from bottom. For electric read magnetic.

p. 291, bottom line. For \(v \) read \(\sigma \).

Huxley: Wave Guides.