AN INTRODUCTION TO
NUCLEAR PHYSICS
AN INTRODUCTION
TO
NUCLEAR PHYSICS

BY

N. FEATHER, F.R.S.

Professor of Natural Philosophy in the
University of Edinburgh

CAMBRIDGE
AT THE UNIVERSITY PRESS
1948
CONTENTS

Preface \hspace{1cm} \textit{page} ix

PART I. INTRODUCTORY

Chapter I. Experiments—and the Types of Information Obtained \hspace{1cm} \textit{page} 1

Chapter II. Interpretation within the Scheme of Macroscopic Physics \hspace{1cm} \textit{page} 29

§ 6. The “classical” background. § 7. The nuclear hypothesis. § 8. Nuclear disintegration

Chapter III. The Need for a New Point of View: Interpretation in Terms of Wave Mechanics \hspace{1cm} \textit{page} 44

Chapter IV. Elementary Particles: Nuclear Structure \hspace{1cm} \textit{page} 56

PART II. CONCERNING STABLE NUCLEI

Chapter V. Nuclear Charge and Mass \hspace{1cm} \textit{page} 72

§ 14. Mass and charge numbers. § 15. Nuclear mass: the mass spectrograph. § 16. Evidence from transformation experiments and from other sources

Chapter VI. Rotational Attributes: Mechanical and Magnetic Moments of Nuclei \hspace{1cm} \textit{page} 87

\hspace{1cm} v
CONTENTS

PART III. CONCERNING UNSTABLE NUCLEI

Chapter VII. Emission of α particles ... page 110
§ 22. General features of spontaneous transformations. § 23. Experimental data concerning the emission of α particles. § 24. Theoretical considerations

Chapter VIII. Emission of electrons, positive and negative .. page 121

Chapter IX. Emission of quanta .. page 138
§ 29. Experimental facts. § 30. Nuclear energy levels. § 31. Evidence for nuclear excitation in the analysis of the primary corpuscular radiation

PART IV. TRANSFORMATIONS PRODUCED BY FAST-MOVING PARTICLES AND BY RADIATION

Chapter X. Transformations produced by α particles ... page 152
§ 32. General types of artificially produced nuclear transformation. § 33. Disintegration with the emission of protons. § 34. Disintegration with the emission of neutrons. § 35. Non-capture excitation. § 36. Collected results

Chapter XI. Transformations produced by neutrons .. page 170
§ 37. Transformations produced by high energy neutrons. § 38. Effects produced by neutrons of small energy and the nuclear model of Bohr. § 39. Collected results

Chapter XII. Transformations produced by accelerated particles .. page 188
§ 40. Transformations produced by fast-moving protons. § 41. Transformations produced by fast-moving deuterons. § 42. Collected results

Chapter XIII. Effects produced by quanta .. page 201
§ 43. Nuclear scattering and absorption. § 44. Photo-disintegration

Name Index .. page 209

vi
LIST OF PLATES

Plate I.

a. Tracks of α particles and β particles in the cloud expansion chamber

b. Tracks of α particles in a photographic emulsion facing p. 4

II.

a–e. Disintegration of nitrogen by neutrons: various modes. (Expansion chamber photographs) facing p. 172

III.

a, b. Disintegration of carbon and oxygen by neutrons. (Expansion chamber)
c, d. Disintegration of fluorine by neutrons. (Expansion chamber)
e, f. Disintegration of boron by neutrons. (Photographic emulsion)
g. Photo-disintegration of deuterium. (Expansion chamber) facing p. 177

vii
PREFACE

If the naive distinction between experimental and theoretical branches of a science be maintained, the present book must clearly be regarded as dealing with the experimental side of the science of nuclear physics. On the other hand, the farther removed the subject matter of any science is from common experience, the more trivial the distinction between “experimental” and “theoretical” becomes, in application to that science. It is certainly a trivial distinction in respect of nuclear physics. Individual researches may be carried through by “experimenters” and “theorists”, respectively; they become significant, however, only when their results are fused in a common statement. This is the point of view from which succeeding pages have been written: it will probably appear most plainly in Part I, where, for the most part, well-known results are under discussion.

In Part I the attempt is made to trace the growth of the necessity of the concepts “nuclear atom” and “atomic-nucleus-possessing-internal-structure” for the progress of research in physics; Parts II, III and IV summarise the developments of the subject which followed upon the acceptance of this general scheme of interpretation. Again, the presentation may be said to be chiefly experimental in these later parts, if only for the reason that a change in the conceptual scheme would call for less alteration here than in any parallel, but more formal, treatment. Phenomena, rather than the mental constructs in terms of which they are variously interpreted—according to the accident of the time—are really fundamental. For this reason all discussion has been kept as far as possible phenomenological.

The book, then, is an introduction and a summary: the chief ideas necessary for an understanding of current research in nuclear physics have been given with the aid of a few illustrative examples; on the other hand all the important results have also been included, in tabular form.
PREFACE

Finally, a number of acknowledgments remains to be made: to Dr R. R. Nimmo who has read through the whole of the proofs with characteristic energy, to Dr H. S. W. Massey who has offered the opinion of a theorist on many matters under dispute, to Professor H. J. Taylor for the originals of Plates I (b) and III (e) and (f), to Dr T. W. Bonner for the original of Plate II (d) and to Dr G. Gamow an acknowledgment of a less precise nature. During the preparation of Dr Gamow’s forthcoming Structure of Atomic Nuclei and Nuclear Transformations the task of revising the manuscript for publication was allotted to me. I wish to acknowledge the many advantages which the performance of this task conferred; I trust they have not here been abused, in any particular. Presently, Dr Gamow’s book and the extensive monograph of Drs Bethe and Bacher\(^a\) will provide all the “theoretical” background that any reader of these pages is likely to require.

NORMAN FEATHER

LIVERPOOL
3 September 1936

NOTE TO SECOND IMPRESSION

Pending the preparation of a new edition this photographic reprint of the first edition is issued to meet the urgent needs of University students.

N. F.

1948

\(^a\) Part A, Rev. Mod. Phys. 8, 82, 1936; Part B, in preparation.